Skip to content

Latest commit

 

History

History
400 lines (306 loc) · 11.4 KB

README.md

File metadata and controls

400 lines (306 loc) · 11.4 KB

Image_classification Using CNN

Problem statement :

In this Section we are implementing Convolution Neural Network(CNN) Classifier for Classifying dog and cat images. The Total number of images available for training is 25,000 and final testing is done on seperate 10,000 images. Note:This problem statement and dataset is taken from this Kaggle competition. Dependencies

Google colab
Tensorflow 1.10
Matplotlib
Seaborn
Scikit-Learn
Pandas
Numpy
cv

Install dependencies Test Train Split

The image training set contains 20,000 images for each category. I split those into 80% train and 20% means test Split each class image into 18,000 for train and 2000 for the test.

Architecture cnn

import tensorflow as tf from tensorflow import keras from keras import Sequential from keras.layers import Dense,Conv2D,MaxPooling2D,Flatten,BatchNormalization,Dropout

Loading dataset

generators

train_ds = keras.utils.image_dataset_from_directory( directory = '/content/train', labels='inferred', label_mode = 'int', batch_size=32, image_size=(256,256) )

validation_ds = keras.utils.image_dataset_from_directory( directory = '/content/test', labels='inferred', label_mode = 'int', batch_size=32, image_size=(256,256) )

Normalize

def process(image,label): image = tf.cast(image/255. ,tf.float32) return image,label

train_ds = train_ds.map(process) validation_ds = validation_ds.map(process)

ways to reduce overfitting

Add more data

Data Augmentation

L1/L2 Regularizer

Dropout

Batch Norm

Reduce complexity

Network Parameter:

Rectifier Linear Unit
Adam optimizer
Sigmoid on Final output
Binary CrossEntropy loss

create CNN model

model = Sequential()

model.add(Conv2D(32,kernel_size=(3,3),padding='valid',activation='relu',input_shape=(256,256,3))) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2,2),strides=2,padding='valid'))

model.add(Conv2D(64,kernel_size=(3,3),padding='valid',activation='relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2,2),strides=2,padding='valid'))

model.add(Conv2D(128,kernel_size=(3,3),padding='valid',activation='relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2,2),strides=2,padding='valid'))

model.add(Flatten())

model.add(Dense(128,activation='relu')) model.add(Dropout(0.1)) model.add(Dense(64,activation='relu')) model.add(Dropout(0.1)) model.add(Dense(1,activation='sigmoid'))

Batch Normalization and DropOut

Data Augmentation

Using some Data Augmentation techniques for more data and Better results.

Shearing of images
Random zoom
Horizontal flips

from tensorflow.keras.preprocessing.image import ImageDataGenerator batch_size=32 train_datagene=ImageDataGenerator(rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True) test_datagene=ImageDataGenerator(rescale=1./255) test_datagene test_datagen = ImageDataGenerator(rescale=1./255)

#Training Set

generators

train_generate = train_datagene.flow_from_directory( directory = '/content/train', batch_size=32, target_size=(256,256), class_mode='binary' )

Validation Set

valid_generate = train_datagene.flow_from_directory( directory = '/content/test', batch_size=32, target_size=(256,256), class_mode='binary' )

%%capture classifier.fit_generator(train_set, steps_per_epoch=800, epochs = 200, validation_data = test_set, validation_steps = 20, #callbacks=[tensorboard] );

#Some Helpful Instructions:

#finetune you network parameter in last by using low learning rate like 0.00001 #classifier.save('resources/dogcat_model_bak.h5') #from tensorflow.keras.models import load_model #model = load_model('partial_trained1') #100 iteration with learning rate 0.001 and after that 0.0001

from tensorflow.keras.models import load_model classifier = load_model('resources/dogcat_model_bak.h5')

Prediction of Single Image

#Prediction of image %matplotlib inline import tensorflow from tensorflow.keras.preprocessing import image import matplotlib.pyplot as plt import numpy as np img1 = image.load_img('test/Cat/10.jpg', target_size=(64, 64)) img = image.img_to_array(img1) img = img/255

create a batch of size 1 [N,H,W,C]

img = np.expand_dims(img, axis=0) prediction = classifier.predict(img, batch_size=None,steps=1) #gives all class prob. if(prediction[:,:]>0.5): value ='Dog :%1.2f'%(prediction[0,0]) plt.text(20, 62,value,color='red',fontsize=18,bbox=dict(facecolor='white',alpha=0.8)) else: value ='Cat :%1.2f'%(1.0-prediction[0,0]) plt.text(20, 62,value,color='red',fontsize=18,bbox=dict(facecolor='white',alpha=0.8))

plt.imshow(img1) plt.show()

png

import pandas as pd test_set.reset ytesthat = classifier.predict_generator(test_set) df = pd.DataFrame({ 'filename':test_set.filenames, 'predict':ytesthat[:,0], 'y':test_set.classes })

pd.set_option('display.float_format', lambda x: '%.5f' % x) df['y_pred'] = df['predict']>0.5 df.y_pred = df.y_pred.astype(int) df.head(10)

filename 	predict 	y 	y_pred

0 Cat/0.jpg 0.00000 0 0 1 Cat/1.jpg 0.00000 0 0 2 Cat/10.jpg 0.00000 0 0 3 Cat/100.jpg 0.99970 0 1 4 Cat/10001.jpg 0.00000 0 0 5 Cat/10009.jpg 0.02340 0 0 6 Cat/1001.jpg 0.00001 0 0 7 Cat/10012.jpg 0.00000 0 0 8 Cat/10017.jpg 0.00000 0 0 9 Cat/10018.jpg 0.00000 0 0

misclassified = df[df['y']!=df['y_pred']] print('Total misclassified image from 5000 Validation images : %d'%misclassified['y'].count())

Total misclassified image from 5000 Validation images : 122

#Prediction of test set from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt import seaborn as sns

conf_matrix = confusion_matrix(df.y,df.y_pred) sns.heatmap(conf_matrix,cmap="YlGnBu",annot=True,fmt='g'); plt.xlabel('predicted value') plt.ylabel('true value');

png

#Some of Cat image misclassified as Dog. import matplotlib.image as mpimg

CatasDog = df['filename'][(df.y==0)&(df.y_pred==1)] fig=plt.figure(figsize=(15, 6)) columns = 7 rows = 3 for i in range(columns*rows): #img = mpimg.imread() img = image.load_img('test/'+CatasDog.iloc[i], target_size=(64, 64)) fig.add_subplot(rows, columns, i+1) plt.imshow(img)

plt.show()

png

#Some of Dog image misclassified as Cat. import matplotlib.image as mpimg

DogasCat = df['filename'][(df.y==1)&(df.y_pred==0)] fig=plt.figure(figsize=(15, 6)) columns = 7 rows = 3 for i in range(columns*rows): #img = mpimg.imread() img = image.load_img('test/'+DogasCat.iloc[i], target_size=(64, 64)) fig.add_subplot(rows, columns, i+1) plt.imshow(img) plt.show()

png

classifier.summary()


Layer (type) Output Shape Param #

conv2d_6 (Conv2D) (None, 62, 62, 32) 896


max_pooling2d_6 (MaxPooling2 (None, 31, 31, 32) 0


conv2d_7 (Conv2D) (None, 29, 29, 32) 9248


max_pooling2d_7 (MaxPooling2 (None, 14, 14, 32) 0


flatten_3 (Flatten) (None, 6272) 0


dense_6 (Dense) (None, 128) 802944


dense_7 (Dense) (None, 1) 129

Total params: 813,217 Trainable params: 813,217 Non-trainable params: 0


Visualization of Layers Ouptut

#Input Image for Layer visualization img1 = image.load_img('test/Cat/14.jpg') plt.imshow(img1); #preprocess image img1 = image.load_img('test/Cat/14.jpg', target_size=(64, 64)) img = image.img_to_array(img1) img = img/255 img = np.expand_dims(img, axis=0)

png

model_layers = [ layer.name for layer in classifier.layers] print('layer name : ',model_layers)

layer name : ['conv2d_6', 'max_pooling2d_6', 'conv2d_7', 'max_pooling2d_7', 'flatten_3', 'dense_6', 'dense_7']

from tensorflow.keras.models import Model conv2d_6_output = Model(inputs=classifier.input, outputs=classifier.get_layer('conv2d_6').output) conv2d_7_output = Model(inputs=classifier.input,outputs=classifier.get_layer('conv2d_7').output)

conv2d_6_features = conv2d_6_output.predict(img) conv2d_7_features = conv2d_7_output.predict(img) print('First conv layer feature output shape : ',conv2d_6_features.shape) print('First conv layer feature output shape : ',conv2d_7_features.shape)

First conv layer feature output shape : (1, 62, 62, 32) First conv layer feature output shape : (1, 29, 29, 32)

Single Convolution Filter Output

plt.imshow(conv2d_6_features[0, :, :, 4], cmap='gray')

<matplotlib.image.AxesImage at 0x7f3b1c90f978>

png First Covolution Layer Output

import matplotlib.image as mpimg

fig=plt.figure(figsize=(14,7)) columns = 8 rows = 4 for i in range(columns*rows): #img = mpimg.imread() fig.add_subplot(rows, columns, i+1) plt.axis('off') plt.title('filter'+str(i)) plt.imshow(conv2d_6_features[0, :, :, i], cmap='gray') plt.show()

png Second Covolution Layer Output

fig=plt.figure(figsize=(14,7)) columns = 8 rows = 4 for i in range(columns*rows): #img = mpimg.imread() fig.add_subplot(rows, columns, i+1) plt.axis('off') plt.title('filter'+str(i)) plt.imshow(conv2d_7_features[0, :, :, i], cmap='gray') plt.show()

png Model Performance on Unseen Data

for generator image set u can use

ypred = classifier.predict_generator(test_set)

fig=plt.figure(figsize=(15, 6)) columns = 7 rows = 3 for i in range(columns*rows): fig.add_subplot(rows, columns, i+1) img1 = image.load_img('test1/'+test_set1.filenames[np.random.choice(range(12500))], target_size=(64, 64)) img = image.img_to_array(img1) img = img/255 img = np.expand_dims(img, axis=0) prediction = classifier.predict(img, batch_size=None,steps=1) #gives all class prob. if(prediction[:,:]>0.5): value ='Dog :%1.2f'%(prediction[0,0]) plt.text(20, 58,value,color='red',fontsize=10,bbox=dict(facecolor='white',alpha=0.8)) else: value ='Cat :%1.2f'%(1.0-prediction[0,0]) plt.text(20, 58,value,color='red',fontsize=10,bbox=dict(facecolor='white',alpha=0.8)) plt.imshow(img1)

png

%%capture

Model Accuracy

x1 = classifier.evaluate_generator(train_set) x2 = classifier.evaluate_generator(test_set)

print('Training Accuracy : %1.2f%% Training loss : %1.6f'%(x1[1]*100,x1[0])) print('Validation Accuracy: %1.2f%% Validation loss: %1.6f'%(x2[1]*100,x2[0]))

Training Accuracy : 99.96% Training loss : 0.002454 Validation Accuracy: 97.56% Validation loss: 0.102678

Conclusion

The Architecture and parameter used in this network are capable of producing accuracy of 97.56% on Validation Data which is pretty good. It is possible to Achieve more accuracy on this dataset using deeper network and fine tuning of network parameters for training.