forked from graphcore/examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
deep_voice_component.py
250 lines (196 loc) · 12.3 KB
/
deep_voice_component.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# Copyright (c) 2020 Graphcore Ltd. All rights reserved.
import sys
import numpy as np
from scipy.stats import truncnorm
import logging_util
# set up logging
logger = logging_util.get_basic_logger(__name__)
class Component(object):
""" base class for components of deep-voice model (encoder, decoder and converter) """
def __init__(self, conf, builder, conv_type="causal", graph_initial_weights=None, graph_name_to_tensor_map=None):
self.builder = builder
self.dtype = conf.precision
self.conf = conf
self.conv_type = conv_type
self.init_type = conf.init_type
self.graph_initial_weights = graph_initial_weights
self.graph_name_to_tensor_map = graph_name_to_tensor_map
def xavier_init(self, shape, num_units_in, num_units_out):
bound = np.sqrt(6. / (num_units_in + num_units_out))
return np.random.uniform(-bound, bound, shape).astype(self.dtype)
def normal_init(self, shape, mean, std_dev):
# Truncated random normal between 2 standard deviations
data = truncnorm.rvs(-2, 2, loc=mean,
scale=std_dev, size=np.prod(shape))
data = data.reshape(shape).astype(self.dtype)
return data
def namescope(self, debug_string):
return self.builder.nameScope(debug_string)
def get_constant(self, const_value):
return self.builder.aiOnnx.constant(np.array(const_value).astype(self.dtype))
def add_tensor(self, block_name, var_name, init_weights):
""" adds an initialized weight tensor to the graph for given block and variable """
tensor_name = block_name + '/' + var_name
if self.graph_initial_weights is not None:
if tensor_name in self.name_to_tensor.keys():
# return tensor if it has already been created (for auto-regression)
return self.name_to_tensor[tensor_name]
else:
# using weights from trained model
init_weights = self.graph_initial_weights[self.graph_name_to_tensor_map[tensor_name]]
else:
if tensor_name in self.name_to_tensor.keys():
logger.error("Tensor with name {} already exists".format(tensor_name))
sys.exit(-1)
weights_tensor = self.builder.addInitializedInputTensor(init_weights, var_name)
self.name_to_tensor[tensor_name] = weights_tensor
return weights_tensor
def gated_residual_conv_block(self, x, num_channels, block_name, speaker_embedding=None, speaker_embedding_dim=0,
ksize=5, bias=True, dropout_rate=0.05):
""" this is the implementation of the conv block (gated linear unit + residual connection)
described in figure 2 of the deep voice 3 paper """
with self.namescope("conv_block"):
gated_conv_out = self.builder.aiOnnx.unsqueeze([x], axes=[3])
if dropout_rate > 0.0:
gated_conv_out = self.builder.aiOnnx.dropout([gated_conv_out], 1, dropout_rate)[0]
wshape = [2 * num_channels, num_channels, ksize, 1]
if self.init_type == 'xavier':
init_weights = self.xavier_init(wshape, num_channels, 2 * num_channels)
elif self.init_type == 'normal':
init_weights = self.normal_init(wshape, mean=0.0, std_dev=self.conf.layer_normal_init_weights_std_dev)
else:
raise ValueError('Not a valid initialization type for conv block:{}'.format(self.init_type))
weights = self.add_tensor(block_name, "weights", init_weights)
if self.conv_type == "causal":
pad = ksize - 1
pads = [pad, 0, 0, 0]
elif self.conv_type == "same":
pad = int(ksize / 2)
pads = [pad, 0, pad, 0]
else:
logger.error("Not a valid padding options for this conv_block. Use same or causal")
sys.exit(-1)
conv_args = [gated_conv_out, weights]
if bias:
bshape = [2 * num_channels]
init_biases = np.zeros(bshape).astype(self.dtype)
biases = self.add_tensor(block_name, "bias", init_biases)
conv_args += [biases]
gated_conv_out = self.builder.aiOnnx.conv(conv_args,
dilations=[1, 1],
kernel_shape=[ksize, 1],
strides=[1, 1],
pads=pads)
xs1, xs2 = self.builder.aiOnnx.split([self.builder.aiOnnx.squeeze([gated_conv_out], axes=[3])],
num_outputs=2, axis=1)
if speaker_embedding:
xs1 = self.apply_speaker_embedding(xs1, num_channels, speaker_embedding, speaker_embedding_dim,
block_name + "_apply_speaker_embedding")
xs2_gated = self.builder.aiOnnx.sigmoid([xs2])
# gated conv output
gated_conv_out = self.builder.aiOnnx.mul([xs1, xs2_gated])
# making the residual connection
x = self.builder.aiOnnx.mul([self.get_constant(np.sqrt(0.5)),
self.builder.aiOnnx.add([x, gated_conv_out])])
return x
def temp_distributed_FC(self, x, channels_in, channels_out, block_name,
bias=True, activation=None, given_init_weights=None):
""" temporally distributed fully-connected layer """
with self.namescope("temp_dist_fc"):
wshape = [channels_out, channels_in]
if given_init_weights is None:
if self.init_type == 'xavier':
init_weights = self.xavier_init(wshape, channels_in, channels_out)
elif self.init_type == 'normal':
init_weights = self.normal_init(wshape, mean=0.0, std_dev=self.conf.layer_normal_init_weights_std_dev)
else:
raise ValueError('Not a valid initialization type for '
'temporally distributed FC block:{}'.format(self.init_type))
else:
init_weights = given_init_weights
assert(list(init_weights.shape) == list(wshape))
weights = self.add_tensor(block_name, "weights", init_weights)
x = self.builder.aiOnnx.matmul([weights, x])
if bias:
bshape = [channels_out, 1]
init_biases = np.zeros(bshape).astype(self.dtype)
biases = self.add_tensor(block_name, "bias", init_biases)
x = self.builder.aiOnnx.add([x, biases])
if activation == "relu":
x = self.builder.aiOnnx.relu([x])
elif activation == "sigmoid":
x = self.builder.aiOnnx.sigmoid([x])
return x
def attention_block(self, h_k, h_v, h_q, k_dim, v_dim, q_dim, text_seq_length, attention_hidden_size, block_name,
attention_dropout_rate=0.05,
keys_positional_encodings=None, queries_positional_encodings=None,
same_init_query_key_projection=True):
""" this is the implementation of the attention block described in figure 3 of the deep voice 3 paper """
# making popart constant for sequence length
text_seq_length = self.get_constant(text_seq_length)
if keys_positional_encodings:
h_k = self.builder.aiOnnx.add([h_k, keys_positional_encodings])
if queries_positional_encodings:
h_q = self.builder.aiOnnx.add([h_q, queries_positional_encodings])
with self.namescope("attention_block"):
# using temporally distributed FC layers to get transformed keys, values & queries
if same_init_query_key_projection:
init_query_key_projection = self.xavier_init([attention_hidden_size, q_dim], q_dim, attention_hidden_size)
else:
init_query_key_projection = None
Q_k = self.temp_distributed_FC(h_k, k_dim, attention_hidden_size, block_name + "_key_projection",
bias=False, given_init_weights=init_query_key_projection) # k X Tk
Q_v = self.temp_distributed_FC(h_v, v_dim, attention_hidden_size, block_name + "_value_projection",
bias=False) # v X Tk
Q_q = self.temp_distributed_FC(h_q, q_dim, attention_hidden_size, block_name + "_query_projection",
bias=False, given_init_weights=init_query_key_projection)
# transposing Q_q
Q_q_t = self.builder.aiOnnx.transpose([Q_q], perm=[0, 2, 1]) # Tq X q
# getting transformed query key dot products (Tq X Tk)
attention_scores = self.builder.aiOnnx.matmul([Q_q_t, Q_k])
attention_scores = self.builder.aiOnnx.softmax([attention_scores], axis=2)
if attention_dropout_rate > 0.0:
attention_scores = self.builder.aiOnnx.dropout([attention_scores], 1, attention_dropout_rate)[0]
attention_scores = self.builder.aiOnnx.transpose([attention_scores], perm=[0, 2, 1]) # Tk X Tq
self.builder.setInplacePreferences(attention_scores, {"TransposeInplace": 1000.0})
# getting weighted average of value vectors to get context vectors
context_vectors = self.builder.aiOnnx.matmul([Q_v, attention_scores]) # v X Tq
# dividing by sqrt of num-steps
context_vectors = self.builder.aiOnnx.div([context_vectors, self.builder.aiOnnx.sqrt([text_seq_length])])
# projecting context vectors back to space with dimension of original queries
context_vectors = self.temp_distributed_FC(context_vectors, attention_hidden_size, q_dim,
block_name + "_context_vec_projection",
activation="relu", bias=False)
return context_vectors, attention_scores
def embedding(self, indices, num_symbols, embedding_size, block_name):
""" Embedding layer """
with self.namescope("embedding_layer"):
init_weights = self.normal_init((num_symbols, embedding_size),
mean=0.0, std_dev=self.conf.embed_normal_init_weights_std_dev)
embedding_matrix = self.add_tensor(block_name, "embedding_matrix", init_weights)
embeddings = self.builder.aiOnnx.gather([embedding_matrix, indices])
# converting to NCW format
embeddings = self.builder.aiOnnx.transpose([embeddings], perm=[0, 2, 1])
return embeddings, embedding_matrix
def apply_speaker_embedding(self, input_sequence, num_channels,
speaker_embedding, speaker_embedding_dim,
block_name):
""" add speaker embedding to input sequence """
with self.namescope("speaker_embedding"):
wshape = [num_channels, speaker_embedding_dim]
if self.init_type == 'xavier':
init_weights = self.xavier_init(wshape, speaker_embedding_dim, num_channels)
elif self.init_type == 'normal':
init_weights = self.normal_init(wshape, mean=0.0, std_dev=self.conf.layer_normal_init_weights_std_dev)
else:
raise ValueError('Not a valid initialization type for '
'speaker embedding application:{}'.format(self.init_type))
weights = self.add_tensor(block_name, "weights", init_weights)
bshape = [num_channels, 1]
init_biases = np.zeros(bshape).astype(self.dtype)
biases = self.add_tensor(block_name, "bias", init_biases)
embedding_transformed = \
self.builder.aiOnnx.tanh([self.builder.aiOnnx.add(
[self.builder.aiOnnx.matmul([weights, speaker_embedding]), biases])])
out_sequence = self.builder.aiOnnx.add([input_sequence, embedding_transformed])
return out_sequence