-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
392 lines (323 loc) · 16.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import librosa
import pretty_midi
import os
import pathlib
import csv
import ast
import numpy as np
from math import ceil, floor
#display utils should be separated from other core utils so that synmist is not dependent on matplotlib (since it can cause clashes etc..)
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec
#todo: function to synthesize the midi using fluidsynth and just return it as a data obj, rather than having to do these file reads/writes
def slice_prettymidi(pretty_midi_obj, start_time, end_time):
# Create a new PrettyMIDI object
new_pretty_midi = pretty_midi.PrettyMIDI()
# Iterate over all instruments in the original PrettyMIDI object
for instrument in pretty_midi_obj.instruments:
# Create a new Instrument for the new PrettyMIDI object
new_instrument = pretty_midi.Instrument(program=instrument.program, is_drum=instrument.is_drum, name=instrument.name)
# Filter notes
new_instrument.notes = [note for note in instrument.notes if start_time <= note.start < end_time]
# Filter control changes
new_instrument.control_changes = [
cc for cc in instrument.control_changes if start_time <= cc.time < end_time]
# Filter pitch bends
new_instrument.pitch_bends = [
pitch_bend for pitch_bend in instrument.pitch_bends if start_time <= pitch_bend.time < end_time]
# Add the filtered instrument to the new PrettyMIDI object
new_pretty_midi.instruments.append(new_instrument)
# Copy over tempo changes, time signatures, and key signatures that fall within the time range
new_pretty_midi.time_signature_changes = [
ts for ts in pretty_midi_obj.time_signature_changes if start_time <= ts.time < end_time]
new_pretty_midi.key_signature_changes = [
ks for ks in pretty_midi_obj.key_signature_changes if start_time <= ks.time < end_time]
new_pretty_midi._tick_scales = [
ts for ts in pretty_midi_obj._tick_scales if start_time <= ts[0] < end_time]
# Copy over tempo changes (you might want to filter this if there are many)
new_pretty_midi._tempo_changes = [
(time, tempo) for time, tempo in zip(pretty_midi_obj.get_tempo_changes()[0], pretty_midi_obj.get_tempo_changes()[1])
if start_time <= time < end_time]
return new_pretty_midi
#returns a dtype object that follows the dtype_str given. This is to help us serialize the saved mistakes.
#might not be needed with our new way for parsing the lines
def parse_mistake_labels_dtype(dtype_str):
"""Parse the dtype from the string."""
dtype_items = []
dtype_str = dtype_str[dtype_str.index("[")+1 : dtype_str.rindex("]")]
dtype_str = dtype_str.replace("(", "").replace(")", "").split(", ")
for i in range(0, len(dtype_str), 2):
field_name = dtype_str[i].strip("'")
field_type = dtype_str[i+1]
dtype_items.append((field_name, field_type))
return np.dtype(dtype_items)
def parse_mistake_labels_file(file_path):
metadata = [] # This will store the time and label values
dtype = None
def parse_entry(entry_lines):
# Join the accumulated lines into one single string
entry_str = ' '.join(entry_lines)
# Split the string to extract the time, label, and params
time_part, label_part, params_part = entry_str.split(',', 2)
# Clean up the time and label
time = float(time_part.strip('[]'))
label = label_part.strip()
# Safely evaluate the params dictionary
params_str = ast.literal_eval(params_part.strip())
params_str = params_str.strip('"')
#params = ast.literal_eval(params_str)
#UNSAFE FUNCTION:
params = eval(params_str, {'array': np.array})
# Extract 'note' and 'dtype' from params
note = params.get('note')
dtype = note.dtype if note is not None else None
# Return the structured data
return {
'time': time,
'label': label,
'note': note,
'dtype': dtype
}
def parse_file(file_path):
#these are 3 parallel arrays
dtype = None
tgt_times = []
tgt_labels = []
with open(file_path, 'r') as file:
header_line = next(file)
current_entry = []
for line in file:
# Start accumulating a new entry when we hit a new "time, label, params"
if line.startswith('['):
# Process the last entry before moving to a new one
if current_entry:
entry = parse_entry(current_entry)
if dtype is None:
dtype = entry['dtype']
tgt_notes= np.zeros(0, dtype=dtype)
tgt_notes = np.concatenate((entry['note'], tgt_notes))
tgt_times.append(entry['time'])
tgt_labels.append(entry['label'])
# Reset the entry accumulator
current_entry = [line.strip()]
else:
# Continue accumulating lines for the current entry
current_entry.append(line.strip())
# Process the last accumulated entry after the loop ends
if current_entry:
entry = parse_entry(current_entry)
if dtype is None:
dtype = entry['dtype']
tgt_notes= np.zeros(0, dtype=dtype)
tgt_notes = np.concatenate((entry['note'], tgt_notes))
tgt_times.append(entry['time'])
tgt_labels.append(entry['label'])
tgt_notes.sort(order='onset_sec')
return tgt_notes, np.array(tgt_times), np.array(tgt_labels)
entries = parse_file(file_path)
return entries
def payload_to_csv(payload, fileout):
fields = ['time', 'label', 'params']
with open(fileout, 'w') as csv_out:
writer = csv.writer(csv_out)
writer.writerow(fields)
for row in payload:
writer.writerow(row)
return
def timemap_to_csv(time_map, repeats, fileout):
fields = ['timefrom', 'timeto']
with open(fileout, 'w') as csv_out:
writer = csv.writer(csv_out)
writer.writerow(fields)
for row in time_map:
writer.writerow(row)
repeat_number = 1
for (tgt_time_lower, tgt_time_upper), (to_times, from_times) in repeats.items():
writer.writerow([]) # Add an empty row for clarity between repeats
writer.writerow([f"Repeat {repeat_number}:"]) # Add a header for each repeat
for t_from, t_to in zip(from_times, to_times):
writer.writerow([t_from, t_to])
repeat_number += 1
def csv_to_timemap(filein):
time_map = []
repeat_tracker = {}
current_repeat = None
current_from_times = []
current_to_times = []
with open(filein, 'r') as csv_in:
reader = csv.reader(csv_in)
for row in reader:
# Skip empty rows
if not row:
continue
if row[0] == 'timefrom':
continue
# Detect repeat section
if row[0].startswith("Repeat"):
# If we're already in a repeat section, save the previous one
if current_repeat:
repeat_tracker[current_repeat] = (current_from_times, current_to_times)
# Start a new repeat section
repeat_times = row[0].replace("Repeat (", "").replace(")", "").split(", ")
current_repeat = (float(repeat_times[0]), float(repeat_times[1]))
current_from_times = []
current_to_times = []
elif current_repeat:
# Add to the current repeat section
current_from_times.append(float(row[0]))
current_to_times.append(float(row[1]))
else:
# Add to the main time_map
time_map.append((float(row[0]), float(row[1])))
# After finishing the loop, make sure to save the last repeat section
if current_repeat:
repeat_tracker[current_repeat] = (current_from_times, current_to_times)
return time_map, repeat_tracker
#class GT: #keeps track of a time series ground truth before and after applying mistakes
# def __init__(self, src_ts_label, tgt_ts_label):
# self.src_ts_label = np.loadtxt(src_ts_label)
# self.tgt_ts_label = np.loadtxt(tgt_ts_label)
# return
# def get_equiv_src_labels(self, tgt_labels, timemap, repeats):
#labels is an array of timestamp -
#check timemap for tgt
#if failed
#check repeats for tgt
#repeat the matching src
# return
def load_filenames(filename, root):
return {
'src_perf': os.path.join(root, '{}-src.mid'.format(filename)),
'tgt_perf': os.path.join(root, '{}-tgt.mid'.format(filename)),
'mistake_timemap': os.path.join(root, '{}-mistake_timemap.csv'.format(filename)),
'mistakelabel_csv': os.path.join(root, '{}-label.csv'.format(filename)),
'mistakelabel_midi': os.path.join(root, '{}-mistake-label.mid'.format(filename)),
'src_gt_label': os.path.join(root, '{}src-gt-label.csv'.format(filename)),
'tgt_gt_label': os.path.join(root, '{}tgt-gt-label.csv'.format(filename))
}
class SynmistPerformance:
#loads the info of a single synmist performance with modified GT
def __init__(self, src_perf, tgt_perf, mistakelabel_csv, mistake_timemap, mistakelabel_midi, src_gt_label, tgt_gt_label):
(self.tgt_mistakelabel_notes,
self.tgt_mistakelabel_time,
self.tgt_mistakelabel_label) = parse_mistake_labels_file(mistakelabel_csv)
self.tgt_mistakelabel_midi = pretty_midi.PrettyMIDI(mistakelabel_midi)
self.tgt_performance = pretty_midi.PrettyMIDI(tgt_perf)
self.src_perf = pretty_midi.PrettyMIDI(src_perf)
self.mistake_timemap_main, self.mistake_timemap_repeats = csv_to_timemap(mistake_timemap)
#to add later the src_gt and tgt_gt labels
return
def get_mistake_windows(self, recovery_buffer, mistake_types):
#currently there is a mismatch between the names of the mistake_types in lowlvl.py and in simulate_mistakes.py.
#we will make the caller follow the names in simulate_mistakes.py.
mistake_centers = {}
mistake_windows = {}
for mistake_type in mistake_types:
indexes = np.where(self.tgt_mistakelabel_label == mistake_type)
mistake_centers[mistake_type] = self.tgt_mistakelabel_time[indexes]
mistake_windows[mistake_type] = [(max(0, i-floor(recovery_buffer/2.0)), min(i+ceil(recovery_buffer/2.0), self.tgt_performance.get_end_time()))
for i in mistake_centers[mistake_type]]
#return the mistake windows in a list, with the mistake centered within a recovery buffer
#return around them the time of the recovery buffers
#obviously they are all with respect to the tgt performance. to get their src equivalent, use the get_src_equivalent function
#get them as just time arrays
return mistake_windows, mistake_centers
#tgt_times should be an array of the time window we want to obtain a src equivalent for.
#we should check entry by entry in the array, and get the nearest point before it if it's > 0+the threshold.
#and return till the first entry which is within timeto+search_resolution_ms.
def get_src_equivalent(self, tgt_times, search_resolution_ms):
#i think for now i'll just ignore the search_resolution_ms..
timeto = [timeto for (timefrom, timeto) in self.mistake_timemap[0]]
timefrom = [timefrom for (timefrom, timeto) in self.mistake_timemap[0]]
tgt_time_out = []
src_time_out = []
for t in tgt_times:
#check the main map and each of the repeats for the nearest index
#each tgt time can lead to just one score time, but not vice versa.
closest_value = -1 #since we cannot have negative time
closest_value_idx = None
repeat = 0 #this is to keep track of which repeat id (or none) had the closest value.
nearest_tgt_idx = np.fabs(t - timeto).argmin() #should be the one greater but for now whatev.
closest_value = timeto[nearest_tgt_idx]
closest_value_src = timefrom[nearest_tgt_idx]
repeats = {} #holds the nearest_tgt_idx per each repeatmap
for repeatid, repeat_map in self.mistake_timemap[1].items():
timeto_repeat = [timeto for (timefrom, timeto) in repeat_map]
timefrom_repeat = [timefrom for (timefrom, timeto) in repeat_map]
repeats[repeatid] = np.fabs(t - timeto).argmin()
if abs(t - timeto[repeats[repeatid]]) < abs(t-closest_value):
closest_value = timeto_repeat[repeats[repeatid]]
closest_value_src = timefrom_repeat[repeats[repeatid]]
repeat = repeatid
tgt_time_out.append(closest_value)
src_time_out.append(closest_value_src)
#at the end of this,
#repeat would tell whether this is from a repeated part or not. 0 if not, yes if greater
#and repeats[repeatid] tells which is the closest index to t we are trying to find.
#this code can definitely be more efficient, but i'm sticking to this mediocrity for now.
return tgt_time_out, src_time_out
def get_src_data(self, src_times):
return
def get_tgt_time(self, tgt_times):
#to be used twice, once to get the tgt times, and then the recovery times, all from get mistake windows
return
def synthesize_midi(score_path, fs=44100):
score_synth = pretty_midi.PrettyMIDI(score_path).fluidsynth(fs=fs)
return score_synth
def save_global_stats(run_path):
#the dataframe is saved in same runpath
#this payload saving function needs to change a bit, but for now we will just read from it as is.
return
def get_window_info(stem, seconds_start, seconds_end):
#this function returns the info of this window
#get window info can be implemented with get_mistake_info
#check the midi label track
#check the src track
#check the target track
#print the src with red lines in the mistake insertion points
#print the target with note additions in red? (or just the span of the mistake)
#return a list of mistakes and their start points
#should return the length of contiguous mistake areas for the data.
return
def get_mistake_info(stem, seconds_start, note=None):
#when time and note are given, return the saved parameters relating to that error
#
return
def show_warping_path(src_midi, tgt_midi, timemap, tgt_starttime=0, tgt_endtime=-1, display_pianoroll=True):
#tgt_midi is on the x-axis, src_midi is on the y-axis.
#something in the repeats seems weird...
src_time = [t1 for t1, t2 in timemap]
tgt_time = [t2 for t1, t2 in timemap]
fig=plt.figure(figsize=(12, 12)) # Set the figure size
if display_pianoroll:
gridspecval=2
height_ratios=[3, 1]
time_array = np.array(time_array)
time_array = np.multiply(time_array, 100)
else:
gridspecval=1
height_ratios=[1]
gs = GridSpec(gridspecval, 1, height_ratios=height_ratios, hspace=0.4) # Adjust hspace for spacing
ax1 = fig.add_subplot(gs[0])
im1 = ax1.plot(tgt_time, src_time, color='green', label='Relationship Line', marker='o')
ax1.set_xlabel('tgt time (seconds)')
ax1.set_ylabel('src (seconds)')
ax1.set_title('Warping Path')
if display_pianoroll:
pitch_extent = [0, 128]
time_extent = [time_array[0], time_array[-1]]
ax2 = fig.add_subplot(gs[1], sharex=ax1)
im2 = ax2.imshow(tgt_midi, cmap='Blues', aspect='auto', origin='lower',
extent=time_extent+pitch_extent)
cbar2 = plt.colorbar(im2, ax=ax2, orientation='vertical', fraction=0.02, pad=0.04)
ax2.set_title('Pianoroll')
ax2.set_xlabel('Time (seconds)')
ax2.set_ylabel('Pitch (MIDI Notes)')
# Show the plot
plt.tight_layout()
plt.show()
#(put the display functions)
#just do an imshow on the src and the target.
#plot the timemap colors in red
#plot the tgt underneath the x axis (since the xaxis will be the tgt)
return