Skip to content

Latest commit

 

History

History
executable file
·
46 lines (39 loc) · 2.97 KB

README.md

File metadata and controls

executable file
·
46 lines (39 loc) · 2.97 KB

ICD-MSMN

The offical implementation of "Code Synonyms Do Matter: Multiple Synonyms Matching Network for Automatic ICD Coding" [ACL 2022] PWC

Environment

All codes are tested under Python 3.7, PyTorch 1.7.0. Need to install opt_einsum for einsum calculations. At least 32GB GPU are needed for training MIMIC-III full setting.

Dataset

We only put several samples for each dataset. One need to obtain licences to download MIMIC-III dataset. Once you obtain the MIMIC-III dataset, please follow caml-mimic to preprocess the dataset. You should obtain train_full.csv, test_full.csv, dev_full.csv, train_50.csv, test_50.csv, dev_50.csv after preprocessing. Please put them under sample_data/mimic3. Then you should use preprocess/generate_data_new.ipynb for generating json format dataset.

Word embedding

Please download word2vec_sg0_100.model from LAAT. You need to change the path of word embedding.

Use our code

MIMIC-III Full (1 GPU):

CUDA_VISIBLE_DEVICES=0 python main.py --n_gpu 8 --version mimic3 --combiner lstm --rnn_dim 256 --num_layers 2 --decoder MultiLabelMultiHeadLAATV2 --attention_head 4 --attention_dim 512 --learning_rate 5e-4 --train_epoch 20 --batch_size 2 --gradient_accumulation_steps 8 --xavier --main_code_loss_weight 0.0 --rdrop_alpha 5.0 --est_cls 1  --term_count 4  --sort_method random --word_embedding_path word_embedding_path

MIMIC-III Full (8 GPUs):

NCCL_IB_DISABLE=1 CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --nproc_per_node 8 --master_port=1212 --use_env  main.py --n_gpu 8 --version mimic3 --combiner lstm --rnn_dim 256 --num_layers 2 --decoder MultiLabelMultiHeadLAATV2 --attention_head 4 --attention_dim 512 --learning_rate 5e-4 --train_epoch 20 --batch_size 2 --gradient_accumulation_steps 1 --xavier --main_code_loss_weight 0.0 --rdrop_alpha 5.0 --est_cls 1  --term_count 4  --sort_method random --word_embedding_path word_embedding_path

MIMIC-III 50:

CUDA_VISIBLE_DEVICES=0 python main.py --version mimic3-50 --combiner lstm --rnn_dim 512 --num_layers 1 --decoder MultiLabelMultiHeadLAATV2 --attention_head 8 --attention_dim 512 --learning_rate 5e-4 --train_epoch 20 --batch_size 16 --gradient_accumulation_steps 1 --xavier --main_code_loss_weight 0.0 --rdrop_alpha 5.0 --est_cls 1 --term_count 8 --word_embedding_path word_embedding_path

Citation

@article{yuan2022code,
  title={Code Synonyms Do Matter: Multiple Synonyms Matching Network for Automatic ICD Coding},
  author={Yuan, Zheng and Tan, Chuanqi and Huang, Songfang},
  journal={arXiv preprint arXiv:2203.01515},
  year={2022}
}