forked from GanjinZero/ICD-MSMN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data_util.py
executable file
·466 lines (408 loc) · 16.6 KB
/
data_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
import re
from random import sample
import h5py
import gensim
import torch
import os
from torch.utils.data import Dataset
from constant import DATA_DIR, MIMIC_2_DIR, MIMIC_3_DIR
import sys
import pandas as pd
import numpy as np
import math
import csv
from collections import defaultdict
import warnings
import json, ujson
warnings.filterwarnings('ignore', category=FutureWarning)
maxInt = sys.maxsize
while True:
try:
csv.field_size_limit(maxInt)
break
except OverflowError:
maxInt = int(maxInt/10)
def create_main_code(ind2c):
mc = list(set([c.split('.')[0] for c in set(ind2c.values())]))
mc.sort()
ind2mc = {ind:mc for ind, mc in enumerate(mc)}
mc2ind = {mc:ind for ind, mc in ind2mc.items()}
return ind2mc, mc2ind
class MimicFullDataset(Dataset):
def __init__(self, version, mode, vocab_path, truncate_length,
label_truncate_length=30, term_count=1, sort_method='max'):
self.version = version
self.mode = mode
if version == 'mimic2':
raise NotImplementedError
if version in ['mimic3', 'mimic3-50']:
self.path = os.path.join(MIMIC_3_DIR, f"{version}_{mode}.json")
if version in ['mimic3']:
self.train_path = os.path.join(MIMIC_3_DIR, "train_full.csv")
if version in ['mimic3-50']:
self.train_path = os.path.join(MIMIC_3_DIR, "train_50.csv")
with open(self.path, "r") as f:
self.df = ujson.load(f)
self.vocab_path = vocab_path
self.word2id, self.id2word = load_vocab(self.vocab_path)
self.truncate_length = truncate_length
self.ind2c, _ = load_full_codes(self.train_path, version=version)
# self.part_icd_codes = list(self.ind2c.values())
self.c2ind = {c: ind for ind, c in self.ind2c.items()}
self.code_count = len(self.ind2c)
if mode == "train":
print(f'Code count: {self.code_count}')
self.ind2mc, self.mc2ind = create_main_code(self.ind2c)
self.main_code_count = len(self.ind2mc)
if mode == "train":
print(f'Main code count: {self.main_code_count}')
from nltk.tokenize import RegexpTokenizer
self.tokenizer = RegexpTokenizer(r'\w+')
self.len = len(self.df)
self.label_truncate_length = label_truncate_length
self.term_count = term_count
self.sort_method = sort_method
if self.mode == "train":
self.prepare_label_feature(self.label_truncate_length)
def check(self, word):
for ch in word:
if 'a' <= ch <= 'z' or 'A' <= ch <= "Z":
return True
return False
def __len__(self):
return self.len
def gettext(self, index):
return self.df[index]['TEXT']
def split(self, text):
sp = re.sub(r'\n\n+| +', '\t', text.strip()).replace("\n",
" ").replace("!", "\t").replace("?", "\t").replace(".", "\t")
return [s.strip() for s in sp.split("\t") if s.strip()]
def tokenize(self, text):
texts = self.split(text)
all_text = []
split_text = []
sentence_index = []
word_count = 0
for note in texts:
now_text = [w.lower() for w in self.tokenizer.tokenize(
note) if not w.isnumeric()]
if now_text:
all_text.extend(now_text)
split_text.append(now_text)
word_count += len(now_text)
sentence_index.append(word_count)
return all_text, sentence_index, split_text
def __get_text_label__(self, index):
text = self.gettext(index)
label = str(self.df[index]['LABELS']).split(';')
return text, label
def pad(self, l, pad_token_length, pad_token_id, reverse=False):
if len(l) > pad_token_length:
if not reverse:
return l[0:pad_token_length]
return l[-pad_token_length:]
if not reverse:
return l + [pad_token_id] * (pad_token_length - len(l))
return [pad_token_id] * (pad_token_length - len(l)) + l
def text2feature(self, text, truncate_length=None):
if truncate_length is None:
truncate_length = self.truncate_length
all_text, sentence_index, split_text = self.tokenize(text)
input_word = [self.word2id.get(
w, self.word2id["**UNK**"]) for w in all_text]
word_mask = [1] * len(input_word)
input_word = self.pad(
input_word, truncate_length, self.word2id["**PAD**"])
word_mask = self.pad(word_mask, truncate_length, 0)
word_sent = self.pad(sentence_index, truncate_length, -1)
return input_word, word_mask, word_sent
def process(self, text, label):
input_word, word_mask, word_sent = self.text2feature(text)
binary_label = [0] * self.code_count
for l in label:
if l in self.c2ind:
binary_label[self.c2ind[l]] = 1
main_label = [0] * self.main_code_count
for l in label:
if l.split('.')[0] in self.mc2ind:
main_label[self.mc2ind[l.split('.')[0]]] = 1
return input_word, word_mask, word_sent, \
binary_label, main_label
def __getitem__(self, index):
text, label = self.__get_text_label__(index)
processed = self.process(text, label)
return processed
def extract_label_desc(self, ind2c):
if not hasattr(self, 'desc_dict'):
self.desc_dict = load_code_descriptions()
desc_list = []
for i in ind2c:
code = ind2c[i]
if not code in self.desc_dict:
print(f'Not find desc of {code}')
desc = self.desc_dict.get(code, code)
desc_list.append(desc)
return desc_list
def process_label(self, ind2c, truncate_length, term_count=1, method='max'):
desc_list = self.extract_label_desc(ind2c)
if term_count == 1:
c_desc_list = desc_list
else:
c_desc_list = []
with open(f'./embedding/icd_mimic3_{method}_sort.json', 'r') as f:
icd_syn = ujson.load(f)
for i in ind2c:
code = ind2c[i]
tmp_desc = [desc_list[i]]
new_terms = icd_syn.get(code, [])
if len(new_terms) >= term_count - 1:
tmp_desc.extend(new_terms[0:term_count - 1])
else:
tmp_desc.extend(new_terms)
repeat_count = int (term_count / len(tmp_desc)) + 1
tmp_desc = (tmp_desc * repeat_count)[0:term_count]
if i < 5:
print(code, tmp_desc)
c_desc_list.extend(tmp_desc)
c_input_word = []
c_word_mask = []
c_word_sent = []
for i, desc in enumerate(c_desc_list):
input_word, word_mask, word_sent = self.text2feature(desc, truncate_length=truncate_length)
c_input_word.append(input_word)
c_word_mask.append(word_mask)
c_word_sent.append(word_sent)
return c_input_word, c_word_mask, c_word_sent
def prepare_label_feature(self, truncate_length):
print('Prepare Label Feature')
if hasattr(self, 'term_count'):
term_count = self.term_count
else:
term_count = 1
if hasattr(self, 'sort_method'):
sort_method = self.sort_method
else:
sort_method = 'max'
c_input_word, c_word_mask, c_word_sent = self.process_label(self.ind2c, truncate_length,
term_count=term_count,
method=sort_method)
# mc_input_word, mc_word_mask, mc_word_sent = self.process_label(self.ind2mc, truncate_length)
self.c_input_word = torch.LongTensor(c_input_word)
self.c_word_mask = torch.LongTensor(c_word_mask)
self.c_word_sent = torch.LongTensor(c_word_sent)
# self.mc_input_word = torch.LongTensor(mc_input_word)
# self.mc_word_mask = torch.LongTensor(mc_word_mask)
# self.mc_word_sent = torch.LongTensor(mc_word_sent)
def my_collate_fn(batch):
type_count = len(batch[0])
batch_size = len(batch)
output = ()
for i in range(type_count):
tmp = []
for item in batch:
tmp.extend(item[i])
if len(tmp) <= batch_size:
output += (torch.LongTensor(tmp),)
elif isinstance(tmp[0], int):
output += (torch.LongTensor(tmp).reshape(batch_size, -1),)
elif isinstance(tmp[0], float):
output += (torch.FloatTensor(tmp).reshape(batch_size, -1),)
elif isinstance(tmp[0], list):
dim_y = len(tmp[0])
if isinstance(tmp[0][0], int):
output += (torch.LongTensor(tmp).reshape(batch_size, -1, dim_y),)
elif isinstance(tmp[0][0], float):
output += (torch.FloatTensor(tmp).reshape(batch_size, -1, dim_y),)
return output
def load_vocab(path):
try:
with open(path, "r", encoding="utf-8") as f:
lines = f.readlines()
words = [line.strip().split()[0] for line in lines]
except BaseException:
if path.endswith('.model'):
model = gensim.models.Word2Vec.load(path)
if path.endswith('.bin'):
model = gensim.models.KeyedVectors.load_word2vec_format(
path, binary=True)
words = list(model.wv.vocab)
del model
# hard code to trim word embedding size
try:
with open('./embedding/word_count_dict.json', 'r') as f:
word_count_dict = ujson.load(f)
except BaseException:
with open('../embedding/word_count_dict.json', 'r') as f:
word_count_dict = ujson.load(f)
words = [w for w in words if w in word_count_dict]
for w in ["**UNK**", "**PAD**", "**MASK**"]:
if not w in words:
words = words + [w]
word2id = {word: idx for idx, word in enumerate(words)}
id2word = {idx: word for idx, word in enumerate(words)}
return word2id, id2word
def load_full_codes(train_path, version='mimic3'):
"""
Inputs:
train_path: path to train dataset
version: which (MIMIC) dataset
Outputs:
code lookup, description lookup
"""
# get description lookup
desc_dict = load_code_descriptions(version=version)
# build code lookups from appropriate datasets
if version == 'mimic2':
ind2c = defaultdict(str)
codes = set()
with open('%s/proc_dsums.csv' % MIMIC_2_DIR, 'r') as f:
r = csv.reader(f)
# header
next(r)
for row in r:
codes.update(set(row[-1].split(';')))
codes = set([c for c in codes if c != ''])
ind2c = defaultdict(str, {i: c for i, c in enumerate(sorted(codes))})
else:
codes = set()
for split in ['train', 'dev', 'test']:
with open(train_path.replace('train', split), 'r') as f:
lr = csv.reader(f)
next(lr)
for row in lr:
for code in row[3].split(';'):
codes.add(code)
codes = set([c for c in codes if c != ''])
ind2c = defaultdict(str, {i: c for i, c in enumerate(sorted(codes))})
return ind2c, desc_dict
def reformat(code, is_diag):
"""
Put a period in the right place because the MIMIC-3 data files exclude them.
Generally, procedure codes have dots after the first two digits,
while diagnosis codes have dots after the first three digits.
"""
code = ''.join(code.split('.'))
if is_diag:
if code.startswith('E'):
if len(code) > 4:
code = code[:4] + '.' + code[4:]
else:
if len(code) > 3:
code = code[:3] + '.' + code[3:]
else:
code = code[:2] + '.' + code[2:]
return code
def load_code_descriptions(version='mimic3'):
# load description lookup from the appropriate data files
desc_dict = defaultdict(str)
if version == 'mimic2':
with open('%s/MIMIC_ICD9_mapping' % MIMIC_2_DIR, 'r') as f:
r = csv.reader(f)
# header
next(r)
for row in r:
desc_dict[str(row[1])] = str(row[2])
else:
with open("%s/D_ICD_DIAGNOSES.csv" % (DATA_DIR), 'r') as descfile:
r = csv.reader(descfile)
# header
next(r)
for row in r:
code = row[1]
desc = row[-1]
desc_dict[reformat(code, True)] = desc
with open("%s/D_ICD_PROCEDURES.csv" % (DATA_DIR), 'r') as descfile:
r = csv.reader(descfile)
# header
next(r)
for row in r:
code = row[1]
desc = row[-1]
if code not in desc_dict.keys():
desc_dict[reformat(code, False)] = desc
with open('%s/ICD9_descriptions' % DATA_DIR, 'r') as labelfile:
for _, row in enumerate(labelfile):
row = row.rstrip().split()
code = row[0]
if code not in desc_dict.keys():
desc_dict[code] = ' '.join(row[1:])
return desc_dict
def load_embeddings(embed_file):
W = []
word_list = []
try:
with open(embed_file) as ef:
for line in ef:
line = line.rstrip().split()
word_list.append(line[0])
vec = np.array(line[1:]).astype(np.float)
# also normalizes the embeddings
vec = vec / float(np.linalg.norm(vec) + 1e-6)
W.append(vec)
word2id, id2word = load_vocab(embed_file)
except BaseException:
if embed_file.endswith('.model'):
model = gensim.models.Word2Vec.load(embed_file)
if embed_file.endswith('.bin'):
model = gensim.models.KeyedVectors.load_word2vec_format(
embed_file, binary=True)
words = list(model.wv.vocab)
original_word_count = len(words)
# hard code to trim word embedding size
with open('./embedding/word_count_dict.json', 'r') as f:
word_count_dict = ujson.load(f)
words = [w for w in words if w in word_count_dict]
for w in ["**UNK**", "**PAD**", "**MASK**"]:
if not w in words:
words = words + [w]
word2id = {word: idx for idx, word in enumerate(words)}
id2word = {idx: word for idx, word in enumerate(words)}
new_W = []
for i in range(len(id2word)):
if not id2word[i] in ["**UNK**", "**PAD**", "**MASK**"]:
new_W.append(model.__getitem__(id2word[i]))
elif id2word[i] == "**UNK**":
print("adding unk embedding")
new_W.append(np.random.randn(len(new_W[-1])))
elif id2word[i] == "**MASK**":
print("adding mask embedding")
new_W.append(np.random.randn(len(new_W[-1])))
elif id2word[i] == "**PAD**":
print("adding pad embedding")
new_W.append(np.zeros_like(new_W[-1]))
new_W = np.array(new_W)
print(f"Word count: {len(id2word)}")
print(f"Load embedding count: {len(new_W)}")
print(
f"Original word count: {original_word_count}/{len(word_count_dict)}")
del model
return new_W
if not "**UNK**" in word_list:
# UNK embedding, gaussian randomly initialized
print("adding unk embedding")
word_list.append("**UNK**")
vec = np.random.randn(len(W[-1]))
vec = vec / float(np.linalg.norm(vec) + 1e-6)
W.append(vec)
if not "**MASK**" in word_list:
# UNK embedding, gaussian randomly initialized
print("adding unk embedding")
word_list.append("**UNK**")
vec = np.random.randn(len(W[-1]))
vec = vec / float(np.linalg.norm(vec) + 1e-6)
W.append(vec)
if not "**PAD**" in word_list:
print("adding pad embedding")
word_list.append("**PAD**")
vec = np.zeros_like(W[-1])
W.append(vec)
print(f"Word count: {len(id2word)}")
print(f"Load embedding count: {len(W)}")
print(f"Original word count: {original_word_count}/{len(word_count_dict)}")
word2newid = {w: i for i, w in enumerate(word_list)}
new_W = []
for i in range(len(id2word)):
new_W.append(W[word2newid[id2word[i]]])
new_W = np.array(new_W)
del model
return new_W