-
Notifications
You must be signed in to change notification settings - Fork 321
/
config.py
179 lines (163 loc) · 5.82 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# Copyright (c) 2021 PPViT Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Configuration
Configurations for (1) data processing, (2) model archtecture, and (3) training settings, etc.
Config can be set by .yaml file or by argparser
"""
import os
from yacs.config import CfgNode as CN
import yaml
_C = CN()
_C.BASE = ['']
# data settings
_C.DATA = CN()
_C.DATA.BATCH_SIZE = 256 # train batch_size on single GPU
_C.DATA.BATCH_SIZE_EVAL = None # (disabled in update_config) val batch_size on single GPU
_C.DATA.DATA_PATH = '/dataset/imagenet/' # path to dataset
_C.DATA.DATASET = 'imagenet2012' # dataset name, currently only support imagenet2012
_C.DATA.IMAGE_SIZE = 224 # input image size e.g., 224
_C.DATA.IMAGE_CHANNELS = 3 # input image channels: e.g., 3
_C.DATA.CROP_PCT = 0.875 # input image scale ratio, scale is applied before centercrop in eval mode
_C.DATA.NUM_WORKERS = 4 # number of data loading threads
_C.DATA.IMAGENET_MEAN = [0.485, 0.456, 0.406] # imagenet mean values
_C.DATA.IMAGENET_STD = [0.229, 0.224, 0.225] # imagenet std values
# model general settings
_C.MODEL = CN()
_C.MODEL.TYPE = 'rest'
_C.MODEL.NAME = 'rest'
_C.MODEL.RESUME = None # full model path for resume training
_C.MODEL.PRETRAINED = None # full model path for finetuning
_C.MODEL.NUM_CLASSES = 1000 # num of classes for classifier
_C.MODEL.DROPOUT = 0.0
_C.MODEL.ATTENTION_DROPOUT = 0.0
_C.MODEL.DROPPATH = 0.1
# model transformer settings
_C.MODEL.EMBED_DIMS = [64, 128, 256, 512]
_C.MODEL.NUM_HEADS = [1, 2, 4, 8]
_C.MODEL.DEPTHS = [2, 2, 2, 2]
_C.MODEL.MLP_RATIOS = [4, 4, 4, 4]
_C.MODEL.SR_RATIOS = [8, 4, 2, 1]
_C.MODEL.QKV_BIAS = True
_C.MODEL.QK_SCALE = None
_C.MODEL.APPLY_TRANSFORM = True
# training settings
_C.TRAIN = CN()
_C.TRAIN.LAST_EPOCH = 0
_C.TRAIN.NUM_EPOCHS = 300
_C.TRAIN.WARMUP_EPOCHS = 50
_C.TRAIN.WEIGHT_DECAY = 0.05
_C.TRAIN.BASE_LR = 1.5e-4
_C.TRAIN.WARMUP_START_LR = 1e-6
_C.TRAIN.END_LR = 0.0
_C.TRAIN.GRAD_CLIP = 1.0
_C.TRAIN.ACCUM_ITER = 1
_C.TRAIN.LINEAR_SCALED_LR = 256
# optimizer
_C.TRAIN.OPTIMIZER = CN()
_C.TRAIN.OPTIMIZER.NAME = 'AdamW'
_C.TRAIN.OPTIMIZER.EPS = 1e-8
_C.TRAIN.OPTIMIZER.BETAS = (0.9, 0.999)
# model ema
_C.TRAIN.MODEL_EMA = True
_C.TRAIN.MODEL_EMA_DECAY = 0.99996
_C.TRAIN.MODEL_EMA_FORCE_CPU = True
# data augmentation (optional, check datasets.py)
_C.TRAIN.SMOOTHING = 0.1
_C.TRAIN.COLOR_JITTER = 0.4 # if both auto augment and rand augment are False, use color jitter
_C.TRAIN.AUTO_AUGMENT = False # rand augment is used if both rand and auto augment are set True
_C.TRAIN.RAND_AUGMENT = True
_C.TRAIN.RAND_AUGMENT_LAYERS = 2
_C.TRAIN.RAND_AUGMENT_MAGNITUDE = 9 # scale from 0 to 9
# mixup params (optional, check datasets.py)
_C.TRAIN.MIXUP_ALPHA = 0.8
_C.TRAIN.MIXUP_PROB = 1.0
_C.TRAIN.MIXUP_SWITCH_PROB = 0.5
_C.TRAIN.MIXUP_MODE = 'batch'
_C.TRAIN.CUTMIX_ALPHA = 1.0
_C.TRAIN.CUTMIX_MINMAX = None
# random erase params (optional, check datasets.py)
_C.TRAIN.RANDOM_ERASE_PROB = 0.25
_C.TRAIN.RANDOM_ERASE_MODE = 'pixel'
_C.TRAIN.RANDOM_ERASE_COUNT = 1
_C.TRAIN.RANDOM_ERASE_SPLIT = False
# misc
_C.SAVE = "./output" # output folder, saves logs and weights
_C.SAVE_FREQ = 10 # freq to save chpt
_C.REPORT_FREQ = 20 # freq to logging info
_C.VALIDATE_FREQ = 1 # freq to do validation
_C.SEED = 0 # random seed
_C.EVAL = False # run evaluation only
_C.AMP = False # auto mix precision training
def _update_config_from_file(config, cfg_file):
"""Load cfg file (.yaml) and update config object
Args:
config: config object
cfg_file: config file (.yaml)
Return:
None
"""
config.defrost()
with open(cfg_file, 'r') as infile:
yaml_cfg = yaml.load(infile, Loader=yaml.FullLoader)
for cfg in yaml_cfg.setdefault('BASE', ['']):
if cfg:
_update_config_from_file(
config, os.path.join(os.path.dirname(cfg_file), cfg)
)
config.merge_from_file(cfg_file)
config.freeze()
def update_config(config, args):
"""Update config by ArgumentParser
Configs that are often used can be updated from arguments
Args:
args: ArgumentParser contains options
Return:
config: updated config
"""
if args.cfg:
_update_config_from_file(config, args.cfg)
config.defrost()
if args.dataset:
config.DATA.DATASET = args.dataset
if args.batch_size:
config.DATA.BATCH_SIZE = args.batch_size
config.DATA.BATCH_SIZE_EVAL = args.batch_size
if args.batch_size_eval:
config.DATA.BATCH_SIZE_EVAL = args.batch_size_eval
if args.image_size:
config.DATA.IMAGE_SIZE = args.image_size
if args.accum_iter:
config.TRAIN.ACCUM_ITER = args.accum_iter
if args.data_path:
config.DATA.DATA_PATH = args.data_path
if args.output:
config.SAVE = args.output
if args.eval:
config.EVAL = True
if args.pretrained:
config.MODEL.PRETRAINED = args.pretrained
if args.resume:
config.MODEL.RESUME = args.resume
if args.last_epoch:
config.TRAIN.LAST_EPOCH = args.last_epoch
if args.amp: # only for training
config.AMP = not config.EVAL
# config.freeze()
return config
def get_config(cfg_file=None):
"""Return a clone of config and optionally overwrite it from yaml file"""
config = _C.clone()
if cfg_file:
_update_config_from_file(config, cfg_file)
return config