-
Notifications
You must be signed in to change notification settings - Fork 21
/
train_noise_flow.py
550 lines (459 loc) · 21.7 KB
/
train_noise_flow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
#!/usr/bin/env python
import logging
import os
import queue
import socket
import sys
import time
from datetime import datetime
from os import path
from threading import Thread
import numpy as np
import tensorflow as tf
from borealisflows.noise_flow_model import NoiseFlow
from borealisflows.utils import ResultLogger
from borealisflows.utils import get_its
from borealisflows.utils import hps_logger
from mylogger import add_logging_level
from sidd.ArgParser import arg_parser
from sidd.Initialization import initialize_data_stats_queues_baselines_histograms
from sidd.data_loader import check_download_sidd
from sidd.sidd_utils import sidd_filenames_que_inst, restore_last_model, \
divide_parts, calc_train_test_stats, print_train_test_stats, sample_sidd_tf, \
calc_kldiv_mb, kl_div_3_data
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
def train_multithread(sess, tr_batch_que,
loss, sd_z, train_op,
x, y, nlf0, nlf1, iso, cam, lr, is_training,
_lr, n_processed_que, train_epoch_loss_que, sd_z_que,
train_its, nthr=8, requeue=False):
divs = divide_parts(train_its, nthr)
threads = []
for thr_id in range(nthr):
threads.append(Thread(target=train_thread,
args=(thr_id, divs[thr_id], sess, tr_batch_que,
loss, sd_z, train_op,
x, y, nlf0, nlf1, iso, cam, lr, is_training,
_lr, n_processed_que, train_epoch_loss_que, sd_z_que, requeue)
)
)
threads[thr_id].start()
for thr_id in range(nthr):
threads[thr_id].join()
def train_thread(thr_id, niter, sess, tr_batch_que,
loss, sd_z, train_op,
x, y, nlf0, nlf1, iso, cam, lr, is_training,
_lr, n_processed_que, train_epoch_loss_que, sd_z_que, requeue=False):
for k in range(niter):
tr_mb_dict = tr_batch_que.get() # blocking
_x = tr_mb_dict['_x']
_y = tr_mb_dict['_y']
_nlf0 = tr_mb_dict['nlf0']
_nlf1 = tr_mb_dict['nlf1']
_iso = tr_mb_dict['iso']
_cam = tr_mb_dict['cam']
if hps.sidd_cond == 'condSDN':
train_loss, sd_z_val = sess.run(
[loss, sd_z], feed_dict={x: _x, y: _y, nlf0: _nlf0, nlf1: _nlf1, iso: _iso, cam: _cam,
lr: _lr, is_training: True})
else:
_, train_loss, sd_z_val = sess.run(
[train_op, loss, sd_z], feed_dict={x: _x, y: _y, nlf0: _nlf0, nlf1: _nlf1, iso: _iso,
cam: _cam, lr: _lr,
is_training: True})
if requeue:
tr_batch_que.put(tr_mb_dict)
sd_z_que.put(sd_z_val)
n_processed_que.put(hps.n_batch_train)
train_epoch_loss_que.put(train_loss)
def test_multithread(sess, ts_batch_que,
loss, sd_z,
x, y, nlf0, nlf1, iso, cam, is_training,
test_epoch_loss_que, sd_z_que,
test_its, nthr=8, requeue=False):
divs = divide_parts(test_its, nthr)
threads = []
for thr_id in range(nthr):
threads.append(Thread(target=test_thread,
args=(thr_id, divs[thr_id], sess, ts_batch_que,
loss, sd_z, x, y, nlf0, nlf1, iso, cam, is_training,
test_epoch_loss_que, sd_z_que, requeue)
)
)
threads[thr_id].start()
for thr_id in range(nthr):
threads[thr_id].join()
def test_thread(thr_id, niter, sess, ts_batch_que,
loss, sd_z, x, y, nlf0, nlf1, iso, cam, is_training,
test_epoch_loss_que, sd_z_que,
requeue=False):
for k in range(niter):
ts_mb_dict = ts_batch_que.get() # blocking
_x = ts_mb_dict['_x']
_y = ts_mb_dict['_y']
_nlf0 = ts_mb_dict['nlf0']
_nlf1 = ts_mb_dict['nlf1']
_iso = ts_mb_dict['iso']
_cam = ts_mb_dict['cam']
test_loss, sd_z_val = sess.run([loss, sd_z], feed_dict={x: _x, y: _y, nlf0: _nlf0, nlf1: _nlf1, iso: _iso,
cam: _cam, is_training: False})
if requeue:
ts_batch_que.put(ts_mb_dict)
test_epoch_loss_que.put(test_loss)
sd_z_que.put(sd_z_val)
def sample_multithread(sess, ts_batch_que,
loss, sd_z,
x, x_sample, y, nlf0, nlf1, iso, cam, is_training,
sample_epoch_loss_que, sd_z_que, kldiv_que,
test_its, nthr=8, requeue=False, sc_sd=1, epoch=0):
divs = divide_parts(test_its, nthr)
threads = []
for thr_id in range(nthr):
threads.append(Thread(target=sample_thread,
args=(thr_id, divs[thr_id], sess, ts_batch_que,
loss, sd_z, x, x_sample, y, nlf0, nlf1, iso, cam, is_training,
sample_epoch_loss_que, sd_z_que, kldiv_que, requeue, sc_sd, epoch)
)
)
threads[thr_id].start()
for thr_id in range(nthr):
threads[thr_id].join()
def sample_thread(thr_id, niter, sess, ts_batch_que,
loss, sd_z, x, x_sample, y, nlf0, nlf1, iso, cam, is_training,
sample_epoch_loss_que, sd_z_que, kldiv_que, requeue=False, sc_sd=1, epoch=0):
is_fix = True # to fix the camera and ISO
iso_vals = [100, 400, 800, 1600, 3200]
iso_fix = [100]
cam_fix = [['IP', 'GP', 'S6', 'N6', 'G4'].index('S6')]
nlf_s6 = [[0.000479, 0.000002], [0.001774, 0.000002], [0.003696, 0.000002], [0.008211, 0.000002],
[0.019930, 0.000002]]
# for S6, for ISO 100, 400, 800, 1600, 3200
for k in range(niter):
ts_mb_dict = ts_batch_que.get() # blocking
_x = ts_mb_dict['_x']
_y = ts_mb_dict['_y']
if is_fix:
_iso = iso_fix
_cam = cam_fix
_nlf0 = [nlf_s6[iso_vals.index(iso_fix[0])][0]]
_nlf1 = [nlf_s6[iso_vals.index(iso_fix[0])][0]]
else:
_iso = ts_mb_dict['iso']
_cam = ts_mb_dict['cam']
_nlf0 = ts_mb_dict['nlf0']
_nlf1 = ts_mb_dict['nlf1']
# sample (forward)
x_sample_val = sess.run(x_sample, feed_dict={y: _y, nlf0: _nlf0, nlf1: _nlf1,
iso: _iso, cam: _cam, is_training: False})
# (optional) compute KL divergence between _x and x_sample_val
kldiv3 = kl_div_3_data(_x, x_sample_val) # slow
# compute NLL (inverse)
sample_loss, sd_z_val = sess.run([loss, sd_z], feed_dict={x: x_sample_val, y: _y, nlf0: _nlf0, nlf1: _nlf1,
iso: _iso, cam: _cam, is_training: False})
# marginal KL divergence
vis_mbs_dir = os.path.join(hps.logdir, 'samples_epoch_%04d' % epoch, 'samples_%.1f' % hps.temp)
kldiv3 = calc_kldiv_mb(ts_mb_dict, x_sample_val, vis_mbs_dir, sc_sd)
if requeue:
ts_batch_que.put(ts_mb_dict)
sample_epoch_loss_que.put(sample_loss)
sd_z_que.put(sd_z_val)
kldiv_que.put(kldiv3)
def get_optimizer(hps, lr, loss_val):
train_op = None
if hps.sidd_cond != 'condSDN':
if hps.optim == 'adam':
train_op = tf.train.AdamOptimizer(learning_rate=lr,
beta1=0.9,
beta2=0.999,
epsilon=1e-08).minimize(loss_val)
elif hps.optim == 'sgd':
train_op = tf.train.MomentumOptimizer(lr, 0.9).minimize(loss_val)
tf.add_to_collection('train_op', train_op)
return train_op
def init_params(hps1):
npcam = 3
if hps1.arch.__contains__('sdn5'):
npcam = 3
elif hps1.arch.__contains__('sdn6'):
npcam = 1
c_i = 1.0
beta1_i = -5.0 / c_i
beta2_i = 0.0
gain_params_i = np.ndarray([5])
gain_params_i[:] = -5.0 / c_i
cam_params_i = np.ndarray([npcam, 5])
cam_params_i[:, :] = 1.0
hps1.param_inits = (c_i, beta1_i, beta2_i, gain_params_i, cam_params_i)
def main(hps):
# Download SIDD_Medium_Raw?
check_download_sidd()
total_time = time.time()
host = socket.gethostname()
tf.set_random_seed(hps.seed)
np.random.seed(hps.seed)
# set up a custom logger
add_logging_level('TRACE', 100)
logging.getLogger(__name__).setLevel("TRACE")
logging.basicConfig(level=logging.TRACE)
hps.n_bins = 2. ** hps.n_bits_x
logging.trace('SIDD path = %s' % hps.sidd_path)
# prepare data file names
tr_fns, hps.n_tr_inst = sidd_filenames_que_inst(hps.sidd_path, 'train', hps.start_tr_im_idx, hps.end_tr_im_idx,
hps.camera, hps.iso)
logging.trace('# training scene instances (cam = %s, iso = %s) = %d' %
(str(hps.camera), str(hps.iso), hps.n_tr_inst))
ts_fns, hps.n_ts_inst = sidd_filenames_que_inst(hps.sidd_path, 'test', hps.start_ts_im_idx, hps.end_ts_im_idx,
hps.camera, hps.iso)
logging.trace('# testing scene instances (cam = %s, iso = %s) = %d' %
(str(hps.camera), str(hps.iso), hps.n_ts_inst))
# training/testing data stats
calc_train_test_stats(hps)
# output log dir
logdir = os.path.abspath(os.path.join('experiments', hps.problem, hps.logdir)) + '/'
if not os.path.exists(logdir):
os.makedirs(logdir, exist_ok=True)
hps.logdirname = hps.logdir
hps.logdir = logdir
train_its, test_its = get_its(hps.n_batch_train, hps.n_batch_test, hps.n_train, hps.n_test)
hps.train_its = train_its
hps.test_its = test_its
x_shape = [None, hps.patch_height, hps.patch_height, 4]
hps.x_shape = x_shape
hps.n_dims = np.prod(x_shape[1:])
# calculate data stats and baselines
logging.trace('calculating data stats and baselines...')
hps.calc_pat_stats_and_baselines_only = True
pat_stats, nll_gauss, _, nll_sdn, _, tr_batch_sampler, ts_batch_sampler = initialize_data_stats_queues_baselines_histograms(hps, logdir)
hps.nll_gauss = nll_gauss
hps.nll_sdn = nll_sdn
# prepare get data queues
hps.mb_requeue = True # requeue minibatches for future epochs
logging.trace('preparing data queues...')
hps.calc_pat_stats_and_baselines_only = False
tr_im_que, ts_im_que, tr_pat_que, ts_pat_que, tr_batch_que, ts_batch_que = \
initialize_data_stats_queues_baselines_histograms(hps, logdir, tr_batch_sampler=tr_batch_sampler, ts_batch_sampler=ts_batch_sampler)
# hps.save_batches = True
print_train_test_stats(hps)
input_shape = x_shape
# Build noise flow graph
# Note: Only for convention, the real noise distribution, denoted here as `x`, is denoted in the paper as `n`.
# Also, the latent distribution, denoted here as `z`, is denoted in the paper as `x_0`.
logging.trace('Building NoiseFlow...')
is_training = tf.placeholder(tf.bool, name='is_training')
x = tf.placeholder(tf.float32, x_shape, name='noise_image')
y = tf.placeholder(tf.float32, x_shape, name='clean_image')
nlf0 = tf.placeholder(tf.float32, [None], name='nlf0')
nlf1 = tf.placeholder(tf.float32, [None], name='nlf1')
iso = tf.placeholder(tf.float32, [None], name='iso')
cam = tf.placeholder(tf.float32, [None], name='cam')
lr = tf.placeholder(tf.float32, None, name='learning_rate')
# initialization of signal, gain, and camera parameters
if hps.sidd_cond == 'mix':
init_params(hps)
# NoiseFlow model
nf = NoiseFlow(input_shape[1:], is_training, hps)
loss_val, sd_z = nf.loss(x, y, nlf0=nlf0, nlf1=nlf1, iso=iso, cam=cam)
# save variable names and number of parameters
vs = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
vars_files = os.path.join(hps.logdir, 'model_vars.txt')
with open(vars_files, 'w') as vf:
vf.write(str(vs))
hps.num_params = int(np.sum([np.prod(v.get_shape().as_list())
for v in tf.trainable_variables()]))
logging.trace('number of parameters = %d' % hps.num_params)
hps_logger(logdir + 'hps.txt', hps, nf.get_layer_names(), hps.num_params)
# create session
sess = tf.Session()
n_processed = 0
train_time = 0.0
test_loss_best = np.inf
# create a saver.
saver = tf.train.Saver(max_to_keep=0) # keep all models
# checkpoint directory
ckpt_dir = os.path.join(hps.logdir, 'ckpt')
ckpt_path = os.path.join(ckpt_dir, 'model.ckpt')
if not os.path.exists(ckpt_dir):
os.makedirs(ckpt_dir, exist_ok=True)
# sampling temperature (default = 1.0)
if hps.temp is None:
hps.temp = 1.0
# setup the output log
train_logger = test_logger = None
log_columns = ['epoch', 'NLL']
# NLL: negative log likelihood
# NLL_G: for Gaussian baseline
# NLL_SDN: for camera NLF baseline
# sdz: standard deviation of the base measure (sanity check)
log_columns = log_columns + ['NLL_G', 'NLL_SDN', 'sdz']
if hps.do_sample:
log_columns.append('sample_time')
else:
train_logger = ResultLogger(logdir + 'train.txt', log_columns + ['train_time'], hps.continue_training)
test_logger = ResultLogger(logdir + 'test.txt', log_columns + ['msg'], hps.continue_training)
sample_logger = ResultLogger(logdir + 'sample.txt', log_columns + ['KLD_G', 'KLD_NLF', 'KLD_NF', 'KLD_R'],
hps.continue_training)
tcurr = time.time()
train_results = []
test_results = []
sample_results = []
# continue training?
start_epoch = 1
logging.trace('continue_training = ' + str(hps.continue_training))
if hps.continue_training:
sess.run(tf.global_variables_initializer())
last_epoch = restore_last_model(ckpt_dir, sess, saver)
start_epoch = 1 + last_epoch
# noinspection PyBroadException
try:
train_op = tf.get_collection('train_op') # [0]
except:
logging.trace('could not restore optimizer state, preparing a new optimizer')
train_op = get_optimizer(hps, lr, loss_val)
else:
logging.trace('preparing optimizer')
train_op = get_optimizer(hps, lr, loss_val)
logging.trace('initializing variables')
sess.run(tf.global_variables_initializer())
_lr = hps.lr
_nlf0 = None
_nlf1 = None
t_train = t_test = t_sample = dsample = is_best = sd_z_tr = sd_z_ts = 0
kldiv3 = None
# Epochs
logging.trace('Starting training/testing/samplings.')
logging.trace('Logging to ' + logdir)
for epoch in range(start_epoch, hps.epochs + 1):
# Testing
if (not hps.do_sample) and \
(epoch < 10 or (epoch < 100 and epoch % 10 == 0) or epoch % hps.epochs_full_valid == 0.):
t = time.time()
test_epoch_loss = []
# multi-thread testing (faster)
test_epoch_loss_que = queue.Queue()
sd_z_que_ts = queue.Queue()
sd_z_ts = 0
test_multithread(sess, ts_batch_que, loss_val, sd_z, x, y, nlf0, nlf1, iso, cam, is_training,
test_epoch_loss_que, sd_z_que_ts, test_its, nthr=hps.n_train_threads,
requeue=not hps.mb_requeue)
assert test_epoch_loss_que.qsize() == test_its
for tt in range(test_its):
test_epoch_loss.append(test_epoch_loss_que.get())
sd_z_ts += sd_z_que_ts.get()
sd_z_ts /= test_its
mean_test_loss = np.mean(test_epoch_loss)
test_results.append(mean_test_loss)
# Save checkpoint
saver.save(sess, ckpt_path, global_step=epoch)
# best model?
if test_results[-1] < test_loss_best:
test_loss_best = test_results[-1]
saver.save(sess, ckpt_path + '.best')
is_best = 1
else:
is_best = 0
# log
log_dict = {'epoch': epoch, 'NLL': test_results[-1], 'NLL_G': nll_gauss, 'NLL_SDN': nll_sdn, 'sdz': sd_z_ts,
'msg': is_best}
test_logger.log(log_dict)
t_test = time.time() - t
# End testing if & loop
# Sampling (optional)
do_sampling = True # make this true to perform sampling
if do_sampling and ((epoch < 10 or (epoch < 100 and epoch % 10 == 0) or # (is_best == 1) or
epoch % hps.epochs_full_valid * 2 == 0.)):
for temp in [1.0]: # using only default temperature
t_sample = time.time()
hps.temp = float(temp)
sample_epoch_loss = []
# multi-thread sampling (faster)
sample_epoch_loss_que = queue.Queue()
sd_z_que_sam = queue.Queue()
kldiv_que = queue.Queue()
sd_z_sam = 0.0
kldiv1 = np.ndarray([4])
kldiv1[:] = 0.0
kldiv3 = np.zeros(4)
is_cond = hps.sidd_cond != 'uncond'
# sample (forward)
x_sample = sample_sidd_tf(sess, nf, is_training, hps.temp, y, nlf0, nlf1, iso, cam, is_cond)
sample_multithread(sess, ts_batch_que, loss_val, sd_z, x, x_sample, y, nlf0, nlf1, iso, cam,
is_training, sample_epoch_loss_que, sd_z_que_sam, kldiv_que,
test_its, nthr=hps.n_train_threads, requeue=not hps.mb_requeue,
sc_sd=pat_stats['sc_in_sd'], epoch=epoch)
# assert sample_epoch_loss_que.qsize() == test_its
nqs = sample_epoch_loss_que.qsize()
for tt in range(nqs):
sample_epoch_loss.append(sample_epoch_loss_que.get())
sd_z_sam += sd_z_que_sam.get()
kldiv3 += kldiv_que.get()
sd_z_sam /= nqs
kldiv3 /= np.repeat(nqs, len(kldiv3))
mean_sample_loss = np.mean(sample_epoch_loss)
sample_results.append(mean_sample_loss)
t_sample = time.time() - t_sample
# log
log_dict = {'epoch': epoch, 'NLL': sample_results[-1], 'NLL_G': nll_gauss,
'NLL_SDN': nll_sdn, 'sdz': sd_z_sam, 'sample_time': t_sample, 'KLD_G': kldiv3[0],
'KLD_NLF': kldiv3[1], 'KLD_NF': kldiv3[2], 'KLD_R': kldiv3[3]}
sample_logger.log(log_dict)
# Training loop
t_curr = 0
if not hps.do_sample:
t = time.time()
train_epoch_loss = []
# multi-thread training (faster)
train_epoch_loss_que = queue.Queue()
sd_z_que_tr = queue.Queue()
n_processed_que = queue.Queue()
sd_z_tr = 0
train_multithread(sess, tr_batch_que, loss_val, sd_z, train_op, x, y, nlf0, nlf1, iso, cam,
lr, is_training, _lr, n_processed_que, train_epoch_loss_que, sd_z_que_tr,
train_its, nthr=hps.n_train_threads, requeue=not hps.mb_requeue)
assert train_epoch_loss_que.qsize() == train_its
for tt in range(train_its):
train_epoch_loss.append(train_epoch_loss_que.get())
n_processed += n_processed_que.get()
sd_z_tr += sd_z_que_tr.get()
sd_z_tr /= train_its
t_curr = time.time() - tcurr
tcurr = time.time()
mean_train_loss = np.mean(train_epoch_loss)
train_results.append(mean_train_loss)
t_train = time.time() - t
train_time += t_train
train_logger.log({'epoch': epoch, 'train_time': int(train_time),
'NLL': train_results[-1], 'NLL_G': nll_gauss, 'NLL_SDN': nll_sdn, 'sdz': sd_z_tr})
# End training
# print results of train/test/sample
tr_l = train_results[-1] if len(train_results) > 0 else 0
ts_l = test_results[-1] if len(test_results) > 0 else 0
sam_l = sample_results[-1] if len(sample_results) > 0 else 0
if epoch < 10 or (epoch < 100 and epoch % 10 == 0) or \
epoch % hps.epochs_full_valid == 0.:
# E: epoch
# tr, ts, tsm, tv: time of training, testing, sampling, visualization
# T: total time
# tL, sL, smL: loss of training, testing, sampling
# SDr, SDs: std. dev. of base measure in training and testing
# B: 1 if best model, 0 otherwise
print('%s %s %s E=%d tr=%.1f ts=%.1f tsm=%.1f tv=%.1f T=%.1f '
'tL=%5.1f sL=%5.1f smL=%5.1f SDr=%.1f SDs=%.1f B=%d' %
(str(datetime.now())[11:16], host, hps.logdirname, epoch, t_train, t_test, t_sample, dsample, t_curr,
tr_l, ts_l, sam_l, sd_z_tr, sd_z_ts, is_best),
end='')
if kldiv3 is not None:
print(' ', end='')
# marginal KL divergence of noise samples from: Gaussian, camera-NLF, and NoiseFlow, respectively
print(','.join('{0:.3f}'.format(kk) for kk in kldiv3), end='')
print('', flush=True)
total_time = time.time() - total_time
logging.trace('Total time = %f' % total_time)
with open(path.join(logdir, 'total_time.txt'), 'w') as f:
f.write('total_time (s) = %f' % total_time)
logging.trace("Finished!")
if __name__ == "__main__":
import signal
# This enables a ctr-C without triggering errors
signal.signal(signal.SIGINT, lambda x, y: sys.exit(0))
hps = arg_parser()
main(hps)