-
Notifications
You must be signed in to change notification settings - Fork 0
/
measure.py
41 lines (35 loc) · 1.23 KB
/
measure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import numpy as np
from sklearn.metrics import accuracy_score
import torch
import torch.nn as nn
import torch.nn.functional as F
def compute_acc(labels, x_labels, nb_batch):
""" compute the classification accuracy
Args:
labels: ground truth label
x_labels: predicted label
nb_batch: batch size
"""
N = int(nb_batch * 10)
pre_labels = np.zeros(N)
real_labels = np.zeros(N)
c = 0
for i in range(nb_batch):
for j in range(x_labels.shape[1]): # x_labels.shape: [bs, 10, 29]
pre_labels[c] = np.argmax(x_labels[i, j, :]) #
real_labels[c] = np.argmax(labels[i, j, :])
c += 1
target_names = []
for i in range(29):
target_names.append("class" + str(i))
return accuracy_score(real_labels, pre_labels)
def AVPSLoss(av_simm, soft_label):
"""audio-visual pair similarity loss for fully supervised setting,
please refer to Eq.(8, 9) in our paper.
"""
# av_simm: [bs, 10]
relu_av_simm = F.relu(av_simm)
sum_av_simm = torch.sum(relu_av_simm, dim=-1, keepdim=True)
avg_av_simm = relu_av_simm / (sum_av_simm + 1e-8)
loss = nn.MSELoss()(avg_av_simm, soft_label)
return loss