-
Notifications
You must be signed in to change notification settings - Fork 228
/
test_disp.py
169 lines (129 loc) · 7.48 KB
/
test_disp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import torch
from skimage.transform import resize as imresize
from scipy.ndimage import zoom
import numpy as np
from path import Path
import argparse
from tqdm import tqdm
from models import DispNetS, PoseExpNet
parser = argparse.ArgumentParser(description='Script for DispNet testing with corresponding groundTruth',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--pretrained-dispnet", required=True, type=str, help="pretrained DispNet path")
parser.add_argument("--pretrained-posenet", default=None, type=str, help="pretrained PoseNet path (for scale factor)")
parser.add_argument("--img-height", default=128, type=int, help="Image height")
parser.add_argument("--img-width", default=416, type=int, help="Image width")
parser.add_argument("--no-resize", action='store_true', help="no resizing is done")
parser.add_argument("--min-depth", default=1e-3)
parser.add_argument("--max-depth", default=80)
parser.add_argument("--dataset-dir", default='.', type=str, help="Dataset directory")
parser.add_argument("--dataset-list", default=None, type=str, help="Dataset list file")
parser.add_argument("--output-dir", default=None, type=str, help="Output directory for saving predictions in a big 3D numpy file")
parser.add_argument("--gt-type", default='KITTI', type=str, help="GroundTruth data type", choices=['npy', 'png', 'KITTI', 'stillbox'])
parser.add_argument("--gps", '-g', action='store_true',
help='if selected, will get displacement from GPS for KITTI. Otherwise, will integrate speed')
parser.add_argument("--img-exts", default=['png', 'jpg', 'bmp'], nargs='*', type=str, help="images extensions to glob")
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
@torch.no_grad()
def main():
args = parser.parse_args()
if args.gt_type == 'KITTI':
from kitti_eval.depth_evaluation_utils import test_framework_KITTI as test_framework
elif args.gt_type == 'stillbox':
from stillbox_eval.depth_evaluation_utils import test_framework_stillbox as test_framework
disp_net = DispNetS().to(device)
weights = torch.load(args.pretrained_dispnet)
disp_net.load_state_dict(weights['state_dict'])
disp_net.eval()
if args.pretrained_posenet is None:
print('no PoseNet specified, scale_factor will be determined by median ratio, which is kiiinda cheating\
(but consistent with original paper)')
seq_length = 1
else:
weights = torch.load(args.pretrained_posenet)
seq_length = int(weights['state_dict']['conv1.0.weight'].size(1)/3)
pose_net = PoseExpNet(nb_ref_imgs=seq_length - 1, output_exp=False).to(device)
pose_net.load_state_dict(weights['state_dict'], strict=False)
dataset_dir = Path(args.dataset_dir)
if args.dataset_list is not None:
with open(args.dataset_list, 'r') as f:
test_files = list(f.read().splitlines())
else:
test_files = [file.relpathto(dataset_dir) for file in sum([dataset_dir.files('*.{}'.format(ext)) for ext in args.img_exts], [])]
framework = test_framework(dataset_dir, test_files, seq_length,
args.min_depth, args.max_depth,
use_gps=args.gps)
print('{} files to test'.format(len(test_files)))
errors = np.zeros((2, 9, len(test_files)), np.float32)
if args.output_dir is not None:
output_dir = Path(args.output_dir)
output_dir.makedirs_p()
for j, sample in enumerate(tqdm(framework)):
tgt_img = sample['tgt']
ref_imgs = sample['ref']
h,w,_ = tgt_img.shape
if (not args.no_resize) and (h != args.img_height or w != args.img_width):
tgt_img = imresize(tgt_img, (args.img_height, args.img_width)).astype(np.float32)
ref_imgs = [imresize(img, (args.img_height, args.img_width)).astype(np.float32) for img in ref_imgs]
tgt_img = np.transpose(tgt_img, (2, 0, 1))
ref_imgs = [np.transpose(img, (2,0,1)) for img in ref_imgs]
tgt_img = torch.from_numpy(tgt_img).unsqueeze(0)
tgt_img = ((tgt_img/255 - 0.5)/0.5).to(device)
for i, img in enumerate(ref_imgs):
img = torch.from_numpy(img).unsqueeze(0)
img = ((img/255 - 0.5)/0.5).to(device)
ref_imgs[i] = img
pred_disp = disp_net(tgt_img).cpu().numpy()[0,0]
if args.output_dir is not None:
if j == 0:
predictions = np.zeros((len(test_files), *pred_disp.shape))
predictions[j] = 1/pred_disp
gt_depth = sample['gt_depth']
pred_depth = 1/pred_disp
pred_depth_zoomed = zoom(pred_depth,
(gt_depth.shape[0]/pred_depth.shape[0],
gt_depth.shape[1]/pred_depth.shape[1]))
if sample['mask'] is not None:
pred_depth_zoomed = pred_depth_zoomed[sample['mask']]
gt_depth = gt_depth[sample['mask']]
if seq_length > 1:
# Reorganize ref_imgs : tgt is middle frame but not necessarily the one used in DispNetS
# (in case sample to test was in end or beginning of the image sequence)
middle_index = seq_length//2
tgt = ref_imgs[middle_index]
reorganized_refs = ref_imgs[:middle_index] + ref_imgs[middle_index + 1:]
_, poses = pose_net(tgt, reorganized_refs)
displacement_magnitudes = poses[0,:,:3].norm(2,1).cpu().numpy()
scale_factor = np.mean(sample['displacements'] / displacement_magnitudes)
scaled_pred = (pred_depth_zoomed*scale_factor).clip(args.min_depth, args.max_depth)
errors[0,:,j] = compute_errors(gt_depth, scaled_pred)
median_pred = np.median(pred_depth_zoomed.clip(args.min_depth, args.max_depth))
scale_factor = np.median(gt_depth)/median_pred
scaled_pred = (pred_depth_zoomed*scale_factor).clip(args.min_depth, args.max_depth)
errors[1,:,j] = compute_errors(gt_depth, pred_depth_zoomed*scale_factor)
mean_errors = errors.mean(2)
error_names = ['abs_diff', 'abs_rel','sq_rel','rms','log_rms', 'abs_log', 'a1','a2','a3']
if args.pretrained_posenet:
print("Results with scale factor determined by PoseNet : ")
print("{:>10}, {:>10}, {:>10}, {:>10}, {:>10}, {:>10}, {:>10}, {:>10}, {:>10}".format(*error_names))
print("{:10.4f}, {:10.4f}, {:10.4f}, {:10.4f}, {:10.4f}, {:10.4f}, {:10.4f}, {:10.4f}, {:10.4f}".format(*mean_errors[0]))
print("Results with scale factor determined by GT/prediction ratio (like the original paper) : ")
print("{:>10}, {:>10}, {:>10}, {:>10}, {:>10}, {:>10}, {:>10}, {:>10}, {:>10}".format(*error_names))
print("{:10.4f}, {:10.4f}, {:10.4f}, {:10.4f}, {:10.4f}, {:10.4f}, {:10.4f}, {:10.4f}, {:10.4f}".format(*mean_errors[1]))
if args.output_dir is not None:
np.save(output_dir/'predictions.npy', predictions)
def compute_errors(gt, pred):
thresh = np.maximum((gt / pred), (pred / gt))
a1 = (thresh < 1.25 ).mean()
a2 = (thresh < 1.25 ** 2).mean()
a3 = (thresh < 1.25 ** 3).mean()
rmse = (gt - pred) ** 2
rmse = np.sqrt(rmse.mean())
rmse_log = (np.log(gt) - np.log(pred)) ** 2
rmse_log = np.sqrt(rmse_log.mean())
abs_log = np.mean(np.abs(np.log(gt) - np.log(pred)))
abs_rel = np.mean(np.abs(gt - pred) / gt)
abs_diff = np.mean(np.abs(gt - pred))
sq_rel = np.mean(((gt - pred)**2) / gt)
return abs_diff, abs_rel, sq_rel, rmse, rmse_log, abs_log, a1, a2, a3
if __name__ == '__main__':
main()