Skip to content

Latest commit

 

History

History
398 lines (290 loc) · 16.5 KB

电商网站技术要点剖析.md

File metadata and controls

398 lines (290 loc) · 16.5 KB

电商网站技术要点剖析

商业模式

  1. B2B - 商家对商家,交易双方都是企业(商家),最典型的案例就是阿里巴巴。
  2. C2C - 个人对个人,例如:淘宝、人人车。
  3. B2C - 商家对个人,例如:唯品会,聚美优品。
  4. C2B - 个人对商家,先有消费者提出需求,后有商家按需求组织生产,例如: 尚品宅配。
  5. O2O - 线上到线下,将线下的商务机会与互联网结合,让互联网成为线下交易的平台,例如:美团外卖、饿了么。
  6. B2B2C - 商家对商家对个人,例如:天猫、京东。

需求要点

  1. 用户端
    • 首页(商品分类、广告轮播、滚动快讯、瀑布加载)

    • 用户(登录(第三方登录)、注册、注销、自服务(个人信息、浏览历史、收货地址、……))

    • 商品(分类、列表、详情、搜索、添加到购物车)

    • 购物车(查看、编辑(修改数量、删除商品、清空))

    • 订单(提交订单(支付)、历史订单、订单详情、订单评价)

  2. 管理端

提示:可以通过思维导图来进行需求的整理,思维导图上的每个叶子节点都是不可再拆分的功能。

物理模型设计

两个概念:SPU(Standard Product Unit)和SKU(Stock Keeping Unit)。

  • SPU:iPhone 6s
  • SKU:iPhone 6s 64G 土豪金

第三方登录

第三方登录是指利用第三方网站(通常是知名社交网站)的账号进行登录验证,比如国内的 QQ、微博,国外的Google、Facebook等,第三方登录大部分都是使用OAuth,它是一个关于授权的开放网络标准,得到了广泛的应用,目前通常使用的是2.0版本。关于OAuth的基础知识,可以阅读阮一峰老师的《理解OAuth 2.0》

OAuth 2.0授权流程

  1. 用户打开客户端以后,客户端要求用户(资源所有者)给予授权。
  2. 用户(资源所有者)同意给予客户端授权。
  3. 客户端使用上一步获得的授权,向认证服务器申请访问令牌。
  4. 认证服务器对客户端进行认证以后,发放访问令牌。
  5. 客户端使用访问令牌向资源服务器申请获取资源。
  6. 资源服务器确认访问令牌无误,同意向客户端开放资源。

如果使用微博登录进行接入,其具体步骤可以参考微博开放平台上的“微博登录接入”文档。使用QQ登录进行接入,需要首先注册成为QQ互联开发者并通过审核,具体的步骤可以参考QQ互联上的“接入指南”,具体的步骤可以参考“网站开发流程”

提示:在Gitbook上面有一本名为《Django博客入门》的书以Github为例介绍了第三方账号登录,有兴趣的可以自行阅读。

通常电商网站在使用第三方登录时,会要求与网站账号进行绑定或者根据获取到的第三方账号信息(如:手机号)自动完成账号绑定。

缓存预热和查询缓存

缓存预热

所谓缓存预热,是指在启动服务器时将数据提前加载到缓存中,为此可以在Django应用的apps.py模块中编写AppConfig的子类并重写ready()方法,代码如下所示。

import pymysql

from django.apps import AppConfig
from django.core.cache import cache

SELECT_PROVINCE_SQL = 'select distid, name from tb_district where pid is null'


class CommonConfig(AppConfig):
    name = 'common'

    def ready(self):
        conn = pymysql.connect(host='1.2.3.4', port=3306,
                               user='root', password='pass',
                               database='db', charset='utf8',
                               cursorclass=pymysql.cursors.DictCursor)
        try:
            with conn.cursor() as cursor:
                cursor.execute(SELECT_PROVINCE_SQL)
                provinces = cursor.fetchall()
                cache.set('provinces', provinces)
        finally:
            conn.close()

接下来,还需要在应用的__init__.py中编写下面的代码。

default_app_config = 'common.apps.CommonConfig'

或者在项目的settings.py文件中注册应用。

INSTALLED_APPS = [
    ...
    'common.apps.CommonConfig',
    ...
]

查询缓存

from pickle import dumps
from pickle import loads

from django.core.cache import caches

MODEL_CACHE_KEY = 'project:modelcache:%s'


def my_model_cache(key, section='default', timeout=None):
    """实现模型缓存的装饰器"""

    def wrapper1(func):

        def wrapper2(*args, **kwargs):
            real_key = '%s:%s' % (MODEL_CACHE_KEY % key, ':'.join(map(str, args)))
            serialized_data = caches[section].get(real_key)
            if serialized_data:
                data = loads(serialized_data)
            else:
                data = func(*args, **kwargs)
                cache.set(real_key, dumps(data), timeout=timeout)
            return data

        return wrapper2

    return wrapper1
@my_model_cache(key='provinces')
def get_all_provinces():
    return list(Province.objects.all())

购物车实现

问题一:已登录用户的购物车放在哪里?未登录用户的购物车放在哪里?

class CartItem(object):
    """购物车中的商品项"""

    def __init__(self, sku, amount=1, selected=False):
        self.sku = sku
        self.amount = amount
        self.selected = selected

    @property
    def total(self):
        return self.sku.price * self.amount


class ShoppingCart(object):
    """购物车"""

    def __init__(self):
        self.items = {}
        self.index = 0

    def add_item(self, item):
        if item.sku.id in self.items:
            self.items[item.sku.id].amount += item.amount
        else:
            self.items[item.sku.id] = item

    def remove_item(self, sku_id):
        if sku_id in self.items:
            self.items.remove(sku_id)

    def clear_all_items(self):
        self.items.clear()

    @property
    def cart_items(self):
        return self.items.values()

    @property
    def cart_total(self):
        total = 0
        for item in self.items.values():
            total += item.total
        return total

已登录用户的购物车可以放在数据库中(可以先在Redis中缓存);未登录用户的购物车可以保存在Cookie中(减少服务器端内存开销)。

{
    '1001': {sku: {...}, 'amount': 1, 'selected': True}, 
    '1002': {sku: {...}, 'amount': 2, 'selected': False},
    '1003': {sku: {...}, 'amount': 3, 'selected': True},
}
request.get_signed_cookie('cart')

cart_base64 = base64.base64encode(pickle.dumps(cart))
response.set_signed_cookie('cart', cart_base64)

问题二:用户登录之后,如何合并购物车?(目前电商应用的购物车几乎都做了持久化处理,主要是方便在多个终端之间共享数据)

集成支付功能

问题一:支付信息如何持久化?(必须保证每笔交易都有记录)

问题二:如何接入支付宝?(接入其他平台基本类似)

  1. 蚂蚁金服开放平台
  2. 入驻平台
  3. 开发者中心
  4. 文档中心
  5. SDK集成 - PYPI链接
  6. API列表

配置文件:

ALIPAY_APPID = '......'
ALIPAY_URL = 'https://openapi.alipaydev.com/gateway.do'
ALIPAY_DEBUG = False

获得支付链接(发起支付):

# 创建调用支付宝的对象
alipay = AliPay(
    # 在线创建应用时分配的ID
    appid=settings.ALIPAY_APPID,
    app_notify_url=None,
    # 自己应用的私钥
    app_private_key_path=os.path.join(
        os.path.dirname(os.path.abspath(__file__)), 
        'keys/app_private_key.pem'),
    # 支付宝的公钥
    alipay_public_key_path=os.path.join(
        os.path.dirname(os.path.abspath(__file__)), 
        'keys/alipay_public_key.pem'),
    sign_type='RSA2',
    debug=settings.ALIPAY_DEBUG
)
# 调用获取支付页面操作
order_info = alipay.api_alipay_trade_page_pay(
    out_trade_no='...',
    total_amount='...',
    subject='...',
    return_url='http://...'
)
# 生成完整的支付页面URL
alipay_url = settings.ALIPAY_URL + '?' + order_info
return JsonResponse({'alipay_url': alipay_url})

通过上面返回的链接可以进入支付页面,支付完成后会自动跳转回上面代码中设定好的项目页面,在该页面中可以获得订单号(out_trade_no)、支付流水号(trade_no)、交易金额(total_amount)和对应的签名(sign)并请求后端验证和保存交易结果,代码如下所示:

# 创建调用支付宝的对象
alipay = AliPay(
    # 在线创建应用时分配的ID
    appid=settings.ALIPAY_APPID,
    app_notify_url=None,
    # 自己应用的私钥
    app_private_key_path=os.path.join(
        os.path.dirname(os.path.abspath(__file__)), 
        'keys/app_private_key.pem'),
    # 支付宝的公钥
    alipay_public_key_path=os.path.join(
        os.path.dirname(os.path.abspath(__file__)), 
        'keys/alipay_public_key.pem'),
    sign_type='RSA2',
    debug=settings.ALIPAY_DEBUG
)
# 请求参数(假设是POST请求)中包括订单号、支付流水号、交易金额和签名
params = request.POST.dict()
# 调用验证操作
if alipay.verify(params, params.pop('sign')):
    # 对交易进行持久化操作

支付宝的支付API还提供了交易查询、交易结算、退款、退款查询等一系列的接口,可以根据业务需要进行调用,此处不再进行赘述。

秒杀和超卖

  1. 秒杀:秒杀是通常意味着要在很短的时间处理极高的并发,系统在短时间需要承受平时百倍以上的流量,因此秒杀架构是一个比较复杂的问题,其核心思路是流量控制和性能优化,需要从前端(通过JavaScript实现倒计时、避免重复提交和限制频繁刷新)到后台各个环节的配合。流量控制主要是限制只有少部分流量进入服务后端(毕竟最终只有少部分用户能够秒杀成功),同时在物理架构上使用缓存(一方面是因为读操作多写操作少;另外可以将库存放在Redis中,利用DECR原语实现减库存;同时也可以利用Redis来进行限流,道理跟限制频繁发送手机验证码是一样的)和消息队列(消息队列最为重要的作用就是“削峰”和“上下游节点解耦合”)来进行优化;此外还要采用无状态服务设计,这样才便于进行水平扩展(通过增加设备来为系统扩容)。
  2. 超卖现象:比如某商品的库存为1,此时用户1和用户2并发购买该商品,用户1提交订单后该商品的库存被修改为0,而此时用户2并不知道的情况下提交订单,该商品的库存再次被修改为-1这就是超卖现象。解决超卖现象有三种常见的思路:
    • 悲观锁控制:查询商品数量的时候就用select ... for update对数据加锁,这样的话用户1查询库存时,用户2因无法读取库存数量被阻塞,直到用户1提交或者回滚了更新库存的操作后才能继续,从而解决了超卖问题。但是这种做法对并发访问量很高的商品来说性能太过糟糕,实际开发中可以在库存小于某个值时才考虑加锁,但是总的来说这种做法不太可取。
    • 乐观锁控制:查询商品数量不用加锁,更新库存的时候设定商品数量必须与之前查询数量相同才能更新,否则说明其他事务已经更新了库存,必须重新发出请求。这种做法要求事务隔离级别为可重复读,否则仍然会产生问题。
    • 尝试减库存:将上面的查询(select)和更新(update)操作合并为一条SQL操作,更新库存的时候,在where筛选条件中加上库存>=购买数量库存-购买数量>=0的条件。

提示:有兴趣的可以自己在知乎上看看关于这类问题的讨论。

静态资源管理

静态资源的管理可以自己架设文件服务器或者分布式文件服务器(FastDFS),但是一般的项目中没有必要这样做而且效果未必是最好的,我们建议使用云存储服务来管理网站的静态资源,国内外的云服务提供商如亚马逊、阿里云、腾讯云、七牛、LeanCloud、Bmob等都提供了非常优质的云存储服务,而且价格也是一般公司可以接受的。可以参考《在阿里云OSS上托管静态网站》一文来完成对网站静态资源的管理,代码相关的内容可以参考阿里云的对象存储 OSS开发人员指南

全文检索

方案选择

  1. 使用数据库的模糊查询功能 - 效率低,每次需要全表扫描,不支持分词。
  2. 使用数据库的全文检索功能 - MySQL 5.6以前只适用于MyISAM引擎,检索操作和其他的DML操作耦合在数据库中,可能导致检索操作非常缓慢,数据量达到百万级性能显著下降,查询时间很长。
  3. 使用开源搜索引擎 - 索引数据和原始数据分离,可以使用ElasticSearch或Solr来提供外置索引服务,如果不考虑高并发的全文检索需求,纯Python的Whoosh也可以考虑。ElasticSearch-Analysis-IK

ElasticSearch

ElasticSearch是一个高可扩展的开源全文搜索和分析引擎,它允许存储、搜索和分析大量的数据,并且这个过程是近实时的。它通常被用作底层引擎和技术,为复杂的搜索功能和要求提供动力,大家熟知的维基百科、Stack-Overflow、Github都使用了ElasticSearch。

ElasticSearch的底层是开源搜索引擎Lucene。但是直接用Lucene会非常麻烦,必须自己编写代码去调用它的接口而且只支持Java语言。ElasticSearch相当于是对Lucene进行了封装,提供了REST API的操作接口。搜索引擎在对数据构建索引时,需要进行分词处理。ElasticSearch不支持基于中文分词的索引,需要配合扩展elasticsearch-analysis-ik来实现中文分词处理。

ElasticSearch的安装和配置可以参考《ElasticSearch之Docker安装》。除了ElasticSearch之外,也可以使用Solr、Whoosh等来提供搜索引擎服务,基本上Django项目中可以考虑如下两套方案:

  • Haystack(django-haystack / drf-haystack) + Whoosh + Jieba

  • Haystack (django-haystack / drf-haystack)+ ElasticSearch + ElasticSearch-Analysis-IK

Django对接ElasticSearch

Python对接ElasticSearch的第三方库是HayStack,在Django项目中可以使用django-haystack,通过HayStack可以在不修改代码对接多种搜索引擎服务。

pip install django-haystack elasticsearch

配置文件:

INSTALLED_APPS = [
    ...
    'haystack',
    ...
]

HAYSTACK_CONNECTIONS = {
    'default': {
        # 引擎配置
        'ENGINE': 
        	'haystack.backends.elasticsearch_backend.ElasticsearchSearchEngine',
        # 搜索引擎服务的URL
        'URL': 'http://...',
        # 索引库的名称
        'INDEX_NAME': '...',
    },
}

# 添加/删除/更新数据时自动生成索引
HAYSTACK_SIGNAL_PROCESSOR = 'haystack.signals.RealtimeSignalProcessor'

索引类:

from haystack import indexes


class HouseInfo(indexes.SearchIndex, indexes.Indexable):
   
    text = indexes.CharField(document=True, use_template=True)

    def get_model(self):
        return HouseInfo

    def index_queryset(self, using=None):
        return self.get_model().objects.all()

编辑text字段的模板(需要放在templates/search/indexes/rent/houseinfo_text.txt):

{{object.title}}
{{object.detail}}

配置URL:

urlpatterns = [
    # ...
    url('search/', include('haystack.urls')),
]

生成初始索引:

python manage.py rebuild_index

说明:可以参考《Django Haystack 全文检索与关键词高亮》一文来更深入的了解基于Haystack的全文检索操作。