From 33f6a2bc9db7f10e781dc489012981c3a217888b Mon Sep 17 00:00:00 2001 From: samnthorne Date: Sun, 26 Mar 2023 17:29:09 -0700 Subject: [PATCH 1/2] images are rendered inside jupyter book --- R/boxplots.R | 2 +- figures/boxplot.png | Bin 245979 -> 167819 bytes figures/majority_classifier_vis.png | Bin 117040 -> 116687 bytes notebooks/_build/.doctrees/analysis.doctree | Bin 101695 -> 105666 bytes notebooks/_build/.doctrees/environment.pickle | Bin 51744 -> 53295 bytes notebooks/_build/html/_sources/analysis.ipynb | 382 ++++++-------- notebooks/_build/html/analysis.html | 347 ++++++------- notebooks/_build/html/objects.inv | Bin 302 -> 631 bytes .../_build/html/reports/analysis.err.log | 60 ++- notebooks/_build/html/searchindex.js | 2 +- .../_build/jupyter_execute/analysis.ipynb | 464 +++++++---------- notebooks/analysis.ipynb | 466 ++++++------------ 12 files changed, 676 insertions(+), 1047 deletions(-) diff --git a/R/boxplots.R b/R/boxplots.R index 9849024..eca78d9 100644 --- a/R/boxplots.R +++ b/R/boxplots.R @@ -29,5 +29,5 @@ grid_boxplot <- function(data, yAxis, yLabel, titleLabel){ geom_boxplot(color="#033291", fill="#b0c8f7", alpha=0.2) + labs(x="Degree of heart disease", y=yLabel) + ggtitle(titleLabel) + - theme(text = element_text(size = 24)) + theme(text = element_text(size = 12)) } \ No newline at end of file diff --git a/figures/boxplot.png b/figures/boxplot.png index 4a0d3a7269775f058f4d53d1204c554e38114dc5..0c2bcfe68534ea15236e054ec368de6de4de5139 100644 GIT binary patch literal 167819 zcmd?RWn7f&_dYsq6qT?LkdTnAh@_-|fJmtbh!WBuHFP%vDy^hJmmna6gmj~zbl1>` zbSn)*{MUnf?{EBm=bRVk#d&e?qsRpF-0NQVitD=86YxM@hLnh!2!%qC-n}FF5QRFy zi~K!72#?%X%5Q*ggimB;B;h-JZA+AS!nc#wchu}qC=Mp%?-Az|F-H`N0d-eWT**0h zVc5l;yk}2r-|5^rM&9dpB+n2@igTHq@lLuW^}*xJF|T~no+NT|jr1KGlTSL`FJ2Ho z);vr3=7o9zeLu)(s;u~_+uY4|^%gx>#aXHwp=RC@7ycD-MBFMA3?tXKLK7L4W zHQvr>sr=k&JN?M0lZRLKuYYb``Xo>JuOEN^ubq|x*7YA>PwjIOkNn3YDAaqeW2FD} z5W___^nX2sn$;C2_^-$A94Ds!uZM04J#PQ6hftkgo+Fn1_pi`X|9`o(eCyJGUpOl4 z#S5Z=VjCulzMN;awzgL}IYU-fSJRV{o~!4h#VIwdk2uVA2XOQ7%&s(XrX3+5Y`+|# zd7EARyC>p=&PU?gQ4c?4W~QiQsw>{U{d~@0y+>78OS`Wezf@MO&%bKggC%!Z9C+({ z>f$|5{NN~he|K9+U43qi@%gb#jUts6J8kXwF2iS1o}b*`hzW*(v?Qmbh#M* zwCT+T<^=oFn_8*&qmqOKBG@&i?A1`H_-BC^sB2H$77yQ`n?R$U&YU}O6#eD-F25kyWF?mI=2aox=Rd~Ii*z{>@B~)`l4$RC7F4g-kl45 z<`@d)|EIy%b}ng@?X6%!ls}!Jp&_q9{h7wb#@zhKcO_Pp+rC1M3wMYqIr1|Vvc)%! zg%ad)KD|J}`*b{*R`9l*Q0I&a`v$#b@A{fFz6v9#ns{6r;7lPY{4BT7GPT|>%?*;&h3 zTPClsJY!N{B^Qc0lCLLDaAQg5U`Mrn^Zfbq4=gP$k79ona#n6VkN4bnNo#s~wPWi; z9*<7P&W-ftN_^|=IdD^6MkZh1>(B4p4z_$wONu&k(Q#?$Zd6nhI3jjCodN;x->2pZ!cbqxz>O$3%92*1UQ1=6!#g#Ay*pde2>(8>eb` zz*9OyJ!u&5f1qog6Iv^cZyuSw?zXYOrOFhtvSRzhNGtmm!z~8~2m6(Yy90$5G!>g8 zZr#Z;r&}tS<)S5zpQa1^-hujD8${!?XgAgT4vW3^@VrlCl(xtAd(cldD&*_^KD0 z-@Pd8`2LI6@h%#xa`A89zO8*ZPXFM^lcbzBvE8xL`G!s5)^sY8umERb*ie3mvN9F} z`2jCpzI3SA3=$Ygyv1;4>czwvnv8?az@VTMZ||e`V-I)to5OC)6-tjEf7ljV^n?QpOxNP4H4b(cNf+1&iKP$+oMXS$8qwl zs?Y<-R+2n_IlMSH{Lezfg4GAlWF+%-zx?6)BY>G?PXRv#TP91xZ=QJSqRMKzLki2LgX=$W|24(}Dr-baW9H=CmEN8`gQ<@vr3~`?O+me!N(_#lvsq%4H z*R~(uUYc}&P}IwAV}&%~vv~RPcqg0E*!j7R5JCkoO$nz}*`LQ29AeMhHT8S~)`Z>mH zJ8@@Be=+vCiy1@BjjwfeeknRk5TRzumMfDl%ZA6&`N3h+Dz$&t#8DP#S^i5JF=RUY zQoU>`#q$H7^pCTv<$A*fA#Q6wQGXV^Jb7ujtZOntN501IbQ(kzoL+ibX=!vght|E- zsg~pdGu%UMZMtt?zqUg#y$9Qw){!jJrL3wYH63dgyojezJnsX>mw^prVb>@O1o!uk zGHHt!c@rLP^nsqaPPtGBm3X(9J1K%e#_zOkewm;MMSX{{ose-ucyd7b+m!WQ>n8Rh zZ^HxBSgzZq<=7*#SFd0Dc%Ck-Ayc?1{+d}qrJ!oPS7U8!JjBm1!SeY6jkaY|Rb z`4AtH{)jvAyYu#<5*rR2_;Um|5_57w1MaLx^BA|zZkmr)YHh`fdl3pgE~!XWNZ`0x z+t_$-aN`s5F`|__bF7c{7W?!3@^W*%F{TyLA#^PzB_*YsHgG-G?(XGtJt?x3S=reF zns!oB$BHZl!yi3-SgcZ@5 z4L+!)v6_(ZJ4KZxEGnwqgM*ioZr0H5y9}1tO{}xu6Xbv#r1gD^hoTt>D6D5 z#y-P7_h_}{=+!uPrOFisN?BO2D@60&U5yo4eH$5B58>bn-o3JGuq{^b5nl)#NYc_a z2v0ryFOp*Sx4{hrMMSh7dyTZA(hfIms5Xe|dgss$>G}@ROJT`Ti%p&N9dgyk?$zFi z%Zsh=XzqBO64Z$?x7_L=xl2ybbl$ybSrOuD4ED#@7TZ#=HRTskYQnyt+~ z%z}5=aZaW@fmoi}Ye1u~Cb}No9_UKU(92W9YIqEK7WvnwsQ7zA1?9eO(+V z;3*%~u5h(cQ={VHse<%|P4L_KCS`9SK-eK@H+6KlDE=Rd*2__Kuvk(vP0Z9!qmAa( zs0D>q^qnPl~d9sH4;N>C-3d>J5JWjgM8Nel?q;o}A^rg_gtA zy?g3D3mK%_Mb9*HIrDb6Df^28*tT)A?!F5&m7n;OyizJqk!MaEy>a=nlmmA#6_51# z$lcdhPAUvdWzY^^JEyk>=lI-GO?~4yoQ0*Xw2+h-=W$jMk+_#HUff=?8>{w-#>}Xd z^r9gMRf|H=Q(sU}P;HU_{6o^!Xx94m%6Qi~mf->o(xk9hfhaHZ`!=1Z8uW)yvbmmj z6300>I0`TOgQalcf+mB7neW=Xr887AbMr^(L|m;64O23SsVldBybQ&Yu2X$qD{fRd z{#2vnGLujPyS_K=;{9Nw!tj)^nK93HM)O_&Lrnws*`tLbm_WN8U&JzERcusmy-5Ea$%?A9&S#q{*_ zYSHJJg&Hl-pLpU zI;xoQtazK1k?~8rOTNRripIuZm8a(znO`#-`f-VEN*0C?Ph#z=X_!Iqxn(HyY}}OZ zbtui81>u~v7@JI>r)&QZ6yi;@3-1z)?jKYexCd^r0$J>2+xYhCw6Iomekexb<;L!O z_(Bt#)xOk*#U{I-t#;{5zK z1kX^cFRGQ5mCG@BM-M0}yhGZ|+-F_h#JxR68Wu00=JkPWIy+D=zp#*hW>bNb_C{y~ zhgKuALi|k(M?`q|%3M!|OJ9y&sVR;|(rIxZrC$aLJcStkpv}d>I`B)lM*N-!$F*xe zdNNd3wVZ}iN-XdjizTV4S0?toFj+=2c zGpvOqt|aOhY0Gq)-E`|Nv|84BdW^8_g!N%GcW{Qe1FATVhC8WihzkjWoXobodE0D3 zw2MQJ8Dx%6+qb@Al;Lp`kk!aM@>wpc_y^HgiN`|U^)%Vn6uDME7n%b9ZG#y8+Mvb= z%%{X7m$13H51pSA5)(d3lP9;-Ukgj-CQ`kyzU{u-%+q!PU-_$+#$hwL;Py2^!6-Xh zTl@7-PrebgEMJeg>0(>I2xhuA#1CIHoI)`IRuq=F3OA>XZFlia7NR8M%5&$=-4GTQ zHdthqkNrMU;YN%vo=JLnJL?objig~@QE92r7?N{JH>{3R)xHb6+B_@hx3DttT0vbX zB7#$gZUx`DcC=$>$F*g-#`XKNp2{aiJGjh z$_@1CfHNcx)TC)akD;4Qp%?r6UF)%7gN=<>NeA|v`N|a{v(DAN93+jbPBHEnGWQ+- z0m=RL5~tFc9(;CnBn_Q%540|NV(;iujIa1Na$7+^TRaTS1!<3NINNypOzC{qBMX{z z&tn?e+8mlkqTjqRK#M{}#9R05&M5tp0+n5)lJN~r&&_>RW&1uX)+o*(V$!R92Ji`q6v%-|87lCYK)n@#BW5sOW@jev;b! zdb`BwS=XDY$!d8lhT>YtSkx- zqo9kzz1=pGQ&U9q&dU{>yhSC`@oq}X3U}^st&25GwFM`saqa1R69lc0?yf1sR*DO|{I@wy?E5=3Bf45Z^F||Q`754s~HKX>6~x%8Rxu>lJ@#=e|5^>%v%#$YC&>oh~w6L<|-=Tv!Vr+^W5F^ zPoU0ZFZam6V(;T@2Q7-ycbc1<&sP?urb<8Fgq}vvbo52i3Ch{CQ9A9R5fR44r~Y!L z+r5ET$<*rZ)Y6^{0rmV{x#E*bKs4(X1#^ zGcNFeW!%>1QU;`#=UmyLFRoUX4AJb~F)aM}v3YI3p!FmVG4;;ovK5x_f7qj%7W0om zwBch8Jw`Yo&!F+pW5zxlxn+bzTx}-KinUi=DR)WxagR3)gDZFEdm-RgF~LTIYftE; zty1M?Uk_`p{B-op5m-;ETuiDd{Y_`C0%+|fHV|AQUc`;av(TX7T+_PCFqD&$Oftdm zb#{MH=0imtx~v0-3d_#H5$sD!W0W2YSe|;{KGeT61N&elig?Zh&was6^@11B+sH$O z`f$&EsyV9rlfI1pH=;l~k%6^BILO_pax}_#fbBBh*i)!Yvv+cxlAD5KV`?^7$i6<) zQDdL5x3kVuE(ehkdI-55kGhLaky&2;ADos)sy86&D-Y%xHYr)axlNgvFzCY5^P)p% zEn>=`*d?`Mswr+%I*z(v%*!OrG=ZK#vkpblU#B1qO^&ILPYxK0NvTmLc-kDP);9vR z*a_7?E@?MZO4e6>slRCz=KBeKNn-ykBh)R_WDSR5=&ac8PXc8nr4Iwpj8@GpjsL2n zrz|`er$6A*QqAu#FrzdyGU^1-&#Tf3idAf37?aFHXx38pAcQ|uSC7VGp#Lc?v;x=_ zgI_GFP5>;g<6wXJ06XAELUkJ~%ct_;mbp2bmiw=7sYM|H0q$i^2{g6RNo@=4>*RZN5u=$5La+g_nfTQW>;$ zNG`Q>j$y&G)Hlg8eNKHRDKgf%G%>1c5MOks<}q&=<3VF+TPP+dz~C_5`QvmvwR$LM zXk-Bz$y^eZ4x+wnu2W)r8CuGiEIDZa8orY1oJ^iixk?1hl_H?O7Q>})N1z}~q&J0T zLaZf5Kw)*dDS}hA0L;^GgRZ9O3uo7`w-U4deru;IVgJ1;Cp)`x!R0^yY**F67|x~+ z&g3?6Bo`Ooki}>Mc!A{?KHz)byh?HRf*)Zs8_CJ4ot|vAO?IIOud_jlrl#0Qom2kQ zqGZv+E-UY`7UQ)+*g}9MnpgJmYqR<#r;~htaozK^d7FOfDf+v;v^_yu-JL1g=d_t} zQ;7YK+1lIXPNOev8qHewq8Ks~_7;q*H|FN%PN@DMt*`vTc<`b@)GEyT6B^2@-~L0H zzA#wrY=Wv)Qc^;$ImPs#hJODRfD+xqZQIic3gExw9*ORI>o|L;ay77zu6+7b+e;1D z#)I3p|A4;2#eT$PS}|L@0=>KSE8k{ZdS}tfQx@tZtcAyB*=PqKAIc$(>Dk$7fNl2R zAwUIP^!5et^uqvvz)wDez_!FqwZ_TT1z#lIsYGfLoNDw;N0F6I6Gqd%Lke36C<_^n z#;GRD$f7%+Z}6sn{P?GoqS9iLK3C(+HMsSd<{m*3u>WGh*5uP?kQ_&$z_+XyvWgd53#wh8v*q`3@cBmw8QdDvjBW=*8zdpoe753ByowT0aCsn804gEiQW)EQC^M!bK z(I(EYDTT%K%uMpiW$1PI>}fAeCwNv)iZeUdZ}8YH_qmEY@#K9lYi}perX-7b-Uf%+8-U+G+|(_S{Bt!SjKu9dp+^=Bgfe zY&Yq2k_rqZZm&9xVsO?8U;1onI@C>!rnX|hx;`|u?*de=3al8=vPYZ^&K)01H);EmS*CW; z_&~YVsjS=k(M@n)^xq?cl;wf&(JkXZ1T!f~5hfcD!M$`ty>csN4%&x=*o- zKgVjK54d~fo9_d97C%Sd0eCjY0^X5;(+EPKj>ul)4XZIEPyE$B4KUO8Qxa1%d^Bo_ zCjW$~0En|Q%lh@RUj4j{rD3;TPqX11sFT{Tw94ALHXbi;la`5}`bb3E&$YX{%ip~l z!0xaxSftS7IGYkdJvR=4>s@SYZ0ItLpzV8$gI7iQ`Q5hkNipFa%MW^f_#*BvL6%vU z-2clteRtPgV%ci6vI1-I)&K0*W<8g^d7T3xGadD5pNl$LIWDV4O_<2ZLtF+GnJmC0 z%`<^E3r!w={Z~qN=93{46f1kEt`*&_pf|QEO@d43plx{R}$Vkmpf(m ze!VXlg5==CI=~Q=EP$`WRqR2FvxOYCc?yEavgp z|Ko~tyHVedX1Z-bQGIqJZCO4+RI4vOKAx_34}2O~Zni(T(L*i@IRxW0W-`zzG5ZV$ zG6ph{a!+`4^t}iz$Ee9lAjj^46Fw^N-2GK|cDs^KK*(Y4O^(Rr%ab1uEIX2XutEOz znFgdO#l??{Zx`rPd6X8ap7+TGh+0ge!j%uWTJ;_zBm*@Q^Xc|6kFBxeO&E7zG9bTl zRt?!!N!qq){D~aWV;##?2P3wl#1w2?YaWnWphSGphdcVMw)SC><*?Es0?c(UL$sKf zQN1WAl9k(Y1T{6&;@?3cI6(bB;}IJl>c%^V`Cj`PQh^Txva+%)05O>3MO@deW@?qG z^oSzd^ZolIgC4`R#QhN`wpCv)Aoan^D@Zk*cQ!YBhz}$S-ckUSB9$3-qmIrk5UMM- zO?omiiPK`cIan>l^XjGc>67~vXy~S@9Xs@cfj7sR;sKjr!{xZHo9dN~NO4$||MLBL z16V>sYF_l2J*d(sECrr?J<&93m+!IXDjRY!BRiW?w09|@YB$9P+j?cbT#CB(oj6<_ zDc#M-Jy{NMGs>Ep=FTa$38EP9MaN9%Uj6z|Ml62@9E9n&1d>1aaUIsJhd6Xn)!w4jm1~wsS6>(< z;v~$-6XG(s4PynEb!nrA?7QT!g+G2g0T#$_R&=^0#@IO~FpxwKU+qIIhZC2a*u>Am z@d19*J5O6Cm{zf36XK9^0Z`YGg;t}MrlSy$f=8_kE~rM$p-^^#24B%Wv_Z5M;WVpE zwMj>8?a4T&(3b>j`85Hn{Q^WS3m>0yPo;4i-42i==A)w^NkBvg*bT_i)DWr`@pe4F z%iISBad454%tAd4>mixdO7h~lZ(XpT?+pr=`KTH~Ct^PAmvnWg664n6;qMPXwfV4W z@qIXgk3A7c8Lw95QDH3xb$0b8G*}O|_L<|ItL;f)8D}>HT~;PS2Y2>7% z%^Pu>>t>O^bLULuW*xm}xAHsy9ao3;A&~JqEC5U@E$xe~0u1~3FbD891ueka@QreI zm2bO?jyXcH!mIUCn>$D%c|NO5zF-kLD>+;;4$32Mhf%1oQ+HPJdqaRG>m|sBvz;tm z1Y0N%+JlCK;Mvo3^~fl(y|qWm2^WRzb)ocI7I9pN%vmzaDyi+Rgu0P+A;kZNfPlbE zp>+15?(ZVuCy^RY(tU%AO#QZZ@&ORn-_(ejYH0vG1NT3>)6eXp_ywLZV{zzkrl+R| z3+byy+n~WCTbhSJ`^iFV%=_QrpkGcCJc4flTKkKc(Z3XhAROjJuyJGGwgE&RsLV## zrs8bq8%8%UJ`#Uc&j12g44zrN=MHRq^dN$&6}LcnEZ1WLnv#=vVf&c}^%gp=vzNyT z;cZnv_tdM-6j+VMo0*wOEGe-1pF6t@6wJ?0o=AsQIpV(Bk~kPuqSnA|r7oVIlhdwr zQM!TqR8TBQvWVNp`Ci10YA_YRxJTopKZt$h&@6sXJbbV>dJrX)1^ONN`}dXB1uO=5 zTP&ch=lnS4by}1we_1!-tYjEq1&1x_Q`P#|vxbbT7aHD3B=O1c&{T~AgeMO~j0*xp zMymzKUX~3u+RzR!EF(k-Kqih(C;$Qgfy0~d56=56mrT=*i3&L_HA6MdPkVO@pveOo z&HO2yA|oB6>DBD}`eOzghT%-Vo3-@-d!!`G83rAWH?x6_&8J2DK$T~ewGJYO!RU;g zS>h^nTvWI0N)586r_{1nY*$uzNx^>35?AJAm6egfqg40mvaB~|RxLd`CWdv0pM~YF zUF>CjJAB{fLVt~ojZJkWl>5&u&8CblHi}q+ z2K$9g4S?R)diEpbF4a3-ot?#{rRq*%G5i)p)SqwfG4?KR5+`80at&pNtKRTqGcv}3 zH%;Gp0r*R9E_cf!uws1k3H%o7^`6_yoA_-&;fRG!{cqNNC6Offe{0=5uRuR z;p3g>doxq<0A0I75pJ?kW!OYP6Y^(yC}w@q7u{NA*;3iuI;|5`TRnS>lzT#lYK02= z7kQ*wLTSK(1m-1W&VZKN;LhWXw5vo;3w?@Pdb%4)!GD(3ph51mJXjP`we^FzMJAoE zlHY2CHlI^U@dgjiqhbr7)wjWjrKZ3Z2OE+4ou)rkn%Ooz4pb;{QJjF4cDn_Hoj@s8OhkNurCmYPWIO!Wp#F1ttz-Lx0&D0`}copL)gk1?+2flN+!_3toMWtzN9nj z*=hu8S?VPPY~`<6U3DM>eSCa&;Up3*3xGdj3-55Cb;I=!kxt^jk3at*ZouM&0vn6*H6|k8XZWd(viVe zZi3MbKm51RA$cQ4&*o3d+0$< zw8J!yWFJDt-UTKV`PIR_^Pu|aQr6Md)^7Kx4WVxXKu%L#-F3%naCy^CQSoeBf>^?F zk_(9?i{0suB$f_9P(yAhY~IJEwO)mY=oXOuIzz${;&0VrjVb|4YjGqJyulw z0`4C7;+&Fh()oL8^552u~Y4J620)m!`gj6l5ZM~4jk zB=E-Z1*YX#>7$AR(9Eb7%x+7t@vKH(*XNxtUMigj5+w%6D3_fGaw$b% zBqCKa)xQ-D*}j}AgpjIVHA-)L0Nioxt5;8EcplBKFXXkYSQHJXnue@BC#0%Hv=2k_ z8-eu;?&0B>z}VKqO==moiiG+hDsr1kPrL2m7)Z_cV!Ao1 z#>K@&Q%eieTNRp_o{r$AtI*GtK;0{jcY$t>6z8`<6H8LUIIx->lgF92x~&@i$yx}{ z-Sql*XSiZ`cvMK~MKzuOpmw1RQdFnU0W4Zvb=d?X&Hn4MU6)gPAo(Kl?K)XVt1WWf7Q8Cc%hcX0Y0rMW1$4RnkI zp)v#PTEJc33`;00Lu%~{Wm3!OOluHVM5BOl#Hkz?C+IiWyx>FdAlB*X&U;;$xL{f&b%oW zsM^}@xdlL-fJM(w$ABp44P??NwVOrqZ2!c9Ln67g)A9n7(FFREF;JBS_{^?t#c%-h zcfmvna=x*X1`rG!!wVl0JXK}Wsf^Vqva}eiNc%-jPu~U+=w&7rLd(+SZvW07K^#+tc5{mNs&dC>d#McKyXK{Q$x_!Q*RO55!f0 zo8fZv>NtEUoZVt*<2#*^&S)slSV0T_5>i?EqqKMjI)6GA$~hrY)iZ|S#+rud1fMez z3LddsGO)a1Z5_?M%S8ap#?pccfltjgoD3KNyxM>{DN6exgq-oZkRp5b`0dig!oe-j z!iJmP-ss`%EI9(I4CD-I9;z}(wpD%IYXcW(vJhDYy9}wKg5vqH7QyS+uU{H<$t-Z? z26e|8(T6F-U>m+2K>Nwd%8mmQ_!BCIEkOH!KxXe(w}LDthF{2w1*Gajq409~>(!MN z`$hf1LW}6V1;8_uhCQkh${;VPY1n;ve$}p~@e@MI<30hA`U`qOL@whyUpQ|>9^lfI zi*(;MvD+_zB8j6t-d~M|06gkCpII6#21)_3{jKplx(0L|{S%tS;WE|L`4{=x5Oj(# zpN60!b{WVwiGBO_8>Asx8k!~uqf?@oou3K&Ys~S&PFX+aUjycyiskHfLi_Ug^S?4Y zG_S=!=H+3O5%5<6k;k;hOWNVD>7Q-|_g;~0eF0t>9M5KvPl)0a^4Prr6>?YVe%%v5 z*Tpva^xeOIKB8eNzQK3pA!6fz!GCPb_AeXvJdz;c;W>i3@IXgL0S@iju+wM<=m!uj zn*G|0BBFJZj}uY^uR;Uv#|wG}YA#(A;L2ilr3Mm!CP@LGv8-mXIb?Sl1L_gu0?>%O zm}-fU8FgPJwHPW6gJUQ8>({UD3{_5~?L5@y!mqh^=Z?R@c64lX5m5OZVh7s_JCI9E zKt87gs!WKWDNx<}E>#_P%;B;V*zp}r^V8X9q1I1^Am_Ue&1)wJU}r(>wU(E#7s$=c zjh<f$HQx$R3{t<)3t3<%6g#i4A=t>~~UAe}__8v~|15Hg@L;(r< zK51Z#?SZ%Le5pPy#|81C5%P$|dyfGpFML52YJRF&c2k6Tv(*z|Y!E!P)-&sQpd z9)b?u4qpr>K=%$`{uJ;cKw6OhlYxF8#JBtF*%v>6+7pHPEQ08U;l=6<_yL07vk~{5 z$AbivEC9K7NJOO3DAXpR`9`6hqMt38o&G&%(ZFy z(~Az7rXRkk^Ivab<^1bSvUl&k1BOf)57Ks$O#ts%K%V)qzzG^zKzR(XqKEIKVuS^P z06hQJ##_q6sf(x6h`>^0b12y~;krIyORV7QNHtY4;E)qRb@~R%c_lG77%O1M9gdkW zko{}vE7gZf_a{1i^XJo?y?y+08fcSuAh6DU|KbIbeK(<4XnwC-*7v{Z?DkG5f=*lrZat%MtCxHsfeu7O@G7LnW^*E7nyW z?SU388lgHMnyJVh+B)=WP_GvK*h@aUZ_L<=<@g*ISeV zLPFB0c#J>^&oPYI9QG|*9;p!C+pIeHhE+%2+Zb|N8p>YA)yLhwA_pLV&t45BBG7*~E2se;7#!4ZS53LKmdlg9`Im9f?sd zvdoO`0-`sq>BWiIE)=T%3(EC-`DQA*<;#tPBMbu!%YS(L!V5#4Y(!;VQovx-8I~7G zp>5N`89`BAmR-Ahs1DS0#paf~Xib8r_H#RGRMJITuBW0mmMfT}?YLTvQT|uz%TPP; zOX()G{3&2M<8Raar-g2*gGhaAD+eH8VJ+$zZ$ZS8T!h;VG+ZIbE1%Tg9XZqB@>NwH zet6m~8FKn%xJ;VMv8glg^XCf_%vPUog1Q{#&&cc|@qX$o9C=CMzPVtW1u`#=|*v09 zaFd@u|Ko|#K%VhwXp^Ys>Vl?yx^Q`2kcg#NRX!#zEG%?wzJt0JLR`{I&dNwcLsvQ# zZ8kHPk(~-+`5fH1k69y;$m%aZ=Y+JbJY^q>^a}eDTV?g+)WmlmJRdg~cg}sP$a)&w zTXN&plPes~$5ygzxQA5ZDrJ7ZgnNYp{$y#k#*#fjMO$Pk0 zRtG;`a$-k76LhX+Pgzyf4v~I4fIMEpA>pRWtL5@l`C$jLvuW?&{~WZcY7tFnTXW`v z8JS%eC9#IU;jrup8pU!*kxh6bBSeg7oPY_}C^R=glOX!p1oxGbpzBc^@XQaXQZ#CF z>u`kT@lnNe0CRl1$SLrL=?b?^-&Jd$b7W-7bxBtnXA>ZV#Q?wT!?!$IrGpc_gwX~m zV@%fi{jlPAr==m6-aaVqPT~V!zI@d3NL>6GR;*04DJlvUa~@B6D5W&S!Y&SI+u1U*pPxbJS+81Yk@OJS(D zZ|#2fI!%IepJHWa4SbloUh-gE`J3}ieB``b`!3i9#wbl+%>5#Sv1!%!%mFefR35uuan8SyzYUtRS0 z`lMG}M-Vi7A384Oz5ZWnORL*kVKQ`|>=zI&;hj$Ru)AEph+j)o)M=D}o&Krd4H944 zg8sVIIYATaY#PN-zfC}q-Df)lEtRH{(tEQi*wbn%^OjabJAM7Qj2ofEDMyb} z&AIr~<+-ETF{@7qdxbbe1TRqaMUi||F4M?jWwzsbs=>HCMMcMxmPfIYwQ8qJ0jFXq zD%2^=sl|G2xl&K~8j8jo(J`NX1H=HGm`6EQMDvT|uOHtEM@|eBS+&75SZQ6$94A4G z&dHM}OH~y3qD9;aGx5xqf)Rkglz*UZl&Fl77h(3oug`R+li~OF{R5v}J(>k7W7W7X z)k&|XeGuhuWxOF#5&XL7kZ2yfDK0B6>*@TI*)`2Cy^Zdu;xHOJF76AqIV5(v;c=ed z9cupBsn@VmaSfl<3(6)-ZMlyV6rWwm68^tfj^HH}O?PiE;a=7|2$(A%&Dn-ljrPRR z$BO4U*x4r$!7vO<*lXPyJ5dNy;^>gOZcz2R0G@=5Sd<#U&;f`s%7IQo<_Gvxbwr>E zE3LJ_Wobp%#k_h|4Kkx~(3IG~par-z^k6_tID;DK5XiL55E$y|?X^Wl%|a}POMe08 z_7y-8z;aq(;DXKz=Ir)C+O!QbOH+Vm5f{-zYoE0zv$~~WIQ`uB&71Q*CG7ymdH~A{ zgg^wy59AXFV6>Jh`mH`X(ZB6Qc&1pFnemFMOS{T zx#;ot3E7A=owtO1pIMT9mPz_2;PGuB3)Tf%0JsheMucA2F%Wc=ZC=Mu_YUzxbqFQ7 z*V14MPO12L=G$!;ToahmHQ<`irJDLoRJQ+lJ{<30r``Nny^j3aaV7%ch<`geG!w(A z5iz;HJ?t2Gm?hJM)`V7GY;zfKzn!it4a`2wRxl=;Rri2hr}E~+X10&McnxHWYad;} zvZcXz*d_OGL_{56=wut$ZGLG2a4KpMi7z(#5Jm0wD+2^`YO}Fra5?Y`yntsf`XM9$gik{+5UE!)s&LMvNSHSEw#53g}@Qf5WozjyBk?8)3x zT4LfYyA&!#X9`|_6?989pR7|$b2IR9)u+Gu5K|HkTS8l29SvPPy97S_^xiPpsJLEWJK2~xD23nBAkR8R3c@VnlB5DfXvZMIfzd-k zaKnD&U#b@&*I5*cQMD515mU!j#z)aSkD7^GA0cjz?E>R~;^5=J6-Gw!O{Oz6o4FD}lziFlAx-AXL;A5nS6f(c`ZIsK-+Uy~b@{u;4LwyWHK-qjl5p2I5 zM7u30_Cyf~8O~YqAbQq1w=0>;PO*sSwRG57PAyKNY?|Pfqh<4#dR@{`uebyP)`fk7 z?7<}*9Gm7TTc}y=sBS!7v@FjG^*Zu3)M+@TAk+zY84`|ZkZdz>`IQUETy6=-kJ2XSqtt0&Ou^>v2F?EV%5la$J> zlDhzh;Vbr(27xuOdsQHriT-=NfE)2^)5;T7-8vzuE$%6=RhKf}G79XzLYM z%k#6=8NaEO^?ew1Qd92{`diT)JwBUa*4RkvYbJ^^nCztuB69SVYc1 zvpL7_DB;z!R69>3c;ObQ3vO7A*aZhK`@@COrRXeDpJ`o+a?(F}iyJN|73$5y9{T>K zAaHuDmuG96t2e;Ysh8%VRJ&sN*xr6;9VC5bl{)r;WLNGd0;ODow_NMf4@n;Ywptz( zPSJz0&~tx`hJlZ7wbA$wg7!0^?>6;!CwYKanCs6=8(ZWk|9M-_&BP?V=hgjL5Pre* zbFLkcvWK$6o@I&? z7IOZ_vMywgsD>e)n^A77BRx_;2>Xd6`fFYPNN7houcafG1L)L~ch@ja^z~<9G*YPm z25la}{Rb+3RuhA0(*W-wCGg-9cR}gT`+vb~%6OpF+16?9L&F3$awps#fm1V%oTOGq z6kxCPSqm66P_lS->+?OqRFDNzj}T7#6wLRtB)#1OCENM^PIJj8PcA|0kv;(Iu)+UW z-06w$S1cQaFKL(PFcHLfkqmv!BDp^iH-8US{qx#{mVUXTj?{?7k5qG}A8+y8D_Mf| zWpbfTEj&WZkj@_J8I6&SsaEa0ovh4;#-#}}bKPadpd~?Mz55YzgM_X`aj%)Z&C#@> zAx#ZYr9$)mBvV;Axq?Z`VK{Nv0r~iwCZ%FVsW6F$OtFL3uLH=P*@L~R0~sjefem9e z1v~_SBJ!bqf3yeg+X-^+uE8sR{@M39fDdq3-=YBD)k{OTJThn*vrL=djs+=J9rTYS zr|)uUm!z%{O}nG&YZoCHv++*o>Kil&8#zyU1d*`$l9&fxgw9DA_g1_9%Xg{zvf7fx z$`|Ekfo%P?B-uj|VNTzm4-g;WtDA|HxUc$psEFAKqL-0ot z0BqNGSKG`gjRD`u2Uh!%>0>P+r0ql`v_O@-1BRp~;}!6;?@XcT%AJ&Go?cBKfJQLI z%}q)X4P{q86gJVqP8@qM>02#WNL;JKarf?B`3T*Y;HNc%&cDk2*VbuGfP7cd*3L3j zP*5mJ@$9Hrs1IZE-TB$bmm*UPQJ3Gc4Wh1T{g>Wi!Q*boN{3KXebmC-TwzXGtRkUa zUot|SDk31>W{QtE(5+Y!OlXz|2<>($^f1LBwpPEi_6>e@322=wF;LMcYYJELI8xg76ViHZ_MZlXSDrFSU?|@lm zvpx4%FN(PGvN@o?Y&9`O)BDY)tX4P73%&xT-DeTBAUTIi0Xo`u$3NBV+R*9|1{!ce zgB-&8FVKc`CCz#a$40cCG|+Y7=2EoRQiUy3t}h#D_}!+!^OZx$^GLOo78ykb7}Oo9 z`9BeQe6n(JrpDhm-o+RA@B4=dP764N3dm{QX$tfR*d>=B8fR)|=4GirRnzg}fj|dP z9FHIlp<&1?)zTZ%#~PTU9Uyg!-0B%R@SrzDG38(kP{)@fNF+EzQ3snoqt!O&Mh-`#*!hUg_+i_2te=$Lx&c>x36q?uC4eTRDyR$x#p^Ve&d z{&~%W);25yfYo$#=99ef+m1iZ3PK1tM8Ba&oJ~)Q=iWV{2GRJm$l4h#=P{prGaN_D zCg|PO*n2{CGf1HUodq9F1+6>H91kPoGmq7n(RNT2%OiL9u=yd`#G0RMvnx)geS_1W zG@eO(zKmQWKWF-x3bZEJLI83#b~ci%+m1gqFMs2e%;(i$KN{F8h?;g8iw&Js4?b$3 zyUlRiOO)hr!VrX8wvwOWv|tAO@oec8%&9_BmM4CI+ISZ{TfbU4vbAZ4EG z&7=`I*j-%%wUwfWhbRWL=xYfFyM7ex>hD>tBi_70=KWcq;`abqS%$|5uxHk9GVjjU z)IyAh2?SnM)w6sbRcK&ZQ_G=88NnzKjseJtb`WLI6q2Jmxc3<-ixMbvwcEztlSl4? z8g>ub0_?!hnVqAWA!HUPCUm<(LlM;|#}(63BA3o5s9J*yw-9Jw5?LcD3cO z|9G;Tm7eD?Uy*0NeNz`gp9Vd;#+fA>!xN%XAGW!kO~b*1VwuNDWFBNE(>*sQBx^On*n$>*kIMBt9AyjK5(2l43Nvmpat4Xj*R@Rh&}176qeX}oK=oX>Rs|EC${KJl28-Fjm(?Or zNd%cltDZA<*T<*otXOmvEB-%dZ^CKT8Yu(=e$8%1T`bP3Vth`Sm zH?KO_cWc6MKF;}UOFtGK8+%`1*q$s?rz&1_e@lPNO_Dyi!gc*&0W5|!X_P)9AwdBm z8+HS17$6;ZK@Z!OlyoV>km|?OujAXr+vPv2*UhCtk#rSi$$R2ozt%5V25S5oG8eKr zk886X)h2HRXHw*y)-5vT;v5nf7Cp{zS|EW;yEwe%7Gd~lTP|nv!`hy5Da_5O<44m2!0Rp2N8$J5G7YL$TZLz{%9b7$WWxCuPXoPzUDG)V9K{YV$avM=Y$TA@mb#jd!hr6^~)qX^A)5S=LxGAFn{DH(t{{eWZUTNDMch9ptkC2-^k)JqvA4YCf(&XbF78n{BoG8*MwthE@Av+5+ zf)IF=avgG`jUG3tQRRqNuaZi3gx-K&ZA`y1UlPCNhokkc-Ri z!Hp?0u!Y^-N^^aml2be?I5Z&{upai{)5|fD1fc<7MrawC83~$>A6Az|&jxc3`==xI zUt6ZVyKuR$L%}cX5B=ix+qaj^J%4?plv}5Sn?zN6pH#WmiP#;)XZJ)CmOtVkXUT0+ zQBtOvl8N}H0D4>9b02Z#6q$>Nv^I5RWhF0|85nsX`ES`%YFXL_W96Noj#OSmZr(5}nk;n#Hp1wzD{37TxPF|0417gi zr%C?y-@al=P-MuSwjB2Fiv(YpIrNojB$&g<9CkqLVArm(rG;;3^rKqd3=pS|Zzz!3 zFxxb5rH{8`(-9`gA8ctWI*ZxQoWTH*n!2H-rgj%mB4YPAJ-3O0Zu>9*OLSKr1l3}C zR#xlJ%F}c=?}UhKM2;;2LMJY7DZ*(`9510~G>HH663Cp$5Rv1d^16%F@c?e`L_7$0 zSF(Jx=i(DDNKywyR&%D{jRBrWlFb%0`1(tYwv$v@lMh0lRU8q#kVFNA2CR*0DXaqy z31v|{8MkKBJBDRfiN`A(1b5IN%eya$RfV=)RaJF<$r!+;Y7c51P>^;E6@pZ+xCQ3i zc#G8X(P49YP#q(%t3+K}v!1MOxg}m?u)PwH(-KG?(RLd<^Vw#WG%e#+lswazoW*ObAZqO_u``yy zebj=%2xa^*$kfu2rZAB1H3`m+DWQ#d$Pv)4Qq!FIyjcHY7#7r2RZYWhMMXuhsa;x_ zN9451MKswg8Fpx>L5rW!*jeWrb5SkDfCU`6UQ?CZS8Y5Y!@`iF4Rc5#h5Upp!@nI=1h- zySs_FKl4iL)D_Re=<0b(91MI7SFyE4@yM+90cC8CwG_~Pq%z%}1z;Mnz|?nin=bc| zKr-gk!c(!IuABrkA{^i<(jC#y{^^lPTyPjQSzkAU{I+Ko5mdmiI2?ch*YVO91|uLV z4ef;v;(t2+Q}t*FcekS-{0>JNLLsA zp8yrY6k#?Dn_87jQnXm$*XQdzs>Eh0>HiOVZyt?x`@W6RJfJy|NP|LAhGf<(BALsS zOd&(Y%&G^CrVN=W^Bf^=Q>ly@Gi7QZGi3~6AD4Q*`}f=LUTd#+ueH}+YroqcPpzJt z+kJhm>%7kMIFI8vK}G*COoDPJx;#*E>Fd+2Sf&nh77zk^2?Di4GA(a_W9g#H&Cd@7 zkaXyMm!@j%RhL(KHVgSjEHCh=*E~KwA2x%W`P;8wx3~@-lru4&3azfJT%T71M-59^ zSvuH3WIQ`q)&AqMyrSaU@!pzVSn*vqB@(&FIXY#s(e#Zi%WgOUdwT!)znsLRAFDM- z^{(=k?k~w|Kgh^yp8l!hmd4R@T)>ZM$5Q{Z(@+-p*ar11Epy&t-ZfA4rFH&G>0#@LnY=IVJ7ry5S1G8dlp?9gvhD)A4mkZ*i!KzN ztm63-h2eJJ8N>)BdYZpe{pbSd3gGyt#nr6mE!|f#*-q#lc~eg!BGNuJ4GDg@(Iwhf z)eLO}U{@;fVw^*yECjdL&Y{RJ5Dd!vQ1x4XkVQ0?DC z^gn#G&s|P?(XHQ3JPHHEB*B@kA($Rf%G}8wyZtmGf;->msgw0+XGg8aWnhB{jx7OB z#GuEr$FB^U?L(uPKZOH8Mn;n^a&%h<&2zLh-Yk7CeS@0yndF02Rf!Oq+gyflI}a~x zhZ?eLd_iwoq2Zq#M@~dl)At`2^m_^aD&X#O(Yxj5U5}=K3Aucp)LeDUfy9NXx}ZO2 z;(?$A8dE8N%KZP93#zw)p|nZ58wWAiHLq{pX1QWU83R$b`n|ue-W%%~DrT zD5+wqTS@zPj+EZNwQqG;HwVq`21#Fp)Btk`ioE%wUg8Ta9~Vw{*&TykAhPZHpASSH zl$)A#@;?SlU6 zlhXh5q?E~%68!HwkYOzKsI0-?dqJNdf8podjq!=*|9+y|I@IZB{^e+io%Z$hMR_bP zHVE3JW^Hkmx|&)gXh%H+0b}_Gp)CK_&ubc9ly&;ptK`I=ni~PMg*@tgy)$u5LDx8M zsu>^xqzXB1Ni7I@BzC)-xmVSRF6e8YICZPUNBAUAhSZQ-59;rGUgKCOaVj|#C+nf7KgF%2_ZaG%ph*kbs#JZ+liNM_bI zUle`WG)&1h0-7q1_xRkUZl|+rKHlBY7rvaAoVt)FU#^_(w4SzZJh<6Tz&$AF^Pthcx%mwQ+4pd2{;Y9~0dA5`4^I$xJKshsuupZdgj)tA>& z4l0|(WIM0il)HELy=BYXg{jxxHs@!Z9@L-yz3^GOa362Tklr!NV|GR11`!7YDZN## zL9K!Y)sEk3o|S1DzMMB(<61N-r>{t&)Mq2@W1QqtcLr`J>A zpJCA>)tYCW#3bgZny;Bgl)-3E(f4;2P}D6y@be&27@}_1tL(@zLrbUpz!-9yN@OqG zAcEIFJF|Z2l`y=pKx$J-NfIc9ptsMok#}n=wShxsOI5F7Fy;+Om3-&*V zs}GY^Uz|K<+I|qwr#C#=9#r=DVwI$j_v%7Q$^)-VvO0Wtv#-_<*p$smByvh2(%(Dr z*!9yklljlHovSk`9b2_`N?feVzSuIa7P~=R;B+2KK3Lmp8kyoXCT#DXbIEZwTi(b1 zX=*LSrEmII4JTVYN z$XDd9|4)DO78G}1Z78&9cwV10vh0^cG0AhNuiFCh_)ObdGr+pDpXZfy>8n`rJ8)ZW82btNvJS;m5y+HRMSjrPG2a{Ogn7-^OlHv z-ocm~3F}Wgim|le(d?`{=g!qae|z>e!~f}%`FI}g1hERGF`CVZ%=vL2r!WT5|i z4R8E!e#b9QN&MFhQ%gtvU%izjglUITsRro1O7}vU>4UPd63tjW)a1V5;ar+&DsWQj zuHa1b0{~wEG*=fQ!Fp)BZXRa}Xnr0aF9~YkVI=83@ajE}gy1+6T|auW6Qf;PY!{yH zhWIm!??y{4Ncd&F;r%6~nCV)9E#u?w1ib|s}^yv5Lf*Y@q(D`qDLmqHOTdl+N{c6WD6 zLesEcP%!sv{#D$8_0Xo=%vBHI(prs{HhKHY5Lr6n0;0CJWg@tc5m(nn^hgmB_0S64I2~vJCst) zr-m*QFV zAJ~-Ta5~llkJs17hm|WZ=~|ECl)4}CjZjRGf6U6E$rfq z+^(yyp9rig9!19fJ=8^D<~D*F5G^GweK_G9#NEMSPI(r&>ik^7aE2^^3s}XspNicP z2n8y_ zH+YJH$WmPcv<+M)(8ZFsZNGU=u6HE}D@G&jx&E`?^{0kf6$}ez2B#_NTqQ!#N(%U? zpe6H5{lbMuLN~wu(_>7H@KeRt!xos^A530qehO(0fX-_mG$@{@PqhC)Ej_88l9RyR^eLMfI?o{-^XW@ zmFR%|&L~CQwzazgLVSF*KV`!g`5#5I%&GOYK}8FVZbi@0f3b$Wz^V!1-{?mqfo*mn z5I(_sU?{y+P7pYSGSVV#r<_lW%Zup^0Z_)^Grm257xAnZM-pYhxX?#-_Z-ADu5sEZiS1wfM=F@Cc^WlV30x10zAB9@37)GeRO6oMK5z(D#YLYH79hE-|&!EA(DOVFnUCeOXx*>G@C)Il`eM(jj|mT;{p=O4OdMXYY_P;U*|#Q zULmqubuvr0+}FE_!qt27bs|^f7c``(wT`FG+JlqAK`XX$PrK_XuhQqtP7`(MQ;S^- zQ#slz=LY3g$M{{L*qGEVx8Cy%9_mpL%cuBd9Egm{o39(3OoZzDP_*?d*mEnCyz<)5 z9^5u#bJC-SS=grPY4$87Njdu^g5!cb3nG zyRJI@2-ufG?1i;+9=E<214dy8yV=*VkVNjB=1DK?L`2=%*Q+TP>U(TbV0&@VAD9 z7?i;eyu3CHI&?rNUNJbiNXw09qS{ z+iE|L&nzpPtLqwsYx=3;$@nCbf8?_oWc$+9modt9DcQ0fLyIFiQee|1;;$>k4l{*R zm`rUSGZSQGjjB(U;D2FE z3-@B}Fb9IDp=soy$SpjlXrmRlJ|~UQgqrrt#A{;*wKMh|XYGp)L{e`W$5U6GJ+*aH zkCo6}&zBd^pMRm-3I?PK(a_WO-=_QOCTy-S*<(WyG{oY?->s7MBYXwd*?Wx|$r+jA zdB~lm13MCxIEj8=)w7zK7F3S(ZVK#qm9hU z%|>D}{vlbu=6{!OW>5>PTmqfDP40xLLJH}6lq?+XvaAuMc3}}NEhgf%hTp)3)*Lj? zB=1?J-MF&u3PbHilQxZMSNH2`5nsk~nBjHZ=B~xqP9sRLH^Q)wB{t(R5zk$*@%qh!iH5!4a*qbwn35G z#i9?s8e#PT>GdYYC2%;zq9#F7kOe;^ess5s?3Rn3SPj;flCC_^2s1uer}~NYp8Rrz z;(B9h01CZXI728xu|IZ8galAD5a3zOg$DdZr4WJIho7TX@hMK{cOKPw9}kv;RG6UU zS$rZ+*egMsfq)kGF;L4n0nCK20%nl=E^|JcO=k_3aKaQr;@wrW^6>CeCW`%cFLoa| za1Jt{OOJOP-4i)q?CI)`3W%{D8At*WlQaOZ9EH-TqTv4=Xg}K@msFr|#G65N;0i9M z;p{C!hXP$!eY9PeRZ-$jw#79vPy7*4W?n*?X;+|$wTmHQpjlc|KH;-yG+ZLyEb_=T zlCKY9B1I!&L?Z-2znM#_#ch&=Y`ku(GFbZt?2lyqlua3- zrmf2sE9o&4RSf%Zn2qf$0V+VY)Y#UmiFYIm0Xy*1)+6n$qqZ$z8WvC1MP1aJw$3%5 zORU>kyHS><-P2@Sg0-63oG3Nzy?Y?6J{@r-=I*~tpJAN|rLMsO&Lqn?zCrLL@If5R z8viFx6m%Al90f7Qb2&Eh-BVFk{yrUal*m)M5-41d4aE{I%$4_&B6`!yu z2p9Lr*oqvA_-u{KLW6hduuT#!w^fRZa27AO@~-N)N__L?jnQ~OKtOO4tg1yL_0$Aa z)vR5kVozN3D*ZNnas(}Uqhtylb_W9c>mG{)7px$^W-_eU{YWpxkb&e&ea{>ZQqwMs z$e+i>a_g!U8sg5Y6Bod;X?&{XA#^b2BbL!1xNF#EHJ{rs`0hrbLalh%a)p&ayatMZ zRb(n(P1H*pixf6z9XrWB_h~I9Kw4t?07YU}3bt5MS*00Z$GL{r&Buw)CwzKw9eXX@ zaqN6UK5SBxe^UC6tSW?&NkhJDoB||f6=q^CnI3oym+eHtjRF}GaAV!D?O4wE%*4r^ z(|hs=P%8hhFbxwylwG54jd;|@BlG%d49JQDvj`t`AeC?`Jjrje9S=SK!!V>3mNn$M^uF` ziFd{N>$yHVk_+I^xhy>UB@ArPWn!#AYd9gBMx)y8jZ(+TZm1lsQIWV-A|y-;*N%Y# z+x%3##nm0$rUqfQ4pZA&uS+8K6Y*UX+eC+!l-GnIq334T6y|+Adr(hHSleLk zG}-h6vr@M^*QR{TeK@vI!EofNgj`Jl(v!TXM_@fSKD|g*w_0Nj&-y#tHcdj=&mac! zLybpc_~njsp0UHsvW*q^?Hyp>FOvZ6UP zE$+?z2M+8M>%!tiu5wFa1UME|h0Wh!X|ih|@?$P#vPxfR2dbem>mSph`jlmiKpGTb z*D0wd_M>=tte&#K;2900y?z;KVdF~3ba zcdF@#QA&%syGLc`U{ZiId0ykl049nQTj%6?G0C)vGA?6$W{AopZ*t?%BVDPm5dW&= zHd2F9y3LyF>RCVeuaoxg`e{sT zE6d8(2-QFoE7K5nA!xJwE+#q;RAZbcdSNY*%{mNLjxTX;9$?)wM(LWb_Rhv-%zo$) zP3{G<&?%@I>w$+xj$@^jq=EuoKyeTm=+LScs3cS>CsmHl!X2(suDxd;d1D$1PoEpf1kP;5V(W;Dw5l>Gw&*g!`Sh%Um}{AzyuB$q9Yg!@Yb z4ME3W=>gUoHxaO9>$YtS^#<^av)EPTX>4OZ)oSn#dB5K@R5(XuHrTj4YC3lEZK2Jb zskOB=xMsVbJ>*))aS?8iG=>P&xP0jq1@$Wrv$JoCs8KOlT5u~&@F;_;j-ezs2Zt}p ztBa=rgGIC>eRQt@5=`)iQ>hNepWUPkKAN)@q+my8+GO~DL9B9uOd02u)W1F+~j&@LT`e)nIwND*yOwSw-cHfu~lQ2a!QXmP}{ZtF5f?B!%1c zasc+AIp|?bORTN`M_n|o-Ct_W52$E2vV+8qjAZMN-Ve@Idp6tbyMo1<7;0_scE&}S zUV$>iwa|W|Z<7`CuG#0<3dHx3u^vRrXt*bgA&I+;bh;$*;>$ju_+@qgK4=YbRZnD+ z6|ILI$aZCCj}lgBr}?7sjD(XdxOHtjrdwX<+-2UH$^n=MDzWR5V0}@@W}P8S7)c7e z1>OYjf2LjHj($L`_qbYlzf}bUgWD~fUFLLvV952HHr~m4O-uO1+={+Zq>EcJZ4Ucc z3~e6SaZBkjBfsyvhx8$Z0;cW9iAxzxKjeC}fK@=Pf z52*Uc6U%eq%q%m?weBqvVj4qzg##-&pSu4*qH-h}Rg0Ub>%KiaFo!$!3E0tAn_TS9 zS`c^Tu{-;{7Wyx`jHy+#Ec{rV3#PT+kI%2ia0N=jLbhxDWL@xF2P3CyJ|VGsQh&D_pEAEpl;xmxU+UYULpXZUT8 zg`1LltL@rj#caWCYc?Ti`*c8p8&Dsekk@5b^@9yn=cJ-bi$BmX@<|e@{;9lHzZugU zH8C(-)0fefDADIo!c-%AiAuOT|Mk?c)qq0dTTdNd$?Mo`8_P%anzPsW?V5ACn=ZX- z8S3wSAWeah%LV?FFMRmKt|`zWQb~aX$lCGX?D40DM?b9Ejg524Is3bt2(uUKFsQ%U zf$On2qHY$iF9a@JhvZlnp^V4!`-P$&1j6%(`uq0ujs))lQcN7(NT;YDiEYZ=WM!zJ zy?*gn3DQ5=0yN@rU=~&bvX2()z0O( z7mXly=;ckxA9KvQ(w8z@T0_KB`WVIH(!%SedruD;AGjVtRq)T2-*&8=o;p#9ACCSQ zz;$~LjKzIu03}XYVjkFw{=FPV3K}h-|2Ty!gv@2hIwdAr39`BEq)O)GEDGfMcR%fZ zh7fs3HC=+_#BgWRO*xc_Y7qhDvfS%DY=PwqLvXyi(D1?ek#bo@#REyQVeZKaO`co) zRVq$8Pw1mHt9sV-K8cYItiYi=)7`#x8Y-ZO3*c%%#M(dInw*#URn{#Scl6ft$~3Y7 zqwD!PddJ-gh_Pl+tcOKTCv*^;j;VM}NU}rsr#)Y2w&f4p1 z++& z&%gcMdhYeQSXREBwfFZeb*Ic(J7%8~Hr7zfi&IOtP%be1F&G=3fkb65ngUPAXp&Jk zhp@)?k&%Gva7=cm6!9d#S{@50HNK8S2BE5vWrb zl%q$>>Qk2Da{MSh;=}8->oSaK^4Y}aT5EJ6B6aQ}7Hx+$G~=IHQwAT950<*RV^%Sb z`N`F-AKFNGeZF(gSAgCYxWvohPpACa_PxIwmRA!>5{^x!5(I3I2`+@^HG7Yx<{Ad8zhNv$)nCEe<`yDTw)T=8@8EP3t zL+ViP&s(~<2%JaPZ4$ISR|;>aZitfuklmg~ei#k9Ts`bD(pL-o?lAc_Y8rF(SIF6S zkG3t}`8skOohR4z{p~C;wt7;9xl0S!z!e~Jb;GN}m-s{D7htY+tH8(u(wIQowgST? zH_K)XZbiYgr~EQ^9S++1<-BiXv}=ikDuwT~OeMl2Rk}A@V?7TwZ>qn`&=w zN2I&6?e;b@)ad2Yr%&&#=Id)ed#|Ng_O#BN?snZ3yT^u@m#2|a158@cp`A1u+F`s` z54_}F<8uCQ6`SjM>WW#Q$rK&8zhy!1Y@|x|$s5K76@0YM;{E$I8l{h9asf$qr zj6b}Ztg%(8)vYD z-KakU;F;89)(J5r1M+7K>?+u9oGd^-d;d~6yh&(o!Af^$7P3zO3nHy@?LZeatxjD* zbbOg~_uk?;b#kZxy3i}{f(`d(W#^=)D@#{Y9#V}*Q%*Zj?aB4)OF`^ef>Zte;??nH zWF4x3Rto^&lztqsQ`jb%>9~2Z?>T!`KBkiA5nN6jVP5Csleuni3QsvO3sOr1WeXCt zjO}+ItvhyhS2Z;bV~7t@u3yrrFN=-@Br*3{**H zbX;D-Ljo(UV%Hbtp$mx47mY8#0e)Z+gg856fif^|>Pl)%A&KD8$nefa(`2q6i#p;k zap#`h#xn;2F_}pcODY@W2!vu_=$y&Ge1}wtHVn$?*S>Gg{APg!vxF;$t*&M1!S}U` z_4C}NlZyc2Fj9k<+8yP=ysj@3RR#}qRnh?uYt3oAoP{P5ti;%&GV(IWmS20_H3rML zhsek$i18!XU|ZzT9tk?(gvm>!<4@C%nSg5yXL^ZSc6|RnTx76bPWq53hK{XVPNUnx zbapkzOvjIe8Y%Gr5<3;VZO|Mn#MpkYuj@1D&^{$XD9J@2mv0hJ z;S3!seSrk}Vd=NEf-Xo9lGSpmy%#bg<_|r(vNAR`Ytx>otS!oi1wK-LhAp6*-v)_3 zD~9E117L*&67<@8pQm^qzi{W0Myv9lWKLec z=Ea2z7bYAG&dLB(JoP|69|9H{a^r6h{CZSeTuZ+ue3xQ4)*&dCTP^!gv{0xDrrF>q zZOduX=(oni)}@?SqT`yaiz2(;uSade+tZqNj%9q{+7Tw|aIAZ5U=LXlc5!j>t7*+R=9#GJ z3u7%n5ip?IW&f-eZJqkk;R*(tUpS1!5$^)hR37@%)f6Rc)E zn11Goisf*UzZxtCJlMNZ1Tz!JoC5a=w1ySigznwzGECEg#Kn8y^Q3(bitKglX3_b` zx>}Znlb=+{Ju%VJ#BecQwM?cRh=kVr1 ze?)`e!W{E2Z=`Cjk?DnRhi!I>O_QtwIsA5I(ShZjU*e@a#QaT5_x(~)$@bqxK;ZO` z@94E|NRpWj0CHDpG?7H@xzzGH1X3s{i&&kIkBmV8vQnw(_ssYyv4c-(U+U`WmM#9S zS^P&)6HXQF@QrhaUD&OYOmycY^?+|hj$}~8g}|>mb>(=&hY(RO$J)pfCjz%r?_F;d zhhEse0#w!@Dnvz&JB@!3i1i9tGnwBILFh+F3TXQQaIUj+|7US}aUsHR7S>BIQ|{g? zL#f0DG%JSH33NbTL`kb%n0msE^+ox;&k6WEYllWIJU<#7FN*y9XItaCdmT$z!arfd zPg;40&fF<_o`U>o>>IsnaUWK#6M)1Xj7{W^?jj$-@O22kF&oK9FH|xJ+uV@siW2*> zgO1l`I>Abqtmt*_krI?cs zB^Lj}K@e(4j)0k>j2636ix%t&se;uB{M!@a(ye~m4>8(mLo7cqD}gYR;6wsV(lyS7r6kuFrsC`|zpLOQ#bh;&%zA>v+pOB`3E z#b8Q~JKsA&>_)y-&Obh%u=^flK+_Lad#u-k&6{$20@O%~bu2mp(Sn0Z_tSly<5evk zarOOA71f?ihKey}D@6`wXA>0gY62YY)Y0Ig>Bj(%xEr8_y#I|R=oskd6&Q7RW%#`A z?y$SSoPuTT_Us`sK^pa-E>!#$Xoo$ZE*Mv!sg4lWg2RQ`tL6LA_<7%>S=M7gOj30v zx!Ku$pmr>S>FF|#Uf_Q9(4v4LU`8`q0GWobxA#WH0$dAn;w>F4L{Yc@*s*N+;L>kC zB%MVPu>8uDTVQQ02RtlOS6#|imxk>S!P{SAXgZ1?d4KXm~rg3O5CU@17M1C8K$yr%yIYpKzEpp? zEpGNP+#44lEWND5K!`QY^RtcWmqUO~s)J*c=(=iz%snMspZ?F^8ZL@!Bze`n_)lof zLlHw`i28yDzF>?j;|id|0Jrc1IcCpi`(^0?TsogY-{R4)+R-q*{gCQs+hf##Hi!=7 zZ9ktTGkgSdNZ&QdCUS&$AAk7RR`L3X3EI1Ucq~qzdIMJOlyeEs*GX)uR+u9cN3u1bLcJ1rd&Ld zMz}PX$@$JZJUIBuH=$hgRObU6h($f}+C(&u&ZD;$<0lV97TY2LXi_}Tq*k*>Yq_QW zZOLv*i0Gg9>xG7bDYHYJZ6QL0a zaWn>YCm>1sCa_2f3C1EytKfS#?!d|z>`L@1@>tEl)in&qI{wlKFA~9l;cse;K--j| zLM_WkDa#Hi-?~!76a&@RR$F@{h#yf#DWU;-rjxWY0rE{ERhXUEB(T~muBhK!K=~3i z(l&_wiu?p_CS0XRqn6#;vxwK zO)MqY7N!T|*sOtL@7>(12{PI-KlzrO zi6T1*Z|gP@vc{uz;W$t`evsv)3(>EoEK5A6Vf=3=0P!;*c^uwcg!=SxYSoak3fJ3D zqN@sRM>QJ==xhyGz_l=^c~FVut%rL@D5Fy$H6vmf9rT}5#N2bB-1?y@Gf+QE<6%lo zYcrKFB*qp-f4|V^IB8&wIrL|MtfSx2)Z|>V_rTR$j4i8xgmb$MhS^s6AUKg~{7taM z3t)eQJy=u|mt2k%Mt5ec=c|>_eq?>oJng1AH;{ZI&D|`&kO*Qa8@MXIXd9@>Gh-RcK&3Z zW!C7&l!0Dzh|>%?K?b?O*`Habmdx1aqAV-r*DZkv+(~!Q&fr2 zMdSnl{ch({zdqZE0LMuxp!m?)_X9e&WV{k2CekxO_p=t{Y|OH>56kx7hU@7MZR7db z$G$LDI1-&tc!gLrlCJI9(<`(FX~${RN#J&Y1PM@1R%J!Lq9qyA1S*4O`Nq z?%e}}l0l6AdMWM}WfHyZ(7RZk_Uisl(^n@*sYdXsBqpruM{cl-(D&gcT-NC5==1<5 z=NVkqYkpmuFmoQ?Sz=i~xCOa+aufLfGe~sz!(6m4A8ao_RGd;!>F$-|wInIYjh6Hi zkbRYK^rE@-1nc&X)lVf4B%;LpIm4>I-g_zxI0j*!k}k^2AxZK%@afJ2n!Q^c;^(&y zydaC=tmdHc~d>b4h9{WVq7maY(pWGRn$l6k>ktKJvDSbgDyu1$*1hG z=X>zWZAfGW&n6JbL-|AjR6x>*Mshuk^vcX7NR=8J?>-(HQs}qQsOGT#8LAm*qSu(0 z;y*7IJ#)mB3e-GF(De33vY*E8izS9!vm$}$F*l;Zh>Vl|iPn~=5fT6+REi+FoEHp} zZG3f8rxDk?H5A!ND72L9JA3TVpyxRx?3XZ4$1D<$1dQS1R!+iKf+ws@Z6&f-39I{W zw?0;CZDc`f=n`o`L&db-zT!0wZlXV@%BqQ{_Y(_ezVB?9wEvRCC1&yFQ3vRBM?${3 zU@LALjR3Cj$)H8+7pPt;qwt!m^*VpN=0TSpE{$N+2o{u%6T@>LYE_Og6dmMc)Y0Ca^!EN!3t z$DV%~3rQbyby|VpFVpNq%B*N(VZHOlmfX zo^tSzms-1#a4MgWx~Xts)|l+R7+gR&TCDH|4VwSr)h~lEY#@Goy_(2 zC#RI4J)qE(5giA(T1XvttEk^}gVFj0OrAfC!Ciitair@ngAQ5^D=ZS)l3c zhz$Xd$yTEE@-oEm&7&}#?KUsB*l?+w?uPaj(LnxkmXSZ=jU=+2TO!QoWn}}%6iW+m z7Rpg!~q+7=NXrO70Q&TQ0F5R%ZOs5FkIGCe3>)YsTJ_5{^f;#YvVj<6O)ZfoOCowdrR67Y;QFZ~mw1O#QKhe^rj37sIT!D~ znD5ZkSBP144Qo#p^3*KIb|ons~LIo|~%e}{A*F*ncQ_9k>^Us}sKZ6QiI%Szev^qROEnsv)u2q`R;nvJ^ z&R|Y?D4Jpc^pGW?tNtcs5BUJ9p8xsQBd3-Ryo5wn8j2y)%fwb$=iF?oWb#@)aXeR9Oj;krG&PHngyP5v(fk4L!i<7VDxiVBos;G)M7N+eBd?O;vbRO^Cvzea$fN2ips|$n}sPT?9t=Y2&n`tv> zE$oL694L+b^f{j}6_7}A#DM?)K)xcD@x*BooQRr${V+H8MRXKp_!Bh(U9rLKMm0=Z+2vCdFeY-VB6Vo$+_K@De;cxk@dhJsWmRi4o) z{Zn)NrM<|zwBIdCv6p}NkoDs1qyo{>ow&QWGvE-~7qGP5X}r~L!uFC@UDp|t$fBgx zvlRP3e>8!p6Cfwm7_y#g&mP&{MH$nt<1+(|w#}_>Z83$zPlR+RedpMf3@P_Qg#&I{ zXme){zcE`CKQ~Y^nm_PD=JddC+os12{n3x>s7wmPj>qLhlzcfNdVpGP`lCm-=R)dy z-{`>Yg;cS=(NA6rsad!F2&VpS%Kt&z^uOYk`~N@l{~wpA{;x!T|L<)Q5)tv`+86ET zieT%d<2(Y|&^2@<8cDx=OWraWOIF=x^%vR)<-jA8J?|d0QQp zaDWrF2s{>pu*cdg?5p=z=a~Li;&=yBCppNFa!Ae?JHc1-O-?@4ns1kxk2z`Q3`{f{ZZmnqBYs0wKy9{v*U;av&-+B_a8r|eO2vqXy>1B z<2v~#`nX1-UnLuU>+9NvtE+fXeFg$;mPQ_xG_MZ%0Vx>WU6=C$z6l@4uB8ZSwft> zqHp5&R|&e?Vn+~JyNw%T{HlWalfJqjK_eq3+iluR>LE3Ob`mMjK9t`uIbRw+iR`v0 z{?~7eveAX0Ggc4A7*c?7ITzpi>m`){ij?H+&i^c= zME4)X>h9ghZ2gHK=l3FTI>Ija?TnUd1<*JSz+I`5b093AW>@OBM8$$;hSpCPsMEV+ zLrlliM$rD#!$5~^03jFVQ1{4)?<~)trmB0M-+sX3Vt3_x7TGfTL1({c&`!zP_x7mn(q0t0>b~?R^?7OOq+b+tdZ>G) zB_-o0Tx4Zs-*ri`&j3l|SSZ4YGY&m*;xs5_=g~>vSm=6b_~Z*Od7P0&CaW{LTgn~J ziw7N8-7tRozNCk;O!V}&^YumN*7rAO#aNkkT?l^ruIzrpyNqc`Pu<>t3isgy(eeKT zEs3QiR{x1i@jmj2_0M<0zLUYc6I^JiMFFFa@n1)AfPdN-Y+HmBkoU8N1IF6?w8a^N z2Zy4)I0*m~Ha}FubwfG)p2w~0u4(+ED8!ex5s=8L2C#r>OYA1U~5)`_vC z#Mb9J-SM-__YDp|;P$R3!`e2sLyOczRJ%ni$b*oe0=t)(Oh@OFEitj^<`r_>Y1S%c z8ZM+e&2yE+L(sB?E-XtP%dVx@(~}{7SS4dzn&S=wm*F-olkm4}v^`@sGI}odsZ64m zc5}rkcrGgLE2l4QluucDC;g{U;XkoISZeZf@mIm~Bn;%D$)D+Gq#xXE~iK z_)H$ZA-dl1YACOG*ydrw`5R6qJZfD?O#Pi7-V;HVDGAcimKZo7;XnL&qX*w36V;zC9@(_}c*PagNu3#!_5)W$l9BK8Q@yOjqSfHjKHj-{ z`z^B6kOI3po0UJ1o*RH!o&09OYsb zpr&#i;gO{;dwZZT*>9?qbFZ%4#czTKsdmpE;egbQYWE>2_R9tKSyf@e%}2tZF{@dIpZ z*eW2xe?E6g(JA`$$&)8j{58S|9R0awJ3W0RPQda7N4`WM-g9+}2BVrfL;0ijbuP_L zP3=xal>6VB*iC}NUdpTs<+$%!e|H^|)Wybl`Oe+;KAu!-PeiS(4xzg9oNC)LCH9wU ztrTw0dwIFT&*Y^lWV!i5Pu9y@7)lQv&(H=s2Xv=>Hekg3HCvDQ$y#`u6$>V%9dSyqV*zxiR5VIsP-P0SGF^8G6A z`N^V&!Je{*yoSd(7+6eoo2S0;_rX`gHE=IUb<_hi(*nhRmxxz&&3AMi7Iwzj?V)%6 zLeDk0>mJC=>dF^oWmAuf965UQXNG0U_janS&3#uz9dc-6+WNl_o#tG0z9p1qrzCi4 zdDcVE{t5e;si^XopTd}4X^Tu=**`Z;lcL>B-sj%Z=eoS`%WLu0<)=~d3Ee8rJt`K^ z!D~*bBj?mqW)XK5L1X4hUCU_4_h(m9^v%u9KYU*m*Mn-+zAGEpl8!F(blq6!~&+Z;Hm zp*7A^nbMQE&c`T4a}lj!S2jh2yZVSre4!w*6w4nGo&@gfiKNv(tW6f=c!b#U(>Y%=h;KvhqM;i z?n~<`IvVnR^;m$wjSsg~9#2y+R*h=m?l#=wuG?mi96nV}%2HhXZnp4UsrA8^U8A>3 z>mRH^3iAOeW3`&b7j?1(_642tPDoZ$XYi1_*54kou|pgFf%5eKRFsfZM5G+HUAYDc3F2wC2iE zv8fkKLRQ!NTjn~a3k$1gi)R(m0y6C!cT=)y4BEcGrrFRm*Fm&|+$HM}%8U2!61io5 zdEQcd+7b_4g|9hnaW<_N5>hRjAvEqjfEG9d+>-6Q1uo-W*cMbmm_DpFzg!Oi#4#8W#bpOi*=xS@uB`Jw(qfRCGT%UczG3-vs#S;X* z-ft|6x6mnYDYpb<-s#xAm*w(Lj!j8|0_2_3g_4(!cl~OyAGaMpFK1Dm>}9}MO^mJZ zM$y3r6HG}|N%xtAZ4Ny?yBGLlrCR4$Ks#nbG3?yQ`SH)M-*|xhkgZY)iWR{2f&AaL z=3n~p=GLuCNf~*ogG{&omQPfX<|~#mNBpbno28FVUO=_(TqOAr8Q&;5c1H*-G zu@xPut z6s^5{gImAE{IG-Vqiz?Gu^XNCbJgur!7@%Gq<>09)#Q$#S1b<2UVUpdv?KYq3{ ziHU`sE$}U9JC|Wud41Jt&VDQ3AU9=C=8&=%Pk3jV&B8tuik8fHxCjNDP4OM2)Cr3& z{is({YjH}Gqe@ES#uw)Y?=y)CJ}D_R$k0v>XdYs?SfDBW{L*<}MUHX=_pGpz*6f6! zI6B#GHID=GDT-rdI^4R`O|Ku(T~1w^&gW{ZmfMBHqkfTjK9HWLsJ1$aK9={Gdgbi` zodiE=deNdwoW0g_0@0Ta_qNqs)OC*XPZPO$jaGPRqqr_?#Hmo-%PsrT;_F98x`?MT z>@h=Kya5*d^?zf~T|$n>Iy40g*tTbA zM~9y^>FIi4vLn?X{Ze^Q=KB6aHkN&Ft2k^(M~#YVo^0XtvuxGb^+uERBU3y)^{FL`n zWRza~a5(mIS`lBf#Jo`s$>yl2-1aQ}hEpRuWOMxb1C~Z>V+o^PARW>$`g-wid<&y|c0CEBpB1y|qJ!h=Y}ozh8!>F|R{5 zo&GCBw?Ahy)nw^=qH*t5H=EV`k`q-EI5zesXhvlE%|xYV|CH}2Q+U~1D^5y|fI^z` z*!-ei8>2PN()-OT4BH|SH$PFE^6LHkqTI@%!z!)FjINcds`KaKC3)I z{#@@~&kK4sQBT6uLRxd}4(2#@eZSGwGW3me=_k2nkwcOG-g%;0BPhZ+PMxFITt}!> zGqkeEdG1EAhk<;WitoPh^}|&;R}xez?Iy$PZnPfpZtgrDPBCrk>>XJOBUeq=g4u2`wh$Es!PzPemg zc46t8%uP09|Mfk8tTXw$Z^Mvmf#$_D5%2OKWsV+Qt5@OgW`eAQ!klx~EWOx?d{nuO zIwg~jXkBdgyYr6oIt~4K7_&+3qksN}S61)G>;8Og^(0Bs(wE$E^1PP5FcRuNogTNP zq;2V+{~vgVM`z3Z@A7s+2|}l^+PH&{Cdye#iFM=2A_g1_eHlk_5Zq>86a~i zhN(p$*h%=@T-&}szpHuc3PxA!gvNnxmW3YGa7P=ShbcC(^m#$Xll7+7^6Y`~Eb;of zyX|IcTZcaJJY~tVv_0n8IM;FP&$p+aTt-`*$1B=g9w9zVwy+h10m5n(lNt4^9aH@g3>ITuk$ zap``4qqSvd^x>c1ii#_NJTI=&=UT$PTjC7HCtha;1#4B&QqGO#Iql4_OU~V@FX{V5 zUv$pKt0y4jy@HhBMP`vF2{Z40e+Y~i)f)fvbBZ4z1`odPzQEaa{J0Oj><7JT_D3CT zY4m#cE354=ZL+-Dbt^ASo=!|WtYORgnc0T8rg)t{-}+f<>067$9FB#(GxZD)tt^u} zOgToIa=qQWz}G}ASWq<$>;h#*Yw+gqf3?Qj_daGC%Lp{g`~#Wj`zXw%7HGQ{3?5BXj5*) zP-)_JWMBXAeD0O{Pn!(wI+o3;4Z&euM68tR+9Br6cJFU(XR<=wlF_FeOvl~er` zxSVYL-8H#;=fgs^Zp2+mitZSRRv*y?KQiS?k*N}g|M(l(h4#78lLDTYav-1dDyscr zkHt)Wqvw^BChN?TC6k*UEv@&}p5Nb}CSB9kW=&B}>M}{bZ)tXD(!St=jLc+0$e?t= zCzvHO~D5#Uno$aswc7H# zckfo3%FjBoyQ8uk_rzGP=w?Beo>fiNZrNtRK|#5u%kF|~&}U0@oyhB|-ZdMqKKQgi z_$;rG;`yx5{9E=58Sj~ekA`Rpv>q4pP6=66pG>*==haka*lMYgccyja9Bnk>N3b=x zmgoO1t`}|8)W*sePcj*HCF@zG2QL@!OtbiNQBf6h>Q%12+OdNr;d_>VXH3V)_o|PM z;i5wRxG6vAJbvgI6lT_&aM!?BGsCP#@~lVV4ENk&<3ACa>WqQgs;e5ggW1Eae4olb z2t0}rl&j?RU>ieP78GuBSU3$~=JU@W$8T+M4WWIzHnDtHyc=jNZ$~U*?GKdfhvQG)NPXWs<&`nwR;ltq@OesC?yPh*J zruLX%h+XR8l6mL9KdX2h0`Xw=FG>FCg_fjoTP-nPd=A`nLBXSXriCHONl&C={LVTZ zd49M2>hs{oI*;>*SKAoOz1J^N`!_I2A}|F8Pf9ue9w`tU`>I~JFp-dN9_#NZ||d=Nt4#WfI#p z{5M>y;HSUR$G`F|>Zsk9jkCO;`RD(*?%|xK{CyFXt0hSV|9t)5zE5PcNd8B@n#1K2 z{IIu2k2NXgsuzxES{C6HtY@~|)uf#3xZn_<)R;J!{+`Qfm-^i-6%PM^#s!mGdVlK# z*Q8YW1YOAfaR3sGvg|twzB}(^QWqI*DK2)!cMVL=+LZ!v;W^ecbV}fNoJH=CWfWDa zhs(~qj*-LO?g`5wHp7~UsF1W2R}>fSr7>a*JxU5THXSTIHqQA(mBO+W;t z3U&k(=^)ie?^2{UH8xaG5K+1y(gdV;uu!E+?dybH6-ALlvGJ$K)I&sop2 z^JSB@e&sFmopa1N$FQ?Oy{fpKt?O; zpd;aQXmzPRCeq0)GbD6=V$WjpcB#p2I-&uREI<*O;{29$R{K}P?bZzZTPL_Anmblj zk`T1kb!o=Vj_%%J#O{&k(&OMZTi|9M!)(&{PXMR3UE|+~O#io6$^Xy(%#XG4U*ah# zQE?nVbIWr&t1kPa*y#O-Ds`vZlP#mYN$<;xi`zyj-O9shq9cmH2=<)~JwBb}h?C(RlW5kdC+)-79Js>Ds_JRAmWAu`^K z&7Iw0!IGWj=2zZd5T)nfkhv{bvy0R3V{*0~O8kJD7+7p@)OUOznTmT|R%%TGGt6id*a)NJO2o4-MRU6Y~U9ez6CYmpI%DoVGE zq}UA`H~Kdq*>Fiyb3{?F2^K5p`t|GjC1A!y7`agYX*xzdKE(cm9R%W0I7~og7`f!* z7lB=Y7?edcTReDiHos|DYigDG=Ksw^8Woo#g0gPO z%3f4Tu`jtAOP8ZS{O%$W&Er(OE1Thukosf$NjA3Xs{Rort_BlUjiX!jqFc^Q*6yU` z4GAbK;~zytQp?0rnz8NT*H;}8G0L|He&*3l01}FaY2g>ZDxzIgNxnAllng%@9n&~U zV_;^h*W$QuU0$w(-BDm5hr5OV&b(k0IT{>j=lx1)NRb+E^nYt4j$7u2pkNbyYXd$! zg`r)3@Mz#h0*3Z&-cS3nPvPjpqrj0atKWy8xvW6xt}k?95h1=x<{>Jmm$?D{XW%Ur z!5ww?TLcoYP&8%)g|e`VN4+_xhBsln;SuuJ5D>DHe6nniv?+50Q_(dHN> z>6SwZIup%FUz|+RtgB?xlAFg24BV{fLF44^pS*O%*qfT`hnai&=$4trf7aItk}#*N)kyG>;{m zyn`=N{4Y{hdSh1StQb$ci`DIMrZjMZ!;APB~nFB)`$<&$|JP6?&Ut}YP=lG<>yn`vyQ>Iu{PS@ru+Mn zXL`tht#411fnwa#!@$#uKb_^&Upt74sJofcdmIVcv2oI=I(MpQnsRZ zr2eDUtB5|`kx}(>&+2ArQ7&&uyT*=p zu8bQ8~L4j_%dbF1?pTR$YcKpZWsdSt!3wOCEOn&k@z*T z=H49c^!&#j{+GB0|6TA5c{_amOP-myGpb*~g;I$IARp4bA&iFF*ap&t;wzXx@z8Nt zqbq>4S>&8qyDcU2%FkO>%jomJ-J+(iIBm>Zl3CI9_j$dw!^cC}@Ye00cQY^ukE`Lh1TV`Mum>Du%0V-r zHIg6(NMj&}BMfE_@u}z4yMTS~Rn52ei~ECnfx7`@K02M#3HIEgL{2YjJb%%;?t);S zy<5M%&;E_um@CM;e+8HKBHi>qxZd(-^F>!XB<7bIEteY=mQy4aQ$UB`lx!msEGs^7 z@8ZFRMCXp-$vTPUI{M(Ljqcwz+8`Oq(-6AU%f_4i@W(4tXdfRx#d1v~c&RmUSsjjy zPw$aL#|xbkUiLxuofz)N@H-+G4BfsO0%y^-8=KATKPKbd|Me@O#nOyS__5M2PyZ_L z{Zo|qbPS`g^?oUQck;2fOYe;nx2j#oY-GHLr=2X&Z!1&fie}Y=ajPrit1Es-enkEh z({o`jF4C}w2cf^mA!cPhbafuBQeSeXobt3+CRkRjV%)G?oXQ#)dr} zTkziNpZkygBJll0R9zWF7z>n;@~kAI&f_o!&Rh6JPlp6^zij1l3qkX&{@?_1eQ<3O z!!*|BoucOa^H$ey&#PSyfSW`k)_vaJeLg&n2YtjYm%t%6Mki5?%YirT@IP3V#|nIc z>%*0}(n{~e75L))qFv9CHq-gO1STq;INnt5qM{%$VAj`rme}QV96WgN_1uzdR7!aK zp#`biaQ6`m}-GiGHCdD97h`PKWk?{=PNVuS*}7&ZXFKv>DRf+OcBe?78|~ zdgfDt%IKjVFyq^W&or~U=cgoAry@)6R-~FBH{7b+0&x zf4d`*+dYMfF<*3C(1jL+1Uqj<;`!QC>-~|F&WSlZ%l2bUFAA@5+}Ir7%n!3-tD3** zH&q=13);!kFD%$`n;Z>XwxCXh$BpeqYU^xlZ07I7ydX2|KFL;RB%mT-=i=gW33#7s z?r33FoALuMFC^D}w$RXg4IX#t_pA;L3aWrmnrF36H4iOkmbSL@<1C&c+ZTJ15@c4j z*o_WLNQ7GdYxhEoc48>K5u`^lKTl`x`~jO><Z>c48xkZ7jRuBuh7WIG&FY|RsP>|+CGuZt7 zga6rUp3?X}NE8G>4sj`#^rq`H&LN}D8|RInzB>u_M$<_%UWH#s$l+4;4-kg3ytn4f zN5T!FKOKm~d-?7H)G6vuqr)w$JLw`Mplf^DEDMfBDhwuvAf>wYWRZxT67*q#-KSOE z)0D>BGI&p&I^};vGEKb_#6h{VvJPOKnL-|Y)~Ba+)DCsG6OjubjLm-C5Buc6>Xj?x zAC+$-vSUh;|45ruR9o5S<45+b>l%Bo9n=-eQmvvX!SM=?o_ny%^p4R_O-|ET)30j;iC;f{d0$#Ky~ zJ%3yVWpqB0vqf|)vnSWaIZqoE3f_G+FHXsnkdf8;G=+`yx_)z1|D>vp3(pSUc(H2( zW;@&R%$Uv7-W?pIQ2wAuoj#$YH|v%3z-!CPAcdVfMTG544ohA<-xuR9;mZ^lAmw8% zJpYNMxuai|4EOO*C_8zZ7F##iYpS!@s*ndwt$LF*u8?t3(SZJyr-Ync0;N}1K>^~s zzr#Wh1NpbPHou8v(jUb^<<>& zn2&5ma0J`e!{W82s;kqtT)H0iq=%4uUcN`STcr$y^98R-AK9vBe|xT@jrhuhw;^O0 z{l(C{HeM+yKKb~GbfoH1E`Gt=zo$B=VvxEF44P)XmfvQ`Z_4lJiBb0L_pa1)dKGLb zA(6F~W_c5$_Tn$U+=+*l6*?<@I@;5YB_$eQp>+nyY<4F0&V>mQ2K_QdE*o zKF!EwMG?AvadC0Nf(_PB(C~2q+jL(bPzB@Jx+uCxXLcpx8rZisAyy9xzQ>xGE;!jP_ zCYBD!9kcJq=MFr((fUIb!k^TsLVh-z?hzM};J*GUZriER4?B>%I=x||NtR=mL%IcH zg@#2-ZRl5WYO%kj7PU|=FGHr`f-ryDvn7qghvdrM^+!#O_8+k6Ep!Q3*MJc|nCkRA zB=90{uvwQ7((JoF-hO<2sZh&VF;R74nG`Tl*mteXi6@fdArJSho9`~jeKhgHN%ms; z;R3a)k@hRdifst=GuzElbvsFYL#$tWrn8Xc;>t1OP5k5nSASX?z#|zWEY&M{`y59C zdB1-C5_8bD`d2R798`e>Xz1h#3yv_3UGybCc)fY;2g;RBto9x07>4v?Y1coUuS!jB z9?~-k^D&5cqGFoR#Z6tRG}OrGjY;wCVTL^kybb*PKT_Zx(=Y$qGvNQ8v7mhWxHQAI zD!e+H7pR4?Q*@oUs*(25IjI&&=Y;xJuCqFr2C zx}8K+NdI>ZBkx92mJIexPxPahxcZ>0gjnOVxm{{$P(F&!;UhN}MF# z6Go7B`ZTn?_U5llCtBL9;#wo4Uq0OFhf+K~HNu|0Byam>AG6!smpPQP?%f+69nJ0r zbr|=r%Jd)$VNRtFl?1mg06J|XJ>G>IhIjF zaa(a!vRp;ZKo(QGKa}5477?FbiNxHyZQ?dD_f~bG$kx(^4zp?*Y7t7A6jFC zzCP3Kt~s^sVQsC~sv-ovc`$l8GnIOWm$<*B7%-DHX|QnV`IZ(V>t(R zbx1?ycYPrKUG*Rb1>z$zA}2Fck-9Ma^Cykf)wJknqYQV(Rt=Itw2l$Sz^pe%i`fLQ z1-%jwMx0SnQc4|e2CiXX+0@jOamk>$73^eJz+W_RUuS8rMmS!FLdgz679PJHh0|Tp zneh7cgG9IKxKVLCP`L~DfU%Hh4=^IS;4`WTW9Q3jLk+C;rEF*WT0x7tT9aAC243u{!|4OFTvZ5vr!uAWC=#sirQ@G2Rh z=|&QyE$D_QM0;9~XxF?fp~jF$qvJ7ysvzMcqfg;gS=4j!EsYh~kztoz7d(H(Y*~He zh#IMx0AgVggc{`0PIpiuc!n;I7+Qf;#vp@eH4)OJ3}-J;ha3enc71{?bgy@!g5GSl zJtrKxwm}mZnDCewju!$QiW=1=pwt+dsm?p8sG`z{ik5{1Cz&?eB<5pIr_pzA7gVMf zj=6q!x}&bKdhz^$l(tn_%$hXu#YTLnd*=pv0bV^jVya^20ty~fb03>@>jdc#FX2cf zX5;Q%IGTdEbvXFkMnzUoq--{ug@>bsd0_gO71x|yQ&U^}I|K)%*e}f1gRk=IQSVbt zZTNG2JuNH^c~oQLF`2)fpD(UH`O^T6_f4`gZ68oA+Kum62E7joX3`R`wPc~A@O#ii zlz+n7jNhg%;j4$ApBIC=Qp*JTfv$i}UCV9-qRYJxOifL5M%Idq+1B1>3gRmz;6zC7 z+02s}CR5!-C$k3sgkB(L1-lTSw{ixSYxVM4PAh0Y{Q6+y*4_1y{UlpKp! zT&3Cz!3;CVQ$}jHfCH?G!M@KL0R$jFHfgGn`eqElu_TP%$lTvMWCv=*ypPSOiA|R7 z+rC|1LE(3z6BUu^uoyfBn+{`B;RRoN7fi&s9MzF-vb@IhT#X+S5YZ!fsYGggU6p2aN^ihU4?+Je=R*Z;1 zHSnQbAhT~o6d6jc|y_ii0BGB z!&ty3#}p8Uj=ThLGL2*=CGqiqXXlx)jlpZ}JQ0N$rPD6Sg@x$b?ExdHmgcnvE1gIAHvxudF9<-aoKO7`AW6vLJQ| z#5XNtNrWTn!R{j_QB~9n*alH&{Sb(xL-<$Fc#v6VLx8t?r?wpvfUyiw13jkQEDJef zuYTCd2VTEmaY6D{HCDvII36W5Rl(nbWz`-d>?PEF_ZcM5*jN{GKsG4G46=W6pbcis)G~Spz%KCJK(T?R@yh%LsBy z%BWnBE%jgU507|`e|Jtwe0ESCNnWTNbkLPDH?xptV`4Qe>uStsovGau7cS}ewu+I<3bpL5Q_oUuDr~d8WG&B8E zwcDxB>hbq~@S>swfDY7XF$(0mw=Z<)`gm=}I)IIPoDvV?fhjzBPdv$_<7?*kf>pjx zYt_8RzsMO;Ja`n8<#%t~Iv#5KfSs4u8>S`5e7MP5|MRvMonMUy2N}<0orN?yZICnbB85Q=uVV*Y<3VsHl0W&o$hmYSVc^ zk`sE)sfnDc7H)}+g2lR@TDUJSJQtiP@gZ=0KKGTD?} zA$Pa2-uxc@&V&bKgOEGbjIM3N-j<~dm7>4zRri}YJ1;nXO3W5}aoU!C`eCJ%WHW1n zVETSibMwnuY%!oR!=S))=1f^|L1w0qXZQF|hacYq?5q}I%h~;bZqE);5DmRCUyERB z9xiKH)+ZiNO@$unn)XbgX%44C{_&K{#i78YKluLqVM85kz<6|@AEGv`FCnpYP;+|vWm zXftI4qjInY|4wW+UUuZ0E6k!v!jDj`jf5v>4)_j!n;?-%p@6$TPE&OAdrl8G8D_X5 z3vll~Pd598ZOn}Dh~zai_JD%%9w-zHUrbUOky8xhuRh{~v^ zG~VE@k(t>8tDfR(3%O}&X)SFZ?ra-Rb)@If-1YF`!!a*+}_=p7 zk*LyPb`L6WSroN9LYqy0>0`UAPLjVg(O6h z!$fy8KwWTy{6S>8OBij=GlIHSUVWj3w~L5P3-^FjH%+t-%gUyh>Xau*EsWO5Y$ir% zrD>}CN=Gp_tc+x>JSFTD@h0*4X)M;Wy742hQH=Izr^%;9(m#<->#YJ~rE)(qUs+y>R=h zY+#(Ial6mGV+;PQO#3Wbvz??7qdxH)&7aNsjgCG;yY*#iYJE>lQR{;H?UJxz^JO7g zdU|I@yBoyG!l$<^>i)**>1p$)4C(1;I)5f)btUNP`(H^+l0LtINOam1i%y=E!n0Mu zB~0olSwRlO_}aC*=2<_&LG#)6wv=htgPfkxufJ{h6omv)bL|sny8Cdd24JC1-kVH} zjlK3MGCcfBMt=3JXz)KYq+bki9_7_Ynrh{oo4a&Q+t_%}VpZs6-C%CzKLxUm$$%e% ztnfkvM(~34`Yt$qPyGDOhy;5<*uDg5`73CTZ*dL9291u5^^8l%j%~7WrK2lBm5etiZ^--Olc{zBzVmDcq+dmm+ z{4p*76_PVZX+kC_q{FkbMGQkpkcmc57vhbQ;Bx}i1ri!+&j1KKU=lq_gD(f^!egp( z(2!9~l{AjY*hC3S37XDpnHUN6H!RT+bqjsw+JEWS1FdOk+BMWbfHFW!Lc)rWW1>W- z0IWGMvdyj9&ZBfhvBo-`#D(!QZBFyI;y2TTvig10^0_?BigRw$tyWg*v(i5LpGIsg zuHvqu-M;$!T60DU8_SiyLkzp4WegptcD(Y4S{Xn@Vv6ajgCox`o0eLL^(JDz;?=z1 zoPpIqL{v{2@7*nUB)v5qt6xpkuOO|`x3Q+C#-t5Ax+2qAB{ON$xe#h}eWG`i?a`}6 zli}Hv&|3)^*UAq0mW|AKfACu3PKx-k8^YcO!A`fFJXOdhqw11fNc60NmIDIVY?p|y|Ox>0@jytrvq+~_3W^XzpqNQe8A5}ManqR-x+}%4ppR;7_W&HT; zm|N)PPw8&r$7sr?cJ1f&Epx!)CZQ!hVQ;rE9NurJsi6_bKL&yKDhJ5~r8jtw>Y&Y( zFuBZ=>w<{|1j~c3*W+hnE?t|?!10YUXZG*CHd_*zDU>0orm0kK;#$7{$7L&ocTGDPg{Hgl+D4V=4=;k^ z?RSKr=h-U_x&Ef-i5=3=VSWQGj5aaD#wNj{K$*r~vpq@n1q1S($2M)fWp_^wC(TQU zgzy=P0R#z}V0IpP%#Tj=j2;|~mQC%1jdf-QDaFpOcNDOKPRu%N49G3lJABVQSx~BD zKA--ux6EX#)0XVn9tEKSt_-&q;lEj%56>(7(vtl?#a(@8zuW4)AoKAGMwZ2`!@hFi z2@P7zhPdmDdai?2l>?%4;U2g$B$i4K`UbVY63G7~cQ|UOt6za^LCb_{{-mGmxy_VE zEMy>X)SW@iPAy+{VPohY0Jq{B6C;Kr6=GD{#CXa~!Tz2WFM5neV^!NsDpEaO{`ub^ zF;!931DoBcZcBE{_U0NB4Ods!496-nD9ALVgAM((x%qHtM29>?34BQIsAdqukmLZ# zxV_j3&h8KxPIrv_6t92yIf-rU#IAmR3t3b5xMc!M8gAZ7z%IBLu?>EE(r0kE_UCRm z1XRqfgP!8C-)xn4ZE;<`!(>}?;<0q(UO#E_4!I!F9~Bt`!_dRNa%^_ON)T9nk`Z8o za1Sa}+`i`G^o0`J%E%l*$9|^d99VNdDWx~jRecC6F{KCn^cJ(ye*<3N154~k zCQOeklJ7@nfgsf(N7Otr0W{X*S% z%^YmOwhHi)Hj?|@oqKut5EQ|l9oGM7=S{>ybRlFFnspHmM+m9-{(Ap6u{5Vo6Q~WF zKE0ASc02sR2}aYtnc|^`ol3oK?G65EsLRnzgW%1WVV>@fKt-)@lJBfHi_&+kJUj?ak#AB;Ak% z7Hl=}_gA^W&AN{+e!&^!wReFMo)LpYK#yIA_0G}K53^BcBZrr)-GQG0=HRqSgN)eO z^T8rVOiWB#ueDG1mFt2(eS%m3QW-ch19%`4US<#e;*9|3EIge2aO#Ejzn9F$LwN&) z)vbLg^(j%OKximBqT5hn@lsCtme5EbQOpjXuM3T))`b(?x`_ui&r8XA>1r z>^%Xm$_1O-3mNTVZ@2Fe#7J~j`N>A zmxN3fptZIem2jE+CNvOs^GfNXKlxzNc0mIedKLRbRkgIV2(ATv1O_tqf}IZgY6rg` z?T2uR3V7DIh#*BKoXLpn>}>uqYW2=>e=_+VvWF4u5rmo;mdZqLM&ZK*Qx<}PIaytN zutAV$Z+T&(cldd9Vxl)Z?P5TCw1iS!Y@%>Syfh8*AJ0EO%sPg!Y;Go_An!vz_4UsM zkmK$$8`#)+kY)%H8hq)i?#EE<#k2=V840~g5FjvNwrz-)GJ|qO8ow>r6vU~a5$=7I zNp>V^Hi_2`Ngn#{+^MSamJGnmJOxXWLZ3a>5z{StjfHx<>;SSEZRL>10Qy-3J`E@x zRFqoq^6+>;^@vX#TyfN-#_N4Lq?rYbs5xY2t%F3p`=L@srESLse zF!u3)la3LJ1C?&0#3Yh{$MFEUo`)CED#QRz@M)1zLLCbq)LNtC;_icQ{?FLBxE-=H zQd!+#U%OAdN<`zkabQTEK3(6?z#2qFyuw_G2NQOalZ&edZ+wq@k4Tq7arvBx0vC8# zt=_GtFNDGhEn&qVLB!xWa&OA00u^g&R*qLo+KZq2dVS&{U;lK5z6dP+p|-T-TOM}Q zWWhj~R%FFD};WES+3)hfn?KJYT7tG-o;N z3s>Bj2nT{DrMd@);{#Z532mHPFZWU3f8@}u4S1I9hZg|d^fk;g|C|#88!thi+Dwr3 z`FN390m_?G)a!F{da`qKNQs<1EnnD3FI+u!cyiRIN)P8W8`HXh1EfavT%^LMnwsD2 zI~@&Q)^nG&k$z(R{0A z7K9+SJIKBS+>-hE#%Ak}TZrW)MRu~{^Sy9NR*!mLj8vF_iWMtVlmZm*HiObX24Beu^25QhWMQZMZ zl1+_%d&{7-w$D#mza*pGS_W#`qu+CpJ(-vaT@^EI8+V({F&}e>9(M18Pz-o*6?rMj zBTIr9Jz^t+XH!fTcT}Y-GJCxbB=TMtHImajXafF#C^vP*AJ3-_LP$lZgoL4{mR5(c z%{JHu!`#d7ZkUhdOglpJvDFv}6MQDmkj*|x=r@IXY(?-@diwqqjshr#*p27FHp`Y% zH^U>|wMWpOa#|~i?7gfWoqJ@?l@d%=* zeG-&XHsS-6`T~3sg^*El4^rEOID>XTbYAqxI9WqB{Z*AMcCe0SHmhwGIoyUWP%0a* zpQpYHbtY=K^$#N@^y=~oB9ZvR2ZCd+75|GlT1yjTl-*A?EXrDrqK;Ll_t7cpIV7fo z>DPqEL14^&v(@+X`M(izevQ#kc*F2mAlYfqYqkouuG|m()IB+15=l_l0qIKa!OV#< ziJ}Tai3i1%+)^d;=S!A!QhdA~MYxYMTeS$%JTT>5xI#b`^nwyW?*1o1QPWS6rv?3FG^HJfsn=7oDUVx ztF(c%0y?r6$NSAhk)R@Z{$Ph~)KQo`g_$2vahs}NoGA4jXJyj$Pqq8-G;>;~>u%B= z8n1}_Lx%>1avosY5ijcj1OEZsy*|scjxjg#BwZs-Y8*Y z??sMxNKUlnQ91UHlZ>&41*>n_ex|?t`<%T!=jdkiT9#qrKc>`;e#K_{Kn^m?81B4+{ik%VLLf#PdnmhH5!><^o5KoWZkxAFN};f7yxP#|z=W zS*r;zt;?g3QLCz^T0i*3)Lj||%TM9}^8K?9c0IPG!b=`El5|-nsH1@aS^Fv(8WiRK zhcu0>aV?g|W!32@iDiz#UxdA27hmq9e$RF{)%Ok~@N+<5Am9tXGCgXvi+I=ge;rAz zC34=x1&CZT0p>=-Bhem{4(Yn|n=_+3x`eDk z*}0}UE>bT}x!m-!=J>mS?=^d@nj-G|cqM5aG2Pw0y4cYsRbte4>sDNM)i{f$3J@5^cGu_>dp&T6C+|xp~NtiN~HoMu9 zu=uW@;Ht^12ec2b*N~t=wG{dH@+Xn3@l7Jr&er|$npuZC(TCyyOQZ`Qc>>m_2u`go zvEhqw6%Niod9WF=iY^W!E6CTBz`-DKh55?ZzbIkO@P*3jobY&G4 zyCIu>T9iblJ`Ic^xT?94t>3N~CHoKs2zE>v$Q-EUyEuxiE=^6K>{%oy52rj&{#>^Z z{-TQ8LsqKs*z3vCv?&yysI|1q@f;Y6BGh5@z$REUtq@$` zCXEO?5fCFbmTXj12 z_l>lnBFJCI&5`ly+nkHghGf_mT3o$P;%>y8SpD`uDH^-bo&svb7Bu2(T|^>8Qi6uCPyhu?D5k=# zWQ5>^21~64b{;DK4Tf?$Mr4019)x!{A`5}&50jw-HtzoGP>Zy)KZgoh`m64H2O-&^m7l+tO-JdCM0!gTkPnZ^|y#$tL%4k)%o$ATu zqsFWVF^7-WdL-aug;4fFKC~eKDNsvG3ayAQ0gJK=6J|^GG?0tqIlqx|+@4yki}RU_ zghaPC(-&`Z`*t%rA))iD8!3}pUC>!IB~gF=_ekC%OSh>&%=Ga4mxy^2evG+MBnk_t za0>#~aN;H&RQs(-$KCb&NQ+HiNiG!4tPu1_0=DiZ4hWt>2~m#+4c8icCrF}CXs(_C z2qkdz=vk!MpE#oEtXcLsT-$UN7)&G+y&!8m9#Wm)U7h6p)ZE~ z+exw+w{PczyjSMe0MqW&I@$Z;AVAkgJ&fI7WLej&C&hix2)mCKEv^+f(Y<|)!O9OX zG1UsV#~mg+HL}5|VG?--@>S9Zbkwr5{VQL!#HtH9F1ByCdjBh1A^H|2iV@@OCOvB( z2QVC0sLqMw45|sJC6q95A2puiRPZ5ZoFt>w>2_rA<#lve$hev&WF0_!o#9x42xCuw zsJk0+q=>sm9APLjCT&(+M|l%R1$e|35V|pv#4Q?2|0GBLBcf|+RWC1DMD&G`X`djs z1w_C6yze$Cbs%^d@!*5(T8)V>3+Qe9eLWV%VXBYXDjB!CJ2lP_Ck?^NqS-S{17xFq zm!7g$In*qS7-wSJ>bGr3Fryd>`aHkGY~4dabs@^Y8OVAP`(AU3fXipGLIX=kQyDU{t&F!WJG{NEnvqI!)5?vIGS z7`l>tK&9To^W8d5U$38!)2pSMU8LzhxF*DG_sxo`f7l7+b8 z3SN(t77`C2F0u_ydI;@q52o78EY`taa&m89$iGABz=3zhtTR_wbPTlPH;n&a*s;vn-LoyyHW4r$p9q%JCEPAp6~k7{HtKu&)5QWo6n(@%R~)_9IUakm!1^C`*;x z4e#zo9sWZ7)AKJC2MZ^cSWu`WpYrNYp!oZHv4*NH*@Z_&vf|mOC2D1hsE_YPi0(=X zW)N4l=^Rdl1|&)4Tsv_XsQAN^>)t3`1&Xs$lU zk5cLqvK}F#eQ#l5Ark?14~n1UFvA1IBvUicD88DdJu$~*h=-Rh{}^sq-OlQA)S`LU zplxz_zd)3NRc}$4H{X8{Hlw7xA%Uyzg;;@n=P&lz*G@>JKs7M`DlJCNH{X6fP!){NSO+ zi)1YKUV(o_IzMEOUBo$3KaYmFIuxq(3`T`|AzBg4dEGh_WK$(WnhwV(Pg;Tv?>QD{Qcuvp25+O(>6M z3w22*oE|wZ;TJCP7r2pw=17y~j;IhP6Zl^C@|^hoji+s}-Ywl=_&u&a)J zv}BzV!UpT&qE!iJd*%*Xzg71ozn7xi+>ysGdCKW+|CfH!AEMnte^}f8_UH`LdaiIG z&W~@SBbZM!EOY$fxpyxoJ7;qBADgahzr*Br;qOf+Pq5cNt-V#tT{gb0x_3B=Lx5XK z!g$do=!39hSG%*s_&4KIbG^%1O(x0;3O<1B%@xkVd3oDcR$bi$9PE!E!%+r9C8WEt(JzpQ^TPgeEqoaM_pZH1Gjm!YJt(3V^ z^a5;IzZH_a5WT*2kAZ}hAw*xfg@f|#6hnV|hQr%PeLcEoATm|D^lyWKcV$0xsD`cp z4*mgywJ?W5QQrJxKz`r3^A+%TMKsgPlv;&u>P#TJ(ug8CH&m2B4nqO(4 zc>46;FSrE-RS}{b(BGf8Ql^dn6R-2yMrrtUJqc1hwmoDLRYB~~1aO>H3hTHY_*EEJ zLgxG43hEUzU3N;T#1*CXXvFW#=<#n`u@3juWuKQ& z?S^Rad7N_ckaGpsWElhTr2X$yr{aIU(Wy}VUYCKJ+r%GXEFq!+L^~4TtCSDIK2{=_ z>v{LC+{u$S)S-NX&Bwvc9{t|lnwZ7T^8~ZHs;H^?8ez0CN>f`Qsx>p#!6mh6%N8a4 z#v=2}2B@l^MDGlpJv+wjbFw@&(4CWmI0#Mzo&^_KS+ApJ&0#=2G-s07$>VtNV)30v zwPFUUHrhkDI5}(4;e?>v;22y)6U-K1%$HDkeg238Uyt3K{%@7lnol|`nh;bU0iLgL zpF!FNim}(m+AqQ3eFhC5Z+>_j$FH3^@y`@~4u_VJIHGYwy4|9tjR%*f6W#sl2ESXY z;KI?rHdBkxzr6r8$QewTK@?dpN~NeZ_ztf^=leXcJWdf2b>PhMPEJlSuBZSw1wHR` z2&KQtKPA^lpuQ5t#RzF_gDCukqI9=z5QPj8?X9A=17YYhik9)`+4SqLR%!IKv_|OH zc0$d-ceEYsDkj~4yP?be^Us<4$?B+1>cb0AKW{6&C03$Qwy?Vu5Ah1Qm=jnm0<`?+ z6s}%<185>LSk&GG;r;D?2*0Od@Iw1xbUlV{QMVtthDRXIScYz-a*QUri;~rOT`#p5 zq!) ziavEgf3Nu8{LtP*9p4A(mR%Niv80A3o^FRSu@fx6fc{5X)i$&v;yNTsUXnr)OSb8kJ=G3Y6YGZsaA2`xSy2Q~5fkXx0X?QfUs{_E&UXmLQm=kFSs8Ln z1N9%@%J_1XcahmWHx|lE$ZU^@3kcK)4&pCi8^XiLfBBXKfrVj|B`et3rMJZ3FBCe1 zH1+ah#Re&578#2~bc0g=FIoZeU&K>Qn|Q#3Q3-2=kD^+<3e|MU{nf`CL!kA~j{zfW zWfZDe`vU$FCVhn*KCq0yPolnmw>_nC{`>=^GnFCWed^j!{bT4(aERg?sK*4sF)HoEX}ZB;6zjHVLlx@ydDcj@IXujAm zLaX_djj8U|&pD9dh{Oc2v&FSg51O-;}=CDk}Rt_^jVl(au$l zHIYJiBL;u5zTd8VG;OV$NN=>m$XA2q1wJNGiul;~GaNW6RZj&AoxO2Y;D zq*HcxSVs8ei!|9kpWPA0`C~aehBrJ2&&RIFGJpORI+TpBoW+%n7eN5~xyYS5mZSGJ zQY7f;_ar=vmaFr!Oj6TJYuRFM=c^jK)Yo)Szi($iz&ej|N$QgRyf0ooO#!SBX@7m# zAXN(t@5!@g(a?(t2!bbyPqb`tN2lz*6|>IRM<-64usCB1_9Y9hX{A>iwcDc;(~~Oy zCD)*AW{!yF4r!NKufOrj?6 zvegUR@_-7VYC_MN*e~+=?Eb?JCLzW*!ZVt*Bu9?en7C@LO-hNCJU*}`&k2i4xZrBcz!efY7EKuB_@KHt?j-H+T3 z9}nx~fMD`3a#}5;cGKfsq5tNEL{t8mMgVOh5Chk62KCl8RCC2*yWvPtfIqO7@x+$e zpAbZjJ8>kJLU&yO9Wd%Pr^hQ;B@vN~W8&T)7L#*xYk%z_Afey{`GJ zOLONG+V7f(%|~))2riN0@#7u=0>bR3qyvsyd=k>zfKipJaOXs-o1P4!%nPQ zzkdDmU;<$+!SsoLN1SQ|DKzPe7X?$n?9C}GdL~^f_wL&_jp!vBMYsA@&;9+Q z&=g?`WZ?D;#Cf4EBZu8z4@dT8f>zED`V&>pox7{5LtH#DdYto!E_1rUUG?l4F}#=2 z9ec1cSX4DJcha-%h@#XGblyR{W7UCNMY8%OO;Q+UCj5n8)NZ5(!HoLQ#wi~JI^Tgi z4FhD!*DDALVgz(w760so0P$gfGuy5#IeOc`u6fwA?%%)bN=}D`!U0^z!(J#@mPy=2 z4drF^C;)nafz<%hv7EYkD{BchgEXM}rY9VVJWiFiNI35nb9e(8z!)Gx3wvF00VO`n z&N_H<0Y}XPxYE_*rO%&N!mGm;mI+* z<0T$k(;Uf>PpH(RgYL}zqVNX~wz#g$_p4{y#_Z?d=T`)pDIox_fHMI0|NJ4d=0ow? zd98F&FJDF@g}Sz-lpf$TN0Y%cnyxvH97(Ge$1i`ba{=o_cKkJ zHV;vsv7-a=q`x2OJ&Zk?-#2qOry~KQ*Gac=<3>}k13(}A5$07N_9CT42_@332M!D& zTC|z2{P+=ant{^6_6Rgkv2RsGoFpI{ z9U^fvcA{HPyKC2gXO~0I)-{it^Hp^8IV2Vu@t=6qEB=rITBri7GSy+?imC?k7g?SR zD@Ld^TUZ!QA&+2L^Gi^f0-s>Sna1U4Hko zYI}l~Xb0+u>4Q^Hs67N3OD;Dg4b(cZkly|ay!B2~m4aFmFm|@^({}Kat@^QK&~^xU z;5uYC#F+WP&;)$S-sdHv74!)JZpDvBiOU2|(W%7W(`9_oUC_@IPL8^2AMgVk5vrmN4giYm-0G zuqBIYI!Z6;JrX5a-ZyXD5Noy1LO5~zS!4_DUh&ue+_Bf-<08+;3#*J?)e{*r&CO~^ zQE0TL7(V?O9kx+AIjoyIgQxOKZe+i?{Uk z_d9=~!>SL9{q>OO^`TyrtXw@tvvuoq^tZ5s*g`DGKsvb%$GUAXKgki2lP`zJ@=O+-?vkz%$X?s8Q z=hgmuSaAf4C#OB#nbbw5>6QHslbF@o-P7au=usFRMhz8v4fw`>DV(+m;$Q(lS5C@D zu~!Wy4WN{GwPEXSb~ZN2+VNX-uvT(#Qt~E}@l0~Jj!Jn=kgRH9QE#A|s@@LQ9 z#<+2f)x5Y_q6@P%&S_LyRtAS;m~x0t1TsKen98< zB6^)&-I%lCx{DG=X!)1qVZBhB@Dg(nEaBeyt-ZI*mscd=CFr10kgXVSSl=^lG%hip z`g`JCzLP;(moH9;XQpBJI%>oL0b4UU<6ysi<2J_nsVQ}f zY{VAnMY+-KW$!&lO!g1Xp1cDZ3nNTwYo2okDAE3eHAIjV4FfXNk&{8)Iqo^zK;{V94S$Y+EmKMlDAeCX^4YW_UcjNZELR?)ZTZz{Uw;*<8|eeCS#@b=or&Ypq0ozcuP$r&$_ z4?HGTt2`xgNlbZidgF!-3q`}c&;5(8Ox({sd9vNzaNpj&vq?WU`=RAN1-!N6iCt!YIYy@5y5+c>`$V(5UZ=B!*G@a=056Avnx4Js zW^9cG$CxUMtiGLe^z?zjIPoZQ7Obk?NFPiaX<~zEXgIEJlb>ugDBDv&{v$tDA}j0c z-=eMysoD--)@$LdD@f8h9(Aaq(0eT(l~|7&*xN#Y9(sbHS-HhZTbrYcR_pX%f4#69 z?;N#SZEtV4?o-*W64x+Ve!~57lG@T<-nfS4&7&}siJ|^Jw+`&w+~21l%_Z>5FTZ@7 zcRVpa-<|tJ#i(bSgn#73o!phYWh57r}C_zrtugd;j(0+v&iL?jJeAF zUZw8g<+SF%-C%N!D;9q}UfJEkCif&p@5{SYPX?6J3SWRS?u7sW#6`YESL6})Cge^^ zUkDaa1{jlK3Vlm26m7eH5M%X!o*$I+W_fx{k$Qb76efx_9dOMHAXd|4L;jZ;pW3HV zvTz^}t@4NzUrA!;tBoPW*K1* zb5|A>LS{ESsiN@C%fu89yt$}n1u@0Ps;ZgH0yb&4>xxQhy_`#j z6xGz8#eF`#uza7-y)^F4o44`Yu&l`t9GdFBvMR<4$c=ZBv$WdYw7jxX+0L#=RfA(| zIj?p;vIdC--hKyTlNQSs&&bI=djJ0Y7IPfDuiUNNUKGw;s2yK@>bRKuWNB|Fw$r+G z>pEs4Dxsa5W|VxGjxMJF?WMW(F^VN|Q$H34B~~1kYd<3M-|Po#i+c1Me*gV<&GlP- zp7{85a~ef!WF)+>#CYGhdGlC6Mz25r_U+r5AFh*|Uca%GR=#{Gl8HNc*V72wp;_fk z6)Kt|^;w#;d;g%YCwhx7oFip#el4wB690p@w+^d1UH8VBnXT?oQTHeYDt3W{l!Anc z1sF&-7PUwzrEwgWT}ViS0ulluARQwh0ullXq(ub;q(n;U_qmtOob%i7Ip=-ff8KRn z`xPH>*Pb$WYr5w?2qC3-biUj!NKO{5`+yZJ z-xgPmXW8bnhK4KNd)odKmGe!nPSfg0mxTj2HryTN=Sh~?67c$If9L$E_Q4duNTJ+B zbqzzaYyt&6w~R|#>r!#toG##SR9eRXu~7Lg2_azMsZaB);H~LFa>ZOL1tLCP?w1wd zZ^r(RZwusU@Inig=@qw6*f`SpZ@M`sV{h?DYr}Qvgwn~|pu|DWDBZg4cX%Ej!7k0a zW5*l8=Nf-q(&Hzv3}M-1jsXwmxx>%PD_nr(J-!I__fDx%>}ift{eNDXqjzVwefL?- z5yJd@t?;d%X}ixH4#Mt4r`g}Tch3nl^ijQgoB8+@vEi$oJsZCH$b(RH1oE)ZAwuYp zspF5&+~Y_~pLoDgs)+eoa@})_&L}RWQv3DruC;6TK+SQkkQTy2wm6)Z+SmBB;~_FU zYz(M^bUq44kFuZ${>0$J$^waQ1oEDwq485d_N|vL?WX;$3D_Ed9V)=!{3OhJ#L9gl z06W{Co%_DuQVunyJI;$gfOb#^DEPgN)QnJ1t#iW52sT|FouMvnc z3q@;JcWgo}sJ3XTr=+BG!@|Pm&Yf#xai-0Bm#UIdD26HD?%g^->S{4Wh5=ea2QH6a zkYOT&egqB=v_;b49vm_wX#U@Q;ao11=aq<$j!I8^)^z~Ic@+@(uLuK||CZf723Efc zSz}5J_s7-IbSk;5Y%5C~*{yIChJ_Il>LZ}XE8hV022zBuKmPbbxifJ0`FLezWnBv> z`)3TZ1@Pt%G+GO`U-Zey1nWR`cXt5ZPsWlDA*4cSI@2m z-E-P|6gdQcmz0%xf1PM{-f}Fk5;n0%s7f=wajuck#Z=UHy@d}+OGaJOg*nB-=X?c2 z7EyJ30xWI!*x&~`5L~VHlVj)Pt5680K*p+gI}>I$ z`%?Z?-LKRWWrH!}mUYX*z1b)a2}ccTJ3-0KsIMt-dgcb+(nF)5sK^ZaIZYiD&{0r3 ze}XCk)lyx&-Y{5U23(ji0N^yfi=Xit5iAYAP@4t^OtQ(F_521olb)_#gAZzIE4AZ!q^e4KM%;6d&lWNwl7sow?Vb%F)C*MR_XrcqYxS2_wx5A1cqh` zHI(*HKiQPAGVIN$se@-Q#16uFjI*XgS{N>&k&UQEF`4U4@nu41KMMWx5M~27KOX8T z8?dBMrL=mN^&Z>{MrG*5hE%Hr%)n!SzJ1D!hAy;VS)gl!WkDVM7Z$BYNadb2XAYl? zj6ND;6%?CXDE{&_=$l?=K+_9~BLeqd-V@gnG6^=sykUbJw1d1`w<-Z*L>)%^B^G{a zy0J)VoIDv?oIrO?>;Tq{vSYN$iLC-~v-Ds83d6K8!-drks6L$-1%!&xoRL!30Wi)( z0=pDS#mCV1fET0JZ1-P(roVf5eg~}S&-8G+@}J;)+O^oUL|Y=xf5%A4XM@S_ z4t&R;>G@5RGj{#fEf$g?rZS#}q20%v)c~+eut8EaKFed-cNmVIzEur{HS9cb)IVZf zFR7^5xqFi@hLj0n%3`p;{*kC99 zG!JD~f`LI#T|yoDKCZ=!&s?B2S_w{e7K{*Off6d<0fd&U(2d7gI2O$rY86sLH&35A z!vZh~P^_-|yACY;$!H6`Jv|1j{-3R<0+ipYs^LX;&C5ByB!kCGnPO!#N5)SuN|PizJvw4=_wZnW1bNgg#Bl za&T}^JI5s*BwPeE6I!&u$+8y`ARv4oIN{$VP@(P)4d$7`zY|P7=9*!WfpWrXuo-xn z8Z=4Y-ro@X3QV*IeR8{hEG7vpAPAn6?eaH^KLPUM&NH-Ad(`&)&D-Viaf_RSLpx{+ zCe1S(U?(KHT?ob~0l1;9?T^W;3R?2+-9-lu9pVE+cZ*w08T&NX^5rI9XzTNk4g34o zyjzUz5>V}#Sb}F&uVNp-fB$|ceDCxB`uo`G@1(_#zk9R-AfX=_8fhaL1c+7xJZn{T zwYQ&NG+-)T&{GbXdf;Doe60Ye00LOPo^UQa_OyS0=cuz7d6oF`!ypy;wruHqIHj;u zv{+bVicx!F6rcpRje-Vj~jV@HZEA{0Hf!ipe@XHBs7Ty}aSk!-t}f2m*OJ zjzjMxokyPh{L3$b5_M3d*u#L4k+N{rE+s!dKm9V|&FJy^;CCuS4k(B}_FYqx08vv< z)J8-a>OuE5cfo=YlX!fz*_($4kd@=f`sTi-eQ0QC7@`&@F{|%y!y&ZtJHv4Yq*gZw z8u4T@k2{UG`0xAmpeBODJzmJab5H60SvOd$;e;;t*Q=5Q|b_g4ETd8?>+1xvxUvfj-K0fM`CH^vTWXkcF^u?O&^SkyqgsHee%J{swbLS`S?2M118Vm)UC*i@DnM@}s z2b4MAP%MP-lQlmWNIKZml_1XT=nO>e*o*brrACT+o|s(N~1 zQoAEo7TC1U6ZP&q+*;ljU3R?E(t02wX!08wMFOmfMe7UVic0EASv1RNLpK{zv*5n} z2iu209^Wz}+qkt)!4ne+4gc>e!-}B5z$bnp#@r3ax^k%>Qm=u?xOwjOlKeL7t^E8) zJw;GVvdmykKy@A*L`;XvVFzandal$zc z!=NJ#Y6IPyTEc*5>+=~sZS2*4dh#NlWnFxbW$x6-jgkI0kFI1m^mbowMZq%Hf^b)* z#X&Nz+Hj~o!jAnIn&&Cc!uiXRAY}k=uC!Xxt`Z%d>)lQG#xcMBV3PfD<|YUshDiX* z4CvXypwe~Lef!Q%(*EnG6X2$fp}9PPyVQn*I6IyBI~9vDdXdTyiFL^g*|APw5{Yor z9m!g;VnuurHacJF)*1B1e^UmAOBE6L_+oerRW>Ti5pD8{u~_9nyX_G%U;?f|->)Ck zk1AqAQyh8$=u&kVbM5;PjBBtrRiUCc03h>npzs^WeioJiRImsPvQ&otLk;BX@=Wu3 z;UGzS1rUrZ&`aLI!TQ}hNcV#9-|;VoV@+WC^zLM*R~7ul7SudEa6`DrYcg|^N^9sj z9q9u-x+9ah3KU{g9^ckEVW|ZX4AKgWpl^;wGOMp2`{J$tF>SUB2pj{Ms)CxT5z>mF zYJ^*Sz2iQa-LuXRUh< z>Rzdak{3ovw1b~3LR^Dq-wBzzre|qyM1y`XoxB~AFPPP^;WY*oFPQXjlUMYv@q}xOQ zT~rElgjc59i4380%T6f&JIHpw!HfCKux*Te}hJx&Pq7ZrPdfJJ7X15x|;p zA(&tYe*Uny9nuK@rVDSP#5K!H|umOQQ! zqUlWK8UY_X#5R)NR5;(g2DmzuQLih-&-dxJcXX&NA8inc=QUo_qgC zZGu4p{Etw!SuC5XlEQ@}B^iWKtjEXKT)uKe!{%iUj>oYl{oN|4*Pu4RypYH8NI*Q) zHEOArdO#?sNvck%(~tG=P@Fm60Wgl4hB|T5URF3u;*JLQl3fqi5TtQA!=j|6QS`>Qq>OYgJqfYGGcfF|rZzHkL`$_U{ zZ!=a*#MP_a*+EAcPQfjD=k^>r?l>*et(bZLR^cVT`dLnPFOS`Swj)N5?{MmoKHMtkCGQ1qwdxkU5$8(H9rXuqukA`MwCt>AT&N8UNDxY`41StXQ|Io&5{c>P8av z1Co-tZvA}e_a$df@0Ek>Pz}CnTB^ZmgI*k=PvO?ml!w zV;(n$fuzgW({=IaQ#Cph^fI5Xld=1BSA&9@J!WEC%<5=8+05HJ&u%Vv6V9-DF`TBC z=|FT74#-&`2DKD^9~fZ}n$$BBd}Lg{D&J=j%7k>Pl~WxRr}YfVzZ69@XPY}>RP~A7Y|YSsZSanT=&!|u8k7kt>Gg7#7q8ucHA}x!R8Y*H^D=wwxei~hdeGh0# z2w!=5xjLZSx(>muTZIZ*0;yR4OG0!9`O777q3bqnIsnR3c-y1yM}Q+yPFPP(@c>Q5 z#G}0=wqng1#a#DupSqqe-jo`2DVhAW&+}{hzqq*>TesWoS{2zk*xZ@JCFwWf zp8FUqvHsN5>(WwNA|p`P=v7KGKD~Typdhl-GOI6x(EYo0qw0T&VLw>WH!xgzs z#q`4}_2ou>w*T6`GvSqB#f|(fRmc^s8+!$fIlK2#e%sx`)6vfrQ^M@}lca)I~mow|zSi#g9h)L3-+R}{d$NVx+LwQM<-vAXB0 z(M?vN`XR1DccclrBY&Lx9%cbd%U7DjW-&__pD)c!Mp*eLaN1Qf6Yev|fjX+ES~ioE zNo)Jkdc2RmGc_TglKV1x1gIS&{BIaSa{r8e@(T{g5}}W}dcFl_BnvC!Y2|~gLt3%? zqNY^^i$Wx9Uw%lxvwC-j(<&_9PoF-uX~z^(TKor-*$wnqELj>|iNA>P?Z9Kkmpi2~ z>%nvwrM+y#4Ml^S^}-fYKa}w$;P=^A^26{EU9gualk#BY%2?T{uH)Y(T4&;Mn1UG! zAc(PSSB~P#bt6-S4VD6|h<2ZuCOsEAcwk^Dmd%o>Q&y-_Jxc7b`SqYxX24graT|I8 ze(mH+)BwkkuV}T|Si>Hpc=>x&CM!rKu=0I~+ZUIV1awFlJmuCdzi`vpz|3uPdS zF3jS^AHQ~^7-kc^r!JwQLS;&~jR-vS%goNsije-4Kq`>!ALO*7;9$ZgyZUH|j2`F< zeMJ2V9>+8y0l8s{wiwX!qrp;I_)Y^2WPJB{wjDKuy>UHU#-ttlgy(sN6M_wi8GQp> zIH-cQYQ=FSNVuUI&hoTXyB8Q}eii-_&U4Vd;dvi;kB#BSiJ`(4?&KE`s739ecP>Q6 zHR~=vG5pYTgwITm<}#`yZ((cF?bS)ORKqw1Oc#MRLw@yc2UT==r#>St)2_Q_TW@ow z25}!GqAt=zorRImQ3{hd2ZyYo_Fg##BL;~Y^4Un^l9BbnP644I8+S$p7K;`0&)`Bl zHEIb|40f5;u)=*P0$@H^DxG#R#S)QSyA>6I915f_IBhX}4D5m zg?DqQ?(o*GybIwAV(QSX#?^E-CYwHj1xyazt_Dl2el&Qy`0e*}6wHt+eLxz1U zn3hK{DWq{p!0MJ{EN%m%lLv586oWXg=$oAgh{teHHigodj>!=_)>3|LC;0VRA*~ z-pz@gpCtzZxa(pg0y4zJaRJtOD_7nHMu4C?2DGu36~o;uMK~A#Aen&o?hs%@r0@)r zn`4iX04xd{VzA^Tls;BunWSFjF+w{v|FiWiP)6Z9hST>pG0 zAS9$jbRznnP4cj~R=-U=V-J&i6rhyrw{L^>xL@6+ivE^_sL;2gb|LS_p1i^tGZ7rK z3#4!_77_M@@4}#|#a6V0herU5BETXB_85Y=&6?0EKor^YNMiw(8CU!M7Cnr1(r_e$ z=>!j?i_Svj;K75@Q#c`%m1KOJXfCKJf!1EwWIUf^&-m1Zk53GiiHybaJ6B)>wHY+s zON$wrRJ&H!(G??{kZeLl>xoqIe}N*Z^xby&+thkf5Sy%Q=kr0*&gzIAy-hNY_Rg7{ z&m~v|sZVClhhdfm%7c!fKqa?Z-It?J9pO)^zRO~G7k(*n4GMA_+;reux=TcOhw8U; zJ*;0(RBH~US`O9?d3vja=I0ubI45sEX&39ajb$UuZ7+3|XtFoSL+nfA58A?#Rl8}; zwQ8OAbOmrZ3?h_)K>-rz?nZvyG$l|XS)U&K@y9zJOJ1@qhfyEr}(^Hsp8t6|@9`{7pc~n+OY~ir+qaKo zjr23GUlr<{R|%qt)^FfLSIJ!hy^DNj`BY9#2?55CHK+A8{qDZPO-1o&+J~xTv3zon zYe3MiOV+4k$J&?u=9PSQ>Xh{Ox91A7eI9*Bhd=Kc-4wv5Q#|w@I8Bg++q%6~LJ6J{R>l-6&f2-%NtFaRPix-w}lQn5QeyxoAxISEmy% zh?1sNYVq>rQ4bz0XTO{AH+$13pI)7W{5@&bE2D|reK?5MG_9*?zS+(-8v1UD(GsDI zA=AD2z@!A_V^Fb^-vPnadUF?u_xq0B0oz8yr3>TW4Zx=gJJpTrUB0+{Rx z7&eUyE`X=MVmx=Fxvm8Sk?cO>77-r46=DvQK(q~Mr!XSWkVk>VX&2aqER-sgD={BG zo&^?SipCMVDBUJV46(HA9PVw@09nQ5MnXn>Qis!pvvcfCwCa*STwyY~b8ZY@36M?g z-7UBG7l9kc=W*|olOqxxQeE!8z>zJ`ev_yJu^kT~KR812(E4q(n~C`VQp8eN6Qjl# zQq~IU6O}~67Q%IFM9HOes<8r4h{iR7jg`d4l0)0D;LU})tbJY9W?;G4;c9?)ygo)- z0X<^=fQ4we&$AJuH-BOWI7R^D9!_KaOvOSq@6$}#x&It6CD|SO5jr1g9i`X!vxomR ztA6@MYf6fXqm$1-kEz-~%shtyl*K!C)7y_-WPkw%OaQ_UiU%m;6xCyoFAJt;Nuj{g z%l|Da2Z~z0c3P*Sv=C^&L1NWyK1a24=Rx~g{-_PeE0VaPJ?aKflHpxRD0>-8q=I<~tfhWWR;(inU0lRy2cOf!o zIPLH##>Jrg0)Tv@#aZ|c16FP+UVj4Wr8NW%Q!MVb@8{jPGuZWxg}8jV7W-hYC)A#7 zwd-=BJvhcD1xRVfhbMF`=#eApHhCe5gkm1QPCg6`1M`nEQ5hp71vrE7L;|Ggpaixj zwPN709v+z2+mv3t(v%hew@ur(AAzPpSxIS8V?5q4v;m^@8Z5D|VO~V%DdbxEE0AXV zW1rgScB8GT+UMQL`UI77t;dDT+E8mZejg<;KPtn{?MV-^g=V+2P;3xQs zv7J`})$_O^XVzuxkTW+okDj{kN$|F*2>`k57S~a|6q7gm;G<&UEUQpdhv~tB@ZrIE zO_fytW+GR;!l3T+6`O`?Lm2{Fd(2Z>^)R}tKxrhvdPw9C>W(^0$QrEOf`%k-SUv?b zc$urf)~&CU?3@9#mmH>FEA~fpPZi`onZ2%n>TMV z&_E2sFm8r~Ev6gnyooyNh_h4j{>SXu40!M*-6qper)`(V`m0LF4}h-wNpuhB(J!15 zdJ1(uM*g`%=o?6-jmpk|F@v@cooq=Zj4qQ_2 z;jJ1QCy;T(U^@os&EM%oE){iw!hv}KD<;g7X(lt!BV?pBBeQr}?+oNhE8dg9ERgNQ zoZbdm4RkWrg_s=GsNRmeCKgic4N~;1pbx4Yrnx&1$sw{Z2ZfuQ6q02XM+~x^Qr6|* zDqxd#elrcAShxW47gq@~IC4zZ;oOSTS7qTfpxBkobQqwA|0kRqodlmNh9$R%{beQ) z!R7BUdi0*nKpen1hz8ZQczQ@4lOT-?@U#1n+)+Y8(w* z*)h6v-mh!8xP?VTIM11wd^#{;boML>OPJ3QR-|j=cBAn0)rt^VgYx+_!)6RqxO?vB zLbh>VnEsvx4A-=;DLsA+4OB)ObLID+?_Gws#4aY)mkBFi>hlGwC3S6X=C=tI088Ro zL!)otJeqyxE+~Y;Ni4Tdw5_D4j0)`0C$Fx zwe`TJ&I;%f3ZSx$)qIFod#q{5JfFaZV!wOHlr1gesW8QzItXs(Sz|9(FvO2aXk_fo zXo)R5&DfhyW%gE+U0}^YQFPV{V!Huvele^U7JgpaY4o%!h(mn-yC1C&)5vns#J~|r zw*UP0O}IJ!NvWC)H*o5wJz39uhRarDY>Ri#ll9AJF9_XxY5pK_5sX}{@o5%ob|5HE zxHAOo(>h!;+aGtk0tznse9oPpAnOrIZnY`p-)u+%6aUZ1=z9#6e}DDq+44wXm~O8g z$3=hVenc-U4B`7w=Ek4C3@2m^9H=<7;tJ>`pu)pwsJoE$By^M3f_S7hD3)gfT0|7> zi^`X?^zpS-pF=*B#?`659|bHK91vTgfTPa@QYs*>5@6TudmLS6rbfw~bNtR5%;>TZ z*^rgBcrhb%rlKY2$^pH;nKkY^@;TNAT%8yF;KB22(S9pO6hCMR_-WO@uaX!~ne0WBXbzsQ4|42~XA5v`uTQ~csZzt%PSWnK9kzq<^G zR7X3&J9in>*p01}wfK;R3#O=+8LBW&Pu7t==BgcycHXSUD(;IR*|9LCk&Q z&Ye0qiC9o&k|2r1BhVmPrBxulVZFRfW-~$kIa4D#SYH&-rw2Qto&1KC5G}FV)IyrJ zGR0NQ+48hwU_OHI>01FqW)%hcbWdVa5KfTld7DU*r%YulovaJc{7lB^3*m+D&Hyh` zwX7yMMrrkeH8M{?M86Pvj{2Wm;LJn_C8A*mBz4C|1YRjXFFIU;vlgF_bPIeH^$bu= z05^`oX!ueufbqTBFe!rrZ2=gEPsliqt!zR^tU5g%F?#AV$mE(qGy^dZ+Ni~looql1 zC6B+Xdk#Xbx549OFM)rIIz!B<9JGY*Snw8Iym-+GDIwBi_)(DdDYHy9gE8S7{4yV{ zcWsoP!3ZVe`h7kuJbR9w8ehQaxdaL-=xnKy+q5a7hTjnw1W{@!7LCteIQBYZ5+eqv zrNYREKr7X^u=vD-Nl>wYLWfE{WV_yvhpB=n0(`^Bk5obMnxU{@jv)bu-?mRpL$7_j z9}7P=tAy7Ze#ZolL-R;xNY8NK2xj1tDJx>Wqw23}SCHV^+-#@yU)u!x7_7zk?jymR`|v!bDz2k!7( zBsWK1r%O`L1A&!UHQmA+WurgldRnG#@?LKClp0-J(g?tKMT@Rnx#BCaQ&O^FkvniJ z0xL=b`#U=yd&7)D+m0JU&_H(P*}L)J@z-> z-7|M~e>O5Uh92i})A)ib`HM8pl1h-HM!=`9@?>fw7D~=DmZ>^!Zkvve%tnXMWn;J@ z&OJIrJd%gy_xt+T(!sZhqh9K+!Kao7*d2G4m~`!IZT-ajGb7R2c2?D*-?e$6lcL&~ zk`Zk>L6s{40;++hEEZ}$dE-_&^ujvSI*=6V%@V4eO6__Z)ZmgFD8NZVHCSp(0>Pg; zBT%wxasS&yIqYs*ZQY8ETI8-QPz%$hue;wzTr}CLwZ+UV5%|fh*|W7(|HZ-4!C1LC z{`ro!&fp6_Wsjd@YRKh3XcW+}USx3nXO;!Rxv1jJ$S=705npKn`L4DA_X0) zQ2TmAUsHVNPV<}i6ponuv5@i7zq9~2>j=pr=EtQ>t2R;`!cRX%tXZRJbLa{gGn$x8 z;6W=13)T4RE9&DI+D}ReiLDh%m}MM{8)S}OEvbqc<*TTOS10^*d?|im;VAS;A4Ub+ z3Pajby=_P_3PZqRV;DXGN<(hQYww0#pKV$%k&Zl#DvX&1R81|4JbYsJB6f@3TqU7Q z8g+gBU}JM=iJTA~v;7Grgb3Yf?5!m^02eUcG zt$9(RSRT>4m;x6FP6UEQ3TZM^B1kO;VpwNO#BlkYK7HD5;N4!_&r;}5RSaAPFC+Ox zYN*LFmBbiWYPf5AkcurPyS_$reAWR4S?j7Q^pm%WZZ2K2Bgi1Q>?4{M_A96+)oQ3*D-TOy6@p!m2+UET ziMu!qU0`($ewPP#9C{1zDLZcJA+Ly>quJ#Pr<;*XFrVz5^u$;o6`tV$^hnK#n!6Td z@O!^hC@Ii{9LGQu8b5);E!n*JxPptr4VO^gup=8HEs`_-afjJC$|Oe0Ky}J%%TwLdYjD z@UyAW*rUCdW^aRno0?W*bMWxwEjSXx!@&^nEsgtlp!J)b$R!~38GDANhc4+qC>a0B z!7B)w20LM1|-pg=2L&qP(YtKM4=#WccCK zpxu+uUz}YIF_(9vVROKjPG8rAnl-}wI%_;6wp*EK!so9m;JXpoHYcz=sGvL!Pg>Km zdCL~Q&6^M6>k%;m{;qY}8Ub#RHMCl(7N8=)I22f4y{S2ZW5d^ z@pQc?hMKa-NfvoLgp^{OYQOC1Jtse8U3mWLbMq+=4-P23SH6VNTdMUZ?Y3dDE}uBg zJSm@@qLg_DwPt&{#D#%S$kjC4Q%vwhIPxwhyG}UB(a}COoglI&m}8!b0`z-J16!k2 zwy^i<;<>a_*kUC`vmO6>L#?7ALa{AErzaEcRl z$@T{2cx|2&z5?EYBZY-k#_FnI#;1oioq`nD(TWh$_VR^@Un!6U*taR>7mp0X*S#9u zFM0U+by{0n4fgJR$$tS=YWwp6-J4zqT1^_uAqrW;0bx9#E3P$btT292kDb7dhzIK< zDiCHGCWc|TG@4>8V2tHGFuA6WPfbqFAM8Jr`V&W%nAvX+9enp|KhF`g{BtEw_fvBV zdNIUpUzkkdzQDO-zr>?@)<6CMP%U?#ZK_3MhgdD>2b+GCFN#k+HKu7jW<@7QZVxCk z+PevViHgI(IV>-qm_g-jsCKeNBSjmH7NB!86km<=iJKM`6&3Lb2|aC^goi}D0D#8e zI2SF%fmcF9*8+6Pf8c$nE41&|dA}+ZDL&dB_h;*=N&iB%&(G}UM7~xTZ%9WG(en$( zN%7K^NRr|3Xy^uGvjb;L0(yX_Eut<9n<)$+1w!IDiN?0$xT2y+0kmVgDim-lJW7%p zdn3d}y`;D~qXgmtu9&^~+QT2WZvFZf#5o?s7hS5h!8NP>?#tH=CiUMqI3C=ZBKM{T zLl{exoD}?5%AG{5^vn&$wFnlO!5uWdigu`5L7f`;z}%|ahv8C64khBYM*YWa3CD3F zOp!kfpe4^nwq|h0tklLhD0av_F5ZMgQI27)+`e;^yv*Kw8r&~&{KV$_yi|acTL9qD zKLd5zQdL}XkA@iaouVNB&Cr$v%Z9jpi)L-YPYYe}>w*Pjik{DIcP`E5w1fO522c*0 zpz8DW@=`S_ht{3gSa9}2f44i2t??C-Ib|C_$Wq#2UBh?ZL5Kjh?(Xn76*shk(@mp6-xn>z;K7_qn* z!HH;bO%QjD@;BuvjkTJkDNa|IU?sTUV=2~FC8(jB_rL5&R`>s}9m%dWKlT#NGsGwp zop<5@-XiL#3*!nCwlvu7wNXW>f>Y4yHrce&3xzQK`VnZ{<&>i}h;=2bJ5&l1 z7=j`}?VjkGu&jS}0KXFlPpX zc7-Ar@F3)9JDWPO0^i%1-fS6!`ADWfpgIxIc2%Gl-9?@SSZQOX=g{Kw*W<_;Q@MN; zV8i6he~ANaqmVS)DkRRR*$Q-40gT1Hjp&(75&xh+j(b0hKvENgiIad|QL!2-w-mI_ z@uzW}_S|Ymj}Q>Rhv`WLYgf}Ld`jLC7@Cv;-m(aI4fT1J9M(2eA-l5xd#irgd{3lo zL;*Kd0`+!pBf1ks642Jop`BQcIsXK>3OiDxBk96m=9@2|#{|d=)mqv9XWn)Ho3>yG z%I?400t8PPcuz0TF~j;kOiPL;Ip+vF_2={ zrF>ipKsQ#xsJY(sDz#MT(kW>Q2pcjp)Y5H3;H%L?A~)4q(q;3j>h+3ASBPZ}$ftv( z^}9V{8sF&=4vyNV$zi9U_hF`?WHKzjb?w@Y0>HQJ9XZJFg2tlfnqnhiPaJ8BaKA)R z><^=On70<49QO3`}(%wFDiajR_|5=m?%nkAZDyVE&8FwY_5m)h6zh^dQ;U zpbj3EilKd`Jmg0S50Sr`i5mbaI^bq*=lOKq>i}sm*veD)v)>wTE{`|=*wMlL{!94` zfBk3c_|@DSqk(EL$G~4i?YGDC_OM9%jbk`+>Mme*DF)>tq6y(0RYE|kA7g1E^WHc3 zUT`|V*|g>^JLo{pb#VQ4Wn}VNOA7N}ya2e~bxlt|!|y03m<_D%wD4>+#m(q^ZD6Bu z1^t5w`fs(U@a?bXFT;8 zr}tGNQJqRX<$e+1Cvr`Q#dk&SQ;bGJ@WySz!pdkXRdH{~FLA;N5-ZPCeIsM z$0J#Wp+5g!(E>d8k(9-dL-!PXYP*C)ef8^sL- zRZJ!dY;JCDq;N+ebkR#97Z55jLR(rA&#;%I4i}AUeB2As8(wD6urC=0CCGV>a$7L* zP+^ECB+B-^P^vineP_W`=p@#h?@t86UYf1y%GTjf zNd2FS%-6Ti(iL&JmYbUk*7#_t#+S@r;D(17@<^!_Y*=e&&C(jJm$S}3nUDw_>w$yJ zfaeE`1>0BM<_K}-`TbJ1`+{Z4a3!w83=tXa-xpkMwtZ_sVU6LR?(ZkX?R zbtxHJRaee9-p?5uiLxoba6U<={mL&|PVL#v%)~?ey`it3R-KQ3woi3`XngNm)pf(G z)P0rD1Y)8us*BYa>04TKXAQZRIL}~A^6zvnw(N&{=zEpN!Geub6Q+vDcGP;J9pK7_ zelDIDarTiT3^7prZ;v@xvip9gm;;EYp!wqcCH0;fZIVHkePk9oWHy^!=>q@>Bv?!J zUY6S&Km&Eg|4_T<{Bk0(y)z{7tE2U$n24pl4mzs$R6mMN2VxyP;>v^6q3o9s zNAkP!fG?S!S)ZmWpki>P;!ttjP1xd8LgpB#ei?1~T*qOc8npYOCN-(_ zn|lqHhHjhKG?0iMc;%~J`-v!87(w037pnGFtu%0+ItPY%^Nqu1|J>s9|+a* z_ZTzYlEe=Y3w0BI=l6l*)m2sV&%rFutF`X0Hx~#oF}WKKGlDc&QuxVPV6?vCxCr87 zw%S{gqXeX^t>vG5^3?eP&pBUykSgOmXpZL#6~K47%^tIIDC_wQ+Pr>=A(Esq#~@#c zKYRJdr@YIYj1veAhjAQ=6$FdKH#wq6sYU`@ELs^e9Ay6uh#$q>m9$w?Iw?1LZ?av( zOlc5WLbvV_(5F(PBu9TPvcpouDmVpisE@Gsq9$HLVGPU(ynQrw;r5PclHg&W<-a|; zv-xZv6};@nym27Qh7g*f`hzFCrCXW)SrGDnvRHv|dB1{;JU~xihulg11K^kkbyFp~ z1t>-r;nY45eaPfr0JT#Sd35E_b?T7laf9`VN>WUFXfhbcH-$TE^d^?BF4)q55JL4w zhj=Jk{WqM7(yusv)IbeUDc7)d>TIAQJ=7?aeQ-t8LFk0wX`vK`6yRC5_Zxg` z{7TkyNg0?Dh9TB3NukQhn_?Hx${sg2s{V7HVAdWvDlAubR&#O!KL$WVrd3F`V0nxN zm$VhTCN3N^&Uw=|WGldgwN#DB4KIQ9>-WKj4j78EeA|9$Z7uvCJCdh?jlJTcB6w-2 z<(Fb66Ga<^yE;KV1@K9)Bg>PM6U4464wIv}DiT6LWRamb3$NfU0M>wbKq4@_;l+k+ zezmldDp;@X`lQF8)^*!Pq2K+R;P|^4$-C?eNwGZ*$$_6_Se4djBS;$t7^~Q^^KG)} zeU#CUDHQ|Y=n44HuW_-f&&B@@v4NoK1nw9bFj?71U$#ltjc8G~8BK)fQnhQJ2o@0Z z1V`bt6~DRD{Ov#%Tj$$BeHP%RXv`HT07N&nf|Nl`%SYrJ_B;{xN#7?U;FHi|m(1Ov zaGj;roT*kAqEH5H#;y?NNqlCFi_E#ra)9$ttf*Ux$f1DY4XSImAu%w`kr*Y4L!n2W z0{}?f4U+7m#jYrDqX<|@ zM8IQ#7iq-u#&;o=lkFu(oJ$R6pAv4P7W5tAsLrCXDx-WjDaHmD@N|xxKT(4Mm1|v8 zfwm35JhD9m4E8#GxQ$FnljTwJ7UToALR0Pgy?>1=$TYlM=;e64Gutk0^Pb%eVl5CC za|gT3c@6^RXzG7Ft{;X=6dn0ToAi>vY6#@fNjy__)D!T9EiM7mF$(91sy!jFC@Kp| z&pno@jcn*mNf7|~Q&d>&`d($|%H_)|2!c@|?HETV>bWSW5fhArKB$jJ zlms?(MX>=XJ6KO2QkDpFkfL26XgPuL9Mev!aE^#`>AKz3kMDf%XqP5^eRa*VNb!MV z(|*%&AgD*mNOKWbirY|rq;m4A1ieZEs8U%?XpI0o%5GOPqlwn(MKI6(40%IL` zMSpD)23iY{xu&s~DT}{&_-$_vTPH5Aj%g9R3z0!^cty6eJtjsSG)&4PAhv*ajG0I{ zFwP}W^8PXcH7%byVn6@9Bz=Z-nyoX_=Rx$UZrkY*Q!1?z-Zf7p#lF*umsemS%5Pqw z)v(qjZFQ5U`Q6IAuQ5{XKeo~kF$HZvO}*2Ip+Hm5*Mwr}^7*y6 z>rpZIzT5-v4mC_9_4n1x< zn*#p~*%RcrH4ufcv( z1W%o2@eRUnVycZ>R}FR<%{EA$$TM|K`JfS78YP525}91{J7X+bbMzpS7uz%ny#6cJ zO7539BgsU;5-$y1&lUzi!eXp4bRJrmMUNvR{r%VEjSpTvvzg)laQ%<~o~OGDYDZOw zGEWgnx0DF@?)3%|Mh_#4rPNN^|BBxw^BW}AFH@F#D|nmbf;i$kZxI^ z&Rupt@J%J?(qeRJH&i;|Jj$IKXob*(=y7!B^UpbDSOpf&$%{IABn{N?+h@bT#+NKQ zDYde?%dVvTS^TxN7X9a@T3Z(T#4Y3yI`lsga7sFwZbC1yYYu-Y73{%C4W@G^yC@C{ z?w|13_>7o+w`kv|%m=_4*|+`ghGQz$*JRN0V7qNxruOxR%?hQy-i0Gh9)jIAhKr{x zjw~y!O>OMOS}k@HZW20HF;+Epx|pAzRyTJ-?sNvR*xfDwFAxiZ^cdJE z9N#1L1zNcPpWM*AG_gQG_WF6fyEQi#0U7pKD0~A!U*Mi;*fVF>=Pxt)-`s49O;1TLIFx8;7Vzg6h%iW$fp7>rlrz+wFdMO(N08|i zAxHY7nK0i}_&MXi5)$H?vI{XTqDO!UAUgnK^hjw4nV%?fvziUTawS4pS@9+pQ@<$ETQJRTV}MoKZW*Kg);osC<&K`;QXA28^H32eoqL_C>e+B z0NRX5Ko}2DA=GSl96uoG@;amUhTF2`nkc+y`r^UY5j3v{2`U1p?!mX%-LO^m!^~I5@OZ} zf*rxJ$RH3OS3o8+t`X~(7z#S+v3Hl$ z%CnK;K%zlrB7Ts%1WAhMF*Y}ZVKSx%KQ%!tKn)L*>XLj%7C?y684KFGnVUZ${R<2q zD;LY1|4R!XM=@lOaSK=%{&T?s#Q8jkmQd7BUygbYJC#bE(4}U}(Q6sqta&5clnwKu zd(MN5+s&3zAGWMrTe*eD9YWx;E!{B&GhTI?*sqpw8CqIQPs@zk=s)`7$`vHMm2?XW zT+PdSq<;qG>D*r(G?h5rmaPhG7jqaH6>j>SA&}LY8Wm>&TA3Y>jZHB)5oK5jD%^z# zlXL8^xeNOZn%tFcmbfkietMhH9z+j=w(3?7(!!GP8Un9P@{q59t5Qeh0nQEk9v2Uf zeuQluN2s_-ZCVa%Q_Y2CgChS>I*NSKCp5927WN?r`|HbIFztBX#*&6kXj*@CR>Z!tZV#Yjm`W)WC0@Z^RMo8So!|< z7eAwT3dndlj)Eb$jWLEk8WUGb^NkkjK>aiLiaw>LeOz^$5<=}IgJcG?AdTf+`z|;0 z1P}taZ?y4Dw68nU8AgyLw(=LKGv z&H*9GW6$R{ob>z&SLF@$wP@XVMMRQn#Pr>#?De3TWsQ@Z%|rP=LD^`wDZm&mh}hCS zT}V_( z4H`ULF1K@X0&A@yMH(nnQy_+O7bdLi-2aP5{rdc$?d4L9)O}Aq?O*m`0oSxc!0fN) zr%s4*oTTI}5)h&wuEvOs4Xl7nuKt-JxA57kzp^mp>EY3zsHNwz5e&E-P8w0d6-K!8 zBPjg30BxwVU1AS-Ax5D^0YVURm<^TVD=x?VxM}p)&`$Ah-!1AzhMqWsTzyYFoN`50 ze1PP>`E5_rh=a>pMQP@cZ^Od8j?!Mp`;iRA0+OM!YQ_=!MC~A%r}fS^+av8VJ&%jZ z(PjD|M?mj)Ub_Md1Z)W{FRtUCt;5jo=dYP^^LYwz4{N~;L60>H|pY91d`#od)cwlhwvG4u#nei=;DA*l>o01?z zZi=~2yXXP9r1NVa_QaM0Do0Ss8=tag*mf61uvQ&drWcM2L`i_(8|8B9lGe4rm3Dxh zn8)kWUpasbL&{jJf;yY+F}b`cqUM(g-%hr#>lq;+SJoX zN>{g>jipCfPj;94P&uSbIB>%vXXn6ws3k69H{UR>}@yHP-G7%&91Y&;?r4RiS1V20B z^-zHZEuprEZfWaBEBl{1`9wukN!LcXDp-NLaOQX=mh&fA7cy(c4P1x4Y54J?;C(Eh{UF1%2v#9)Eh1 zKxy|qbX`N`(!UOzz*wlo$T+oJhw=+@XWa7N;?k3`XtjjRev0~yfDh5Boe%b0vdco0 zRgA16#0XJXBeH95xu2)&ZCvw~37Zha0w_|W$ZA9Rl{j!Z874#JP9q~D255OAo9HCJ zZVbE=09FO9sY8#N2jf!;m7e!Z0X@EfqZ5tMzwcfrugxk7k9D5okcnF6rM5CF%30-Xl2>vx58Ec6o}J3EQxCKxLPr>oCh z&DUm={*|1}e#XHkFbClWZcB-v4OB_(FAcz<2zw|eK@y4`<&0Xo#%(xBrfD*%e973$ zbIz8jJM^dD$XK+F$BGqtRYo3oaBu-5_SMrp)OUp*{O_1l6$D=>1T})^Cw>sT?!Aq- z*2wA;$AvZQNEF>+G5K2-6ejm67jU z3{J^-z)Qd@>!4|)ZkrEhQ4ltRRg5BaL7;2tt!G?IF<4!d?LP6oX)(Xo^U<`b5uVhH z`FARm?=V*;|8hg9M3<#beft(*PZ?%x=Jy_s&+iTB4DO&&A2@1f7I z!koF9pPyeExN`Msi>tYaXKRKa&#-*-I|U30-d6dlA2hHUw5!qk*rU^wRtq>}wKE;! z=+FU_)hYW%QQyBoQtcDiu$p^r*`REtV;x9-0yQNC{z#<)H6sHrLIxj1vm*@c>tK)J zhx)%S@IPxFJ_c`_InNofTSe(CL7p{-b9Z)6m;aj_`b^US%5@$P-G%ELYB>NX7R-wl zHQjKkJ;uVT_DKfn#7ZbL;e-_e1^z8?2*Lam0TBcIoPsZd#tqL&@7e&C@`L8M~jNx zs3CxOV9VqUqJ5sjGt1#%eMpl#dbG0s`Axe-hQ^_SmsHx&Bo7C@25-ahXl8ielj*v-_CzSuNHZtdr8 zSYzl|6_ESBK+3kq9`cOOozYt@<6~yZnKw?{iBUyx@3k#J%t+I@c5P_QILsf+vHyxI z<`6s4USX2v0f_wxZhaS^4H~@w&5ao%mo}m_%v%K2SW0BaccvpxOI%jA-ePk6!Oe;6Mk{ca-x#Pm?o*|ll`YMoM{=SF4RXztl`EP2)PEvN(npufcdNFu62a)gn} zIoN&L5i4Yk5Q4tl@2{bo=-6Rph>C#Q;;cR;EaYE)kGDu|tdAk#C_T#av6x3hnXtGqiMdQXolnF%wcei9`5(s-K#^ALe&f`8}+{EQ;Xp?sVY(SXg<(Qo-Q5X&QJi0Chh# z*m*b@ivn1)=p*b4kt{*Q0ZEQB{D57&9Dv`5y!9aAoGp5YYtjUFu^*DTWH8GqXNneN zBd*8k{k1LF@33|CA`A~?uB>qj3CM5>?l)WR%p}o54F{{CasaI^5UMCiUm-P|>NY)i z$6b>>D;X zyJs}jtT1HVvm5#64U}$_o0vQKU>yKV3WO7kdrjjZ2nc@gp{9>O>og_g0sV=GEG6tPhdvK}BunTBmXJRe@j+=ppM z#q2MxlTXb|E+1ejIgQXEQ)(}UT-7fNr6@7X3^KR53l}Dox0lj+tK_jpYM~EKxx9(g z!7lW#&%-x|MoL0Sp6Moe%6`S%xsn^Me8?3v74X$bPnTG#Zm0h8M2{IpMG-a$=;ZW2 zkdto19Vz9uI9r&o2sAA76FCI9J_E^sUvUFgbj&Bx53yO>{^GSf1fy!1%$cdy85S8N zP>z~{iu0sY4;=k{h7zzu5xGD$6e^*(a^a0ZQ$mg?VElJl1tZSyo&7}r?!#jxegE2X zG_j*}e%!clJ~1N$^5m%y7QQ)iOhD_|e$d?&j-B)8&7(wzVX%1zC{FfN9Pp|)wj+cu z(4)qV<@Rwu>R9%XO{fNHQ1FsOE4`QMf7I|%iUR5Tfe(3DW(^*s>>YT3yiyQ(N2%ag z4;XDPF0;w#K(uIGs1DQs&>z(zW5`%DIvvh)aOT9;ydKz%3Z9*K1ZZTKj#GH)3uq7p zk(vZCAtwn6f>#$PJs)zef?fsC;Jrm>O@^0=?dA%|d8E60HtMje*}yj1oi1#se;IkMWp?4ilwCk5g>D|hH>#BSe~s|34pQFp?BublV*f4 zz>vkV71Idu7Lp*>$man^ggPDGhWsACVN8gr4{K&BQFyiYyZ`Anf6uMDtaDcv@RX%w z+~h88vr?&M4pV(lDNw+6Qr?iA$^>L=J&T}_4y-KSuzx@0&j!Za95Cld@^_TXDnRm}E zn`5X3*I7-GLsU$PnO222)N(LluN+FQej0uxXxrB38D8973Hc4tZqoiy9HH@VLAtG@ zjMM0GEF+dzp_w;gxZ$RU3X_uv64f5qWhDAnp_Nd^G2M1JH=BWN6m;v3L|W);M15Rh zYq7hL51qC=3cw)O`?9mmb9gT70iSaM&4$1$r#%)mk6af|wd$mH&5Q)8o=7b1wvk%u z{`7ck&aQXY1h2;=EaT}i(%Tzh(kykec?C!4?P%bJ$Yz?K=%=86(Wc`_S+gXGbj7e2 zHr61~1*nU^rxoTO08wv(AwU}XdD8e6yA$F2E9l|wpz|$n=pX|e!L37`j2*~+mAX$j z=nWZ=Q2>x*@S4bu+1)YUh9_AmdK+R(g)~zO#~S{%UMy*&PyZMyEW z#c9@fR!TITrn>t>%v=dzf^6cP>@Pw>>hmHKL~g_i3{#@wL)HMV;7GXtUHTr z0BTYQF{EwXDr=BQDTCNU)FkVGzQ$lZ>_Ky`in5dNiOjx?8*DsG*BWT7XaV^iqsQ3? zUExd+Q}(@jr;Ge+5Pa~kF8V*<^1UsYxI}w;-`UPdKXmAj8N~X;nr(~@4c&u6wi>OK z9R!vr7>=O6#0g4hneGClNAhwslyQdv56N@}oW^^++m{aUtSCy{<5^%PurRhHPj0H% zob%!K?jxmyFR2#%|M*y_I27E~8{tOD#$mYMLT1L-$lc$MEtrhGm|X$tga9#ShnSgc zB{YqM-55Pj1gJ2G@8e2S zy4)EWY&!i=ZJQPGQ23^tJW_8(o`cJnn(BAQk&}nLzpG~kuWi_ZmwGhN+DU0?;Yk`k z1kqs~)%3Pm%Ee_$CzbKF0Vd;jcMs{;093h${~5gJgg?K>NWr;GZ@il5P!>AOd^umb z9PRrIS#IjKJs9XC{y);*JTB+_egAF@!=PbiWM4-}sVrreM$Amvq7^MfNk-X960+17 zyJShIEJdm8?aEl95Gf%Ql2nKmMceOrUYYOb^S$rK?~nU&Uysi+LtWSVdcR+<^L3ub zc^t=ij62Ik64`9eYHK?lIn2!xOTLT%CimU{C$W%%~TkYn>Hohq!*>~ z{49)F`+c5ADyyrbp;vxZao>ShEa1!7OmmsxfC1Flk236qhWo>vM{CHy7j5~Op5bk> zW3NM-6sHrC#d>=c&j45s*`2nU-LVV~yvsZGRqaGDq-BomTTj1T= zZCb+uzg@q+%t3kl_y7eH*W_tgn18y#qFw0@1*<>IG}`OUzs-tTvw!^i@n^rdoRlO(=ah#05xb_&yZTR6%+;3e*(aC+E z`{RMMlN^H&%V`>Qsp!;6Lt8ujVqMYkSNpDVr)^wq{%GNyXYt~7Vd205DGAycM(Y-t z;XGYj0aSp0--6B>YHA-mKQCwz`Y>kGMpy$?WfR_aDa#ib@#Mgka<_90#mlvLT9+G> zZsu>`>P!Ov8n!TDm804%?X#7uYZ~9?uJSas|B_N)cIU*N=0E+RA2vZPxN~o>Rx>9q z+Y=YlO6{`iChudXyxM%J`0=Q-Nev8$im z9RDq5N14@q282FOPn&Y92%@|-P5XhY85#)tx@lliz7yb`|~cn`_wso$*1%a|ExZJ0|a$QZ>`6Mi2ka=SpbXTJDUFRpB-A?&TG#UnCEe#>DqvP4n)HhOUh=&g>zXu#WZN{Yt1`U*ZpfHWM)Ne8AKXK+d zG~5%^-KQZGA;1|n_5dk1jY2^XTkI5P#XYfTX2K}{(l5@I!#?)$wxi8>8+j!c5@CzE z@UDaBdJX)H=n^?pFvh6|6(eBw{oJ%4_(`vsZ72(%@<|Vyw$thBt7X;={e4o(JJ(D2 z5#uiB6z2DeH`Wmjl?<99HD2;8W`?x9#lnM@PlwUtIb&!AWCKXJB9NgAaPhE)oL7_n z^Uac1%G?o3N~9I4(m0k8vnXe2rAXtrW5@pSN4%v!VLY;F70Jii-=i^2C)-@?FTIRT zOcY;=X3OA1}F@)m$gVSX;}ssAffdU4{{!9{>>#)&ESewF2toE17jN2fdO z4N7&0Ojq6>2E@dFNm+VTD!iS9&ruRANGB9L!=DC0_>!P?5GOeTSd|3jx+fF_#`MbP6 zj7MO+>C?Mm!*Ag-Ewh;*BvHS`A@UyEbJxHmer9RaIixQ5ZIJj>-30N;2G)RPDXq8t zbDW242f4Vdpjpa0F1o82SQPNkQ*qQ=y{RUVct|_@gq;s!zHNmR_E^M94U}p0J{E=7qEuobgjAf*Z3{E)a z#2*@~K#BZ7gRsj>P(S}e<8eV~-$;d|07sLv-Z4)n%DA@0Lr79eUgfj|UAC0rKfFx} z27NR8Vh>w0m3O^sAez({uv?g7$&4=AK z@g0(QlaSFsl5Sp@7Kj{|D^>NgLrLF!{0fp~cy zI)L*DmfbQLS$nB2*nY_LIyK;(Dbs;wZOWFQEL5^76+K zwQt*Z?yUA#?u#AP&K4WG?M*dt+c{ZVE7$(XXN?Oo_l!C(Cix54p2JwrIPNi(WlkPXx$6dRAcK4N1QUb(_^OzzAq*S3&gl5<-h%w_3Nu=FT%`Q z9Lu0K@2|{{(3DzeJP2y~@%M=aWw=8F-C07ml$jj8p0_TD%D{*2j%w;ySK zY!_6*=oe`+i9{Bd{x)2C8ai=hS8An&D}U6_=7@x~vtLPxO{vCdsDx!T)K|x8Thew2 zN27^SeBZ-jo$j^LsiaRL4sK%EhWT|TkDX#|MJ=t>fnui_8kxB~2q!brBJq*|?^k^f4$Os=Jnn7Z1EU3z0z41W0R*k+(4-j0UWxBGx%iWUs88?g-`dMRVtHBrB4rQ zaLVnXr6c8oWHBjt==#eFT^?z^yYak^Xx>K;$;|%*wPYieklcD(3k8Y8Uk3T4~#k??cM@Pp|7V=m-h~YXpi$?)YVD!OMf|7V)4rWxb6ZMcl7l@3rk*#GWtzQpdFcUTu(!%n4X$+RbzD*DYu^s_s2%{0% z`tWgf)1h%|++q`YDxEsxoEW@;wqaw;YULDXq=I|r6`srx z+aLjZn4+QRsIvvQi6(kI0A*YRSC(O?)Y!S>cgiXw#NH3hnKs+HnQ@`jK4s-3IPpV- z7bglVa?>+f((1AJ8;Z~yu-5nnto1cu6S4DTc$f4G{QU=FjX|2BOUf>kTdAo)Zf98! zS9}2av2NTb0SiFzh2MZm(EEKStI%mZ=p@<*7RXUWzgFg#2{jey-TO5r8FA8z7NT2d zXer6%1MG>l=cI6Ut1yW{2ul~UiAqW}kg_K5WQ4Jkb@JU+ipP(ioXsL!CGPyEySp6h{Vfm`lKksJBvg3o)() zt3HCT*>_R@3fSfIYEqqDzo813dt1p?S(Ab>P$W%I7RB4GsKXInVL^XfhT0M8WTIbn ztVpw<_WGq1>`{e+1OhNwI78AqA~n$%Ir8!DGPr+3KmNVJ?rW1BLp$=Zy2#o z25ZdwXY)^ma1HO%u8tH+jVRw$7eU>W{9jU-W)&_F!O%tIp1oKmq7f+XB>jG;@8uGlWKpi^Jlxo^8I-khYU(={e|}Ft-|H23vdIy<#1u&XcrEB zvYkbpYpFW4#x#;(47*NqL)}%$^#gLp)n ze}x~t!fs`#bd^KJ;2DPb50~fTjp$P&Hymf0S#O>JvKl17R(~jUI{}?`lN{0gwwf&!rTYn?LF&?7E_k zp5cCNM(uy(m3o&v8j?<4`+(JbhKnN*l!DsxD=Gr3DT6{3>w)3Z)2NFqe*5jFebK~; z6NTqQpxI9vg}<6BsT`bX>rV%nXEIaf-2&HfT%{gcDVNNOeRH!kYDUiMA16&8)R(2l z45^?I=)vKBMW5-(@Ub07d>tM2Z&T*%mI)lxxWF3&V=KxA9zJ;RO~o^|rHQ2EO6*(I zHI_mCBIJPTkxdX}O!1PMl-Fer%t%XJYnW7|7jwrwOxpk2|0Cx4b?oMdWXeiSUyu17^A zOfSpG>|ectsp@{`Q9~%{*J4DO=T4GN6XuOdnQ=uHley<_K{@;=?cUw|y894?W(M}+ zqeRySw34`tjU;2Ap8R=vW?>ZsGw4sDVgpQj+qWU-L_B;5$b^?n6>^pgG68dB7A!lz zef#?DN||qDqgP78ZMBwau`?P-jyJp_`x%OvHr;zzm0dsA)*cvHhWba8a@QV{3uup7 zPwMIu1C-uRPr5W80uW+#c}XJ9G}VK?IbcE%EQfe1q{gwgB_rwbTv+c;X!qzIi@H(JpqSg8Z=ZyGY16<5i@#L z+=NZ4QkRG@wylOb157RHA(bxf{!KiS zFf~p(BA~FX1?K`A_bC!nAt)~@9@}%?eHz$Ey}*VGpAeXqk2NhqwW@)#c8vXK#T)$j z$nEE(b2&TOL<(r6_=x0v_^=~*PHz%pde6$kNCBPt)7TZEGSf(+3`xo*|9PBGUvLC3 zSRg3H=x8d=>F4BcC!U!4N{|lexKW{EHW0-#Qgx3 zA^iWLyiA_9SNLRau?7IYmXIkfoCfX2ogf?Y8)<<6K(>Yu8bd#m6@DRWYWmcgW2E># zO@u?SGS*yA71_rbNBAZ+>#z8gEKd7eBFz7KJK^(guJ$ey4L4CtSrU4 z@zQw09_wS1;66mLW(J#i&kBA~&6AQ+0shru`hvoHrLOjaGz!dY1{MGuXN+tJKFuj^ z3A%=a3Ybtz#%*>>;7#DCigsh3=^ECGP<_F~TsTo9ZC38oyxf)Yu3B1khx0IQ>y0YQ0 z8IkVssykRCpfx@jCQTQ$ojjLo3o|foXcNv3(Kj=Farv-X8_qj{F@@|v{uWF=uF&jC zjs~;L1iHkz<*Uc`TuTB$J{Aj=Vu|~E7v^jdLnm9yf_xqh2HW{1OXVwSWoF;4D~!oX z1{;^OTVJ!u>Cu_fv;gmy`0~?BRis(Z2|R0V9WLHx+%}<20>WwF+ep6eGpgsV-#cmB z$Y5C+qa$rf>89ea(6$0nncyl1ic5JbrE=C-pfD^q>&o5>N)7ukXIh89h{uG?i;fR| zNhGk7ped+SN{)nBU>L27=jH+Xh-J?Rw~^h+T@K)!I(zo)J+XcJ_7(jqu`gh@bWV)@ zpa2zvL08;ln2NBl2Axr?zNz~xgI~xT4?zdn0AcJ-PL6?!HFL^XxEGv1CvL4KbHpH0 zPj{FMzol6nh9Q3!FF5)Vemb{s#?r}5pp!8;N!tV65~{C*-~KB z5=}(^C^muGZ#v#!XgHiO%rp)Q!iiVX&`3$#)e_k+&}b&om^v3He-iYVhT?JJ(dq!{ z>nmL_J>}y=jFV1~2s>D&o}+K_c9Or^Hk5Y~RzI3wd#ir(p@GaPLPQ%uFz&Rt*Ch;P z>AvI*{%x4-V)by6E>UQ)s!VAu2wcXQ0WK!66fuMi=?`Ts5^t8Y^z`y|3;3nv#gskX zkr%sBet?Y1M0&!s=gt;f@ZbA#1{iYw(g0J)gn>pq-#?82juw@Tf_(kt{7K5|;u`t! zlb>L#y+MMcX1*ed0bt-AI;7K5Pr1b>w$+dow)GS6ZD%`HowP$pJUW{3$6jF}cTi_D zypFaXAXj*DN$UgRyCH7AG8_WgOpK+RHR^p(i3kM~*@F4o`J|of`Eb&6VeN_VqAF#4 zgG^*;tIj1UZM`gpRx);2aSxSD_Tf^@+`x;t6$HK>-Tenjk41R<368+Jp0!^J9zVg9 zzjpjITqDt>6hqb&sJN1<;uNP%e^Utu9nxXUwEaltH0W#C_NS`_qvqBq`W?Gud{pkr zhf}48lD3?mSDO6)Cndz~}Jc`Bf3Yh{Tm(uVEygmFi76 zB)w>(Gpu>@=8hcwqI@Eb;-zc(=Hpj}94jG|wbV_k^JK9=1efP+$L&0=#i@19Ud@tNLlSkF5r7q+F@*?xeks-?p9A}nmVi=#V} z8ldIRry@5JQyndu!g-10N}*=*K{?VYc0#Sm@ z?_A4aIQ1*w&+?TC841gX?N2=9j0qX|(C0g{2V#w;Te)3HE6iZ- zM+jAZIIXEeSWU6-(#}uh_k!-AjD6BRpP9)aB7C90)I{dr%6Mp*t~0LuR$t!}+yxm( z3sh=8VM4PJig7}wb*ZHjX;6xUUYec4aTD&eR9{5N4x<|x=6DE05z!uVUDEJ}E2JJJ z!aA>+=)wd0?A)?tu?*Rh#?;f%gI`a|ya zRi6J%gU%vzxAisGdR59S#BSOY=hDm2Y^1JImId1ctk>AVyKiCsgPdY_X7=gUb)AW? z=0FNp8RjM(U}@|Nag&l-hB6mgj=FPybXbVn`5hDf){W~wvCpp!^4&hnsQ%8%oB$(W`K{gh9MOVK{xdqM1^I{-o%Cxd0?- z9|7s+DEybg&Kj-A$#jue#Tos?XcTNMZwUA(@!){Eq}B2= zRaNou_DLJ~et!qwixkJp&$M@Nd@^#%9GkKz5Rb7v!^1xZF4JBgwSKMZvu^qKUw4f- z_$V!IW9u23_Z1FT&l|;Co-X&(ZlR%};XGRp<~|7vA3@5sA}dmDT*4lRo0IhWSFEqi z$?wp;`=1JTCb@#Smy9kxtt`?lxib*hq8!o zKt&VJU3+27KxGvtiRdK%M$( z>C$Wg8qZW@Ox9jRi8$#V#9ul_A5Z)D!AD*cgrsP9)&2+F_fuEgp&Z|rWTOv>@)1o~ zcr3jj%JJzEaR3PmekuZ}%7EHCr9cw9LAa33a4wQ%9D78-5*34e&W<&SZ0Du{ET&O5 zc$t;1 zf?A|M3GVh+ul$uE#&g2a@kNmp#$jMC+bc5mb=N~HzuqS+vnE34ppMX1 z*(kz=F+U(@i@a36`wwxc^#IOxxTH{s6sTH9V9u%J`kd>Z{YP4Y;c>?J6)(ACBgZtr^g?B7OK!J zWFE&jivV7xbDTU7lR#Rqd&R(8-+qFkont(KRBm6+yUTHHqxh0{WlD^a*H0BNL4-og zWHri!$s~j_R7>O(QfyH4T#A$P&~I21dH1I;!m_mdDcecGHVaZ00E=4fG#I%WJaDc@ z+_tNrBg|2(&Q$;0l7DZOQcWTz6bOQHy5Z~dD;Ce^6lIxZlaN5ZroQ(u@IZq)Qsbt~ z=gdD%t+wyQYmuXh*k<+U#m|en)@6E3Uc7YV_Qtm><8#a1pJ4%ia-sR*C3YHHrvQmV7DtWv^JkRM~_^<9&vgVDOow;vpDB2)Ey+;H>+7GHoQ_#--0Sau2wTmgsIDE1c5WKv8 z`X2%@RtPnTwO@1}9<3>h&^kUdHq_R{q~de!6W3LNYKgJ$2bfft+Yb*|xhjz5`%O@D zM@O}9#d-p2!M3$l(A)EvLZxxJ4?tV<@Q_^IbK`>tF(pu%NBeaho$B|pxwXu0cTYQd0kYtQwV_DA-YB?FY_&-b|;)?UM~ zdGnE(!#;I&b?mZ;!3joQK0ZS~fIFlWE?23IIkxlmty}l$xUMAU_+^FoPkInDgfD^Z zScmw3*>-0qfU1emKtx7^0kZYCsW;ng8|{{TYEJy(Gg=0|9o7#$u5WOSzUafLOTs@L z$o?UI>bG$tGQ8gJIHNVm_u`kd>&=vvcjf2)ru*brbNzu2?i+u%?#u1Ee(Pu@NYl<> z*fkNKfxVsLjG!$<(0l-Cj*MO1aHh=1Uj4d@Ff(W$R375)887Gf5j7DAs8ERLhDsM8 z&i&&tdI)&Z2UDR7^x#BwDGmj|p=l-OB{XdU*-Lw;Ro~+&drsa05pFQ1u^mS*gr9#> zPfC5^y-s0P2?S=xGlVir%174(Xu5}ovLYvWc*?X*v?6(ByE)Eg(oRkY2H$~Wv7V_Fb(pv(t zf8avONu3%3fR%U5lKcha-+3tzK8Bz4zgoC_QE|q}ycm*58FrvOCP_FZtg*z8v>A;q zwvd|S4&hSLZNB&9#_IKr77KCazDJL+Gqly))4uM$-(T99HnWb0V?OS=XamBWix|yxQ=WV%g;ljRv`PRek?YA~O zq*K-{?H*6SvlH!CpqOIVFS>;{1->%X)6qHjmbOA(3ZZ&Pzaqka;x5!oo^f+?sqPHw z(DN%eBud-1cN_7Zo+t^gnEea11J+9quNbgIddkv!ha%C@;~5AQoumjTdA~}g8(u!+ z@6Ti2(j7m4(dWa`f=_A(w4V6wou6yBL3cv4L1SoMn9X4Ka}q5yiX%heR zJT1Zo{g0lXo-CXlvvl5ukMy|T03bf37|sL-(O7qL#pok)?q!^uEJ^gWo;Sb<1<4gv z@RluGhOU+qFS)SJtzI$=wKk7(JDN-)C_bx=p)Gpy-T`0VUqCE(Y+F%ejh4B387V9l z%ag5T&3hKP#f#EKrE?&QkgjhhIXRqAMD9@z2ZfSW2lTy@9G5_UsUJMSiA6yFAEjpa zgZp#OGos^mZHy?Y?yY+NY?Q*!F>u%2@gro!U6owlDk?Rhd(C?bxiO2FX_TQ~(85wo3=4FDN`r9_M^E#EPTpr3;QTWX&#>={P(HIk*v&8j# z`cSk=lkd%)$QE5Ax$ z7g{hF-|Z#!r_6>f5DK!}S!+TRY;gK_gJ0cg?2~vl>l;tA$30^C47D-9RwJ&9{G#sj zcnupQUQG~(r%ahW%>l**oBHcY8{m1#^%2kdOPF?r7RXJe*Cb_>NdH%-h-#bDXiY)g zoGBeb+l*@LvEg%cP|Qz20bX88fkpK4!s86SIIVl9(xq%$RqHkFSRkuntG%mldVKEI zDJrD;MA(%_06UJ{#Jn0#o)G7U7#cfmnYB?GH-$^!ok=UX$@g^YvEZwAe0MYcRQMm0 zedR!40wvh)WZ&wfq}yp}6{~apuFElFR>QTTI7o8gq{g*l$CIH-Ga^0ePI=i!L@1Gm zvTgPhx;)==y>{j|9WG}nb9vPEZMMtA$RgjeoUT_z3Du&(_Q?MI=5NxY!%h)9Fx%`e z9h(C-9=E&6nvq7}qR&ZS9R_2uJ7{t$oV0B85#doZU3BZ?!NJYmK#7SC{`E`QBb6lG zp->SzzviVrc<}wu1dc|Z7y#9iX9Q!v@c=r76s_@Z-*Z*~GL01TE=Y1v;<4vgQvke~ zyDX*0$$L^b)i?oNi|kA zHM;2LX4y+G>tsC`U&bm=0v;vqniS{wcf-YAp0lUlz0&2eD@m&~@DLvJi9$?e@isZi zf-Wj3r*waV!~ll@f5*1U8)ZF?&{B$fxwQ?P9-ZqvrHWBy(4P`^iDPH??pAM~%1@1k zDU>1fmK_{AVE|!#T>Qk(=m$^mU+Hq^oug2hDoi0GYYq7o5jhOIP9O?VAgv+CxTm*n z-5Puy)ccbj@bu0Xv7}I+4_DKz&r9JzV?$`n^X7Nercm=uPZH~|`gbntD|)U%-zg9T z0aQfjuCMQO0oR(4zKmo*bf07fk<#(xZY(C^`Kp3UNEb>rMQnno^qyD$KYEoabEcUp z!6x&GVe{mrzz&zREqc^E(8D+esBF9A&v_eDT1N9{`03faMO_HX>A;eSA8wFUaD?=C zu}buCrFxmeNfo#B#YUo!7^1C7pou_Yn79mK+~0~LWh=_BKLj#~(a8yuGsZhO_^PS^ z08k+Y6eq1ph0;2~ZOwx=b5W*5%(`&1+wZ^q7RD3v83l8!a=6Z6N`3|lwJ>+SRYnYi zWtbPkX|9(fG0Bon;PK=VYm1lIyOqDXJyg;5i%F11=j9`}($e+*WugE-GZ#%?Z#oUUY_Eoo6uT?Yv36s)H!*1 zJ^*eu@O*jw`^Bv#kJvZKV3VOh_3hg~-@*Kf5ZZAXJt0|inHs2<+l_kI8sL54U}2hx zf_Fq7&1)vO)=pUAF}A1JhMj%(f$I2WMQPIqK*v`=>)KW^_bJC%RA%Q2HygtL0E6x< zxw$Vn;z_95CDfp%vW>#cHQ^m{auXDs;EzkpRnD0(1^?!C>%5ctNe_m{=XdCkI&2{C zPL+~J!x6y$Zp~SifEZcooH*8LcMss|kx=T>4%2}w0u1+!_R+>YwuzXeJB4nZ{ z?XV@w?775K>W+?sABZ0V*o7laAzzuvzzN|*0zIjx(74q5_kVppy|%WN&gQJH<2){c z2dOG}Co%&ut>;6|S?N;U@KoUqKZruM$;@Q`7o-@jkX;ADPV>#A11VmiM9XM}x1ec@ zKS#|w4~!$wBa{cdyHWISrMoL$Znt9jBS8dCvy4?ntwIR$C8@D?JdKCIlCSsM>!tAR zq`v9ieUKr<0SoFx9}EY{18|U=#rgA6p$(sPZh}DejgI3fKqlsQsD9)cVQE*ws5 zl!f72lc z#yTt8bnaO2H6%9X0D)lqg+(d$@uXF!OA&q?^B)0)O~7j5(@SIrck}!Zs(O}W=r?&F7MEF`PKGC zuU=bz8MdS`ec=8h%rZT%|E~gYsmkg#xj%+a)>m1^kWhoM3vRXFrhYZ6q{yV$<4t4k zpNjdQZJ+#)$s8#>Dh`C-dRt_I; zih(Tb8gG^0ur+U{KX`hv;Nqvo!%nUP_f7Chvew>Sd_rmc`z0-q3^ZvfPZ?9-i(i3Q zXh=H^#uwtaaA~`M`OEB3;Q>*cSz4=u+5Ka^eoF@bJrC9ve>C@)X1s60vZ$TPm9PEY zcQoJZE7Sl;49LU#843|x8d=NCPNh2i)pAk6#&t$t`k5S9u6}cC?{PhC2CQ!Av@1R| z!Y9`w!nH;HwBw5>bm;K>tm1AoQNWc#nEz#Qadm}*VTRD)V3(+r)<91sL|PZ62Wo$? zY8sGNNnR&hSLq;$O`!V7m^Xzc799CFGIt8^Xedl;Va2{J;3h|YN6tzK7c4Cw!whm= z@wJf2z8x)m!tOZi?fU5Zb8&681KQTN4eQbK#OocFh2*Xm&faS;kH`cnmYC*f9SEOT zJ77KJnL{I&*#+Ni>n-$E5ej5x9y<_F4^o)us!}Z*Ps`=M8+c;ZK5r6#e9B1CIZ*N% zC?{Cjb(l-wI?FuvO&`6o#1K|nju5UNB5T*Bj&2C2?T zo=Kl%KKijZ-gPNp*i;T72(#Ig(=tDUN?f|A54NZ^-Ck4e6w_YMW^TqYAkkSOz*SXfUJzb5Gemkq1w+^S4Hz)l zw~6<5cakd?viJX6UoYK`LqO-kN`BL{nPPd?tw+JV($u~od9C<1f}fF5MGSskH%? zhws3o@t@wlxjUt|>aZ09Zr8eEA6$E9MPTibXR1E_(~q`keqV$(Z>-z2PQ@pH!2md< zp}3eyCaa%L5d*>fw6ubF9)K18G#M@4R7pYy*>z0`9V-v-E)BPwF3H?>#V|Gq@x@8n zh@2ijDB4!g7|_>{j8Ai(#K-aCH3YO1P*wonT)0Y%FP`;k#g7sY)z-Gs;s2DrSqX8= zro2U-{vXq(!6ZyvNsl}n2I0E3-;M{?=g_Up@$i+sk)G0V+a$1&#J59e*$JM)1MFic zNwe&1QouELr%s((l67X5iAXb_Xj*6V zs>SUt5?F1+PL7eI!Fns->`q@zWBY@r6)En7m0wSu_#s)sd>^Hvi_ei( z<+A2EaIks1|I4^QNLMJ%?-$KShLufP8tFKWgo6@zI%6U&I@LVpHw~;qrgRCcXy|-U z&Gt&2N>$66Yk3BX4#h6mwWuh1cEr~0TXeSD+a{CPN)XUDkG<4=g7cj3HPQsqU2&hF^;bCwlj|KJCdif;rS>g!p;O zLB6VRf++iBhyhidw9@895aVfSO%po*w;!gMJ)bkFZqE(7+ar1}8zns1Oy;zH8s)+Q zJ-SP~D)zf(_78WO5dZxYHdC)lE7v2uuF(m7Iq4RSfgT?}pu;EGIK)Bw{oIX0?d4k@owMc`Y~p-fOKXEt{&w zpOw!8=8%P?o6LzYH;b5^wfHCo4sWe~By|yLh#0Dgo>rXPNc4@SOfjV`ltrp2XdUw< z8bdSagK-ee35sPT43Ao?GPXRmR@eTVWos3k?^VOIoSdec2UJ%dp$y8|9) z^)}zyPWErOR8+9=N|uvuRcXJnSj~>xY@;?srAI%>zM5S$ro;MaUn)j-XxY&4RJvHk z%Rgun+Ld~H<#|?2H8?m=qNJXud+;MJN<<+F1rVp0?+H%EQij9a$C4)Dbv~RQA$7qD zebWVW_lOkgM*GxN!u~SGIi!;Q;_c$PwefY36+v^KEq)IJXIw9FReFy%qh<=e~s3QxU@hph(qSzA~Pugp2V% z7b_0@U3o>lags(=1TG??_`k9+!5*FR6!H<|Zp?YE-_ z4Z0JR-DmXZw8d~t)lWoj;w~iyCX64(1=M-;n6M{m@KnR~_pUgPkwEpl+B)XJ8L{}$orNEs8(Bt}OO?|8kItn1G-5sPxgbEs6y(=ykGW}EGdKB5V;^fpN~N@6 zV)zWSR(p6oRT-V=f(Cv3Hwv#qP!kM8Wu z`tz6EY5R&(`?bfAGmnA780i_r=BJaxDr zGc`R3pu#y7woJwAwbzG{Z}nC(ocOD$LN_ZE#cR(X6_$!wYU9sevr^;U&z1|$&}uiV z;I1VchqX)IZAzU&PW@5M#EpB2iV`Wul>R`Ny`rI+0$pd&3Etj+O$HP z7nR?}zf*Uc`QV*8Rkc@}40s0bM+jXKv84MC3y(g1kzcyozgTzw{uyTjcb%L?SI#!d zKrOY_wX7`gn_#uF#&+Ab(XF_5wm<@v_Lu>?J&y?T+ppUOS)jf3sh8|eF=WL)-%DF9 zJgX)bS13~}D>V}mP{OJ3dy z%;<&P zHBV)K`T6?3)Xk%@P0D)LC3yGbVyKPt{@MXn)oJ8?rB|*6u7)M|2R*r1G3QLjNt?T^ z`VJH5Ayqpnt8%70UYkB(%9!yRkDKqa)IGH?Xvvy;2Xl?i&FKG6h}H;;A@Pcye5)>B z&kBUU5qh<6hfS}i6(GB4-K;f8GJWEJNk8Aa3qqB-;aP5w8Ui4E1grsO{u!KyVVrnr zv$WdG*3PzCu_Jie)Tzo(V`r3SM)?PAsLr4J^fT#YcErMaf#Y4?PwS%9X@k$qWT#7x zpERPK8cH^e_RLrx|DeN-xOYj5(jxQ6x=t~T=~-g+@cPbmoqE`3_t4Zh{pnKkH{3g= z=j*?2gbZ*1gP?g7>eAmzcpq%j88zye;45&;Dvktm2B_T2!3pgzM#TcuaKINJTL?^yaQw!;3~r7isB$mr1V z>*Hb!wKIu%`Z(|DkZ?sm&`|f8UZl6pDmIaX^?7fh@TaY6z}0--DVj~DZ&tKSrJfQ= zt|H+mg;mm~B(m*#zf~67=vN11NIK;I`reV!1EcsX{du$Q(ybybJT2^aal5`Lkc-%) zbLu3%titA29BgHl+hC@IS?4a@RPFYOoiBL<&Xx1(h^|*&u4p-v%>^&-?di0A8leQ7 zoQs1usd50P7+ah&zItMsdHfbsCO(Cks1n*|lm*l09;YTM2igHsIBdj-xDQqro_ z+qXYvatK++@gTMObp@wJ{(QV55XCX1< zj0grkrNyx!69*^(28uhTbQ=zgdyi|xeSosDRkTM7zW3*olDkvx>Ax`LAN>Z^eJ7c3 zb4yg_AaZN!vBuWAU$@bx3#n;HQeB~Ti}#Gb=^`O~Ls3funs}57uTHo5GD>|5d6NbS zfk~3gy`MTY@zoG9df__9xzh3D*nbm!ls7jzL~~W8raJo{F}ak5dVd9f+*{|I0=8)1 zoQzTWwz3)|@e-ncsJ&M6jZ@GRdHW8Sd5#E+w~k9b3eXM0+w`Q ze;0ZgFNBiQp=0A`E?~3@dK+>2R!ojpRizhun{E#XJ^153DJU2KHETXr{H@y*1Wx5r zKBKx+c=8J)GR!LWylpnt%ZJe8KwWy1?aBda?D-)TI8dqmMC=ekr5GV#NrNs6|MoEP z1M0ajI>(h{Q&7b?>;_v`_OGP?7CT^}RkNEK9P`T%r8=Ifug_j9=9i+Rk~Q%tkSR%^ zlWtGuw`|)vh@MpKC6FHyBejP*;wk}rpI?q!;z9uANBH~{b)Ms*{LiIZ8F1k+Nwh^*2XWFCMTVjkaGMO{r#uVJfg=bj^+t>zx} z>V-d$>hq#Ev_nK8lmrA1r>oMw=zzAZjm!@N2yT|gKsNnlt3JM*l%4`Yorx|^$0cv9 z*%`}o#--??MJpk?t`)NeVUFUC=j80&>IhiBuAh{iklOS?^E$wKSn-T6#t$iUE$BhHEx?u_MDeOj`+620o4?h;% zZ2yFiZ+6aZ(po45P-6Dbl{s1#*_KpWKq*&d`F$5GyMFUf#e>jqe;6Asp-BRLFJU06 zPVb`L)XI%!9NwkjHx?H)=v5eao$ z^b51TpT%C)Z#wb4a-haYiwuqaq1@I=eq9^guS6VOQ?{l)q3p~v=L_+Bv|h*f9o;v- z^W?4D{C4HsZfQL+W@@xfWYD~J&*r*mC>d?}@L{Pm+)wl>s(;#~@2KAbr#ia0b?aGS-s{ocs53*hM|?heA@#=Q zfXpA2n%huNh%-+va%>^}q>pMk0Uq++MbC%J@oBfA>1^l?eTcYIWM2gEzyzNb!F~C- z-tLUz(Vd&@<#`QB{_@z1DEq~Gh#K<;8@btP9lvH2<#a3T^Dg?u z6BY5H)ow7`N5)BbqYF%Hn9I8;Z75heQcQNh;uf>Y^ok_dKTTW{EdZlrXA6_jja?GQ zB95HGr6Zf=4(Hb|4W` z5N2266(Lf$q9KxQ39*a9zvUShetWZC)3Wu7$#piczT&xh?`Wy2niU`(G^edA7V?3+ zc6A#u4IP^~mz&sAW6tF>di9kiYdN%G(o}oY(Z3T(Q%{dKeekHRNnG{cZ%kmkYdmLA z$A8~gO1Duqbcbb94ktVc#K--z9r1+V@bN9%=^%di-mO)(K9jEN)?Qz)?-^nUpV7mH zJyfJYUe7-xpbf*zAdK>&g!qO+!UCJwxa=S`lJbsm|&6iugu1)T#34ryuDyC7~QH*(bT)bN*HrLK^>)O0eU-)y92Yn0ELgV9zo=5fvmv{ru}Y2o&FH0FOO>lVJr^G*QGWJ!lMAm&hmR-LFfIP9ml5_&pSZTJ zo4+6cbLXD3{K}47%q&db6LJ!<8UVhJ5tZ$h|HTjKzd*C@74eSQSGYDze@AN_4D-9U zp8Q>_abG|FX~OCYs*7lb$v<#=`xy$wKxj*#Co-*@r74X?AUnZ&TqB_z)1jt8Gwq?3(G_Q>R`sqJpdM(MJ%E0SOM`P1O0cWbXNV@Wv?2t{)-f&S^k zU;~zZ)von*2GHidf3upuY47p%u;iax+k+|F%oq1>@#qE&k(lmLuw#VqtF8?pz4lY( z^t6sy`s?_Hn&VgM%4N=q`)l+~wu01yJ~V5bDDUd~pLdOXjOIXyVrq50Nk!ug)YPn6@y6%RIE>%}6fd=PVp3_4 z3(X^n5<{l-Fd6A%CUy93Jm(HAyzpct`GFI6jP%a;gk&E=!Cz6tud8YO_a!pzvuzcm z@qn^tu&~|r?$PtWr0P)FGq?&eF6Sub&w-C{dD?b=Aiup;!+DfM7FJtwRHT z9Fkk#6STHV#FG(v+_w8LP1KZk9!=GWZ&CB3V!a0K7KDq@4<1go8#Xdc{BOm2-8gXA z!y1PTcOBAJIp>|d#uw3wZ{T!tJ|)bY>B(|@``R6Q>kw@`NF_8qpy{+x+=d&|K?j3L z%s=0|G&_Q)8y1=e?roo)9v^-U050mR0UIeJH{-;ypX~bHaXxMtJ34s#Y~7gDx5Ha+ zSJZ-v_pvy$uKtUZ0-@CMS!Nc6jW5MFLqu89m0i=Fy$&d_3on^?bYElQe9#W{z`Cylm;M-}Lys zg*`W_`_5m|<#BF3P9oE-nKGKS9q-A|J&W@3z>?}VG>>7ba#dw@31jrIe28h4+l*tj z%`~A2oo~H}MZK=6qW_)B^nsLMRdhmR z%D7Z$MRk-E-AXvs-uiCvL3!M*1n8w>@ElGsmj{Qw{j#ij(ZhQ#(K#v|Kh@?Wu~>kz zL#p~37F}3Ab=>%^;vSNs#MjKaeP)bA#}QXQ zQ0L0n2IfCFoV96_v3>g07!Cq&VZ{c?8v*%XxPQ+mU&HB6MT^iiu=e zsAwO4uq2Y2o-|UC04$!VNA#A|O*W^H7FZJTj?VUchF7gyNBHV+^oHG#cyGJE)4N7? zP%J=sZ~fr5RQd2{Yzo9vkTcb>^99R60@b#iFIWJKc@c#PR47zAGH*@rp6iS63dS2v z{Ms4>xb);q!npM(olp4#S*kh2D12?(>%*AAHLo(WETLlBIZNsyCAC%vg(1D2rolm< zIn%y~xq$UuneZs$wQDsH67WMg>`9*Be3U ze=a}v%eBnJ`b%-4*Dg6kZ?yXtA|R59gJ@<$+a3vc_$v1C+&E%O38lYGgQ|Qq$EC}< z-|vErN)uUh{P>rBdOe-=M$DLN!>xtTG^aMKPeDogWv_*3Ba&(kQ>B&4O8O6G4VroIu9I6g--d2oZ)uo%eA{}PA}ScS zm0`S!mXne;1Y6OlLCafzdo|%MLsYk5%cUf*kLc!0bx6v_VWF5a!~6{jj~l&R*`{8` zO$nviF=-)3dS32WSMUx4W`1*j*6f-E3FNt?njv)By59Wx=bzgo_U9YT{VqH!jBg=r zbBE}kRtk9lcJ4)Tb1D;4ri2S701$r+FuUZ?;>hoBUt%+F+|hLH6L*a*-(s<}&v^Ji zOZ7b*p~34vl0)%BJURRCRI1R04v#XiPxXsER&e3`c^OOONH*&8QRuq3gGq@msiL@2 zQMFnuV7Ay9@}#*Poev3O@24c=IG4!rY#hQQeQidg_~ z8vzDx*_~6<)ivYtg#W9maNH3wG@wPPZ*)YPS5J8xhrWuuvBM0CJPg4+^*$jQ>s-PU z>h!sV0d=;zS=cFd1AlNpzU2vFWGh)c<*Z^X95PJ z`ZEyDg=#VR0r2DJe&62NV8s?o{72vAwnq-GtOot+WYt=fae_2dp5@%{(9eiQ!#sN>m1b=>-^|R(lj}EH0X$g_c9rYmdYWft@rD<{}dV4ighK~2= z5Mf_5lNqgmNo)0n!{+DfzuWp~^3M zHI)aOM-q1_;7HH*Y0fb>*XS0(1toXKj7y}og0%tvz`^78%Kvu%fwMogaJhf3gZ|?` zFKg(%mIl^n#*rqcygm{@Uw|yRh5ZuQw7&+)cWZT?x0hbGO?Bj5sU9B5oOkdsVcln} zx1C52IZ=8`^sFL`wZr6#dGDi1B?MGa)Cq?KuBr*pp+mIFd2u~D1w?G|d_FTB+PePs z+i&+DUGYm8V_>y4%SqF9!=Kx3%q%&2;fZIilXq!*PpiM~-_RZ0E5FSogQn~8r5ol1 z+humrx3WD9}21f3Im zJ=N2&kGf(iCA3zM-{u!?>|RClPl$yF6{T7tFLQJ*@KVx7e}g!7B=y! zSiE}nYCdaaSasxJn#Wdu_1?B+WU+2Xm~@+KHa7k_;eogJ>ZGc)>IokTm1`^q?f+?g zk7lt3oo2M>QhF!DLl86wG|>H@wg=7w4+PHhNf3F4B%Pdy4USSu3?3=wMEC^=-ix;3 z_NqLxLqo%HF*U*F)=dSd66-?@ zsz9IA?=y!mm~V9=xfDkRAxf7~IuQiv>Cie}Uhp1Wpox8l1^SSW|f)+=-v0;IEQGSae=vK}<#43sZ3*#B)&@Q>H^q+*dXP z27no4MYBk&QMr`WLS@R1Y}U^@FXztZxD?M{3v+)PySwSjubV6@xY>1d26%4hY!~a( zz_p+JImF5;4g%d8$m~wolpgPw1?=7(1S{Q;FK0$r99JPFBR|4Qy_cRYt9mf^M?f^5 z(g_ZBYq>uHw9<9~3auT>FX+y`;IKpWGyj_V$agT~>Ie zKl$0A<~W$p9OxnUVeE{X&uL@AeXP$M$9G%0n%bA$Iz!Cim<8&?Zxxa&HbZBWMC6^-M*EU?Tg`8I^98eG`Y^T)q#{hciq(FgRj+>)L^YU%e6<_qS3UoxvLwsYCnTGB-N- zea6YOenmodHijo_qM~lfnM6gREOlO_R5ePy2Ll<9W<#y+AeN&9A(EJy-7-iR1z6MyT#XGugVM?sO}8w}i%`^6SsV%z8pcThxO*2s_$fz($r*-vzWLUURu;{`&=jt^dD z_jo<|=Z-UvQTo}~{zE*0it=>WaQ6>$WiX_u+Yq9bRP>ByB7^6Z#Z3P$5kOr$J+8S^ z*a|}VIZ7b1pe>+>C&?CN!g~g3i`JO&$Y!b2vt_z6eg?EKTLh;)7sq$NvPux#5&|7n zl>5;k^MAXN!oaO5wCaY)I#jywwXdqrDiFY1d46$mvGnkP;?V|X0mTO{7O^_47wLIr zYpT=D(b{(7WztQ#a})jm7U8(bWCK~lB@~XQRu>@}h*C=YtH{&9F4h2M&-%Odu)67h zoMNObBRvir$pMiSDQ=5~9^)0K~WweTC8GJRpmky$xY-}S+r(s<1B9?M7efS6P7p_+RUe!ua|lP6D#Esj`1U!-Z6 zb`LhAzw*s3C7CLXj}`d4t8-MLeIu+5lQ?=Omy>MIog zD*^8&vzno%EaLQhdftAUxT6uqrL98ZurF)&*)jh}A`Y7&gCYqccKhe|W*oMBGCan( zCgB?;6S1c%z&ODiPvTRN(#oa()G`*s=-5zM>~*U)og z;Yh_xF&2}r>FH!TV216PQ48F<-7uQzxmkVRuAxG$nP6^izMn$$G%H~`XMpDYA&B1& z9Q7y}C^pzsyWcOBlT+<>Q<8Q=hJ@aA{-)3S2l0!Glh3u)oV8|RC#}(fq^)e&__3qL zk8S~P=e5Y$p?W_u{HO2(M;(6&-{(apdxciL0Vj**{by_rC%kur9G|*hv)l7~e1P%n zrV7pLr(d2qKV1BO*n97=Cev+im>J#TjBWOo5ouzlNs%JbM;%ZQL0XU&K$>(U(n56@ zaf_nT38APo>CMmsI4CVZlmMZFLO=*bI-!2+NpR0O=Y8L6@Avx7cg}l#*Zce$iSu-NE)j zWQPHWU@lGm2q#MW;ZNe|J{0m!LRTFsa7M3TRGI_VR70BdY$Nc7yO1 z1M2ul8$qCpa z1DQb`kV87@iNv5sVV`&dAfBg?%-qe;9Wk*WDD40oe*IDET|)!(Le`lC%`}t<$OFMH z2!;=e(-?UK$OwQ%HAXfGJ}~0dfA=B0`*e7szl_Sk$zI$;y5=$|krz=Tto9>pM2H>{ zjftfbL~Rh4MIoC~fnfU*tn-UDO>vWw7FWa%GC$d~ z6XYOCT<%GT%+@?MpBs)s-8Q*084SvKnzq?#UyHoj1otYFtcNN84WRw(a$ zDvrg%|8(5PRs0jV@5ZVzvinXx{oA#0JJ-?$ef^c`+1j@d931cf>4rHK!AHm;weuEJ z0oH`90UTVRuR*^b=?)~VOJ8Gsh|S{cjtB3D%I6R)tYCmL0VaU}c0wwEISnuYl7o4) zu*3~}pM$Un{G87ur~=TysXjIDLN?_?#LRWKz>sesYy|W8{Tn)f9p=;kF3CJWGVU0&WV4-@soSXaMSW z9OARM64xQ-#=OukS(!WsQQ{Zq40>Rcvhz?uFIaTi?pq*8W9qjcBxUa576Y12sN8mh zWrl7*&{M3LFMwNQg>Q5r$zSC7{YO^5X!j+k$wlZ`Ko@2KMr7cD;d@9Q)PJ**zwsMo zWfzgOsWJ2xj=$h+{KW%N27t;(15A28f91DH@!=0q;0 zFfox{mhk0;L{4CbAc~oUuB$89b3lD0`^`Vvg3VnWfsFy>#X)Nl>jZ2+wX>F@Dsnl% zhxTBcV-xYP{R*@`n1qIvT`>D0ZFyQ9=`95v=uc))xW0IT13``#w^&YuLkH-j9}%05 z#7-wpT*|MS4@C?qWQvW%Vnu%8`(8qCvfOENJXR__amaxnEIj#}3d#lrK8I> zPBYJUbCR{{Lx+(o11J2W#}s%O1WN)Cf7NIi0-b|T@*O(v7L%utnnpi}8(pe#g6jUm{DYVb4IlEj~viucGGFrV&+t>_=qwAofF8CunU_3tsp;owVC;4)Usic;~$a z?MEBHEzB$YethTr{;*SFNCi~!Dc9`}5h(o*BZikOttCfXaFW#jt-#HD`N! ze*P`bQe7LRxoTLVGWzxjKq+xox#M<5XzwK!2D^;Vj4uNqH3eXMH5n3gU_x}5f~UGw z7@ccz-wA%_l7&xAR;K4AucS47x(6ZS!Q_^9N`Ai76XM3`jf$6Q3F>^CZ4QJlYYuav zkBaahdqNK68pE961%>s}pY%BIe(?VGT-M0vmcSDQZ;Fj`(N?CMNF&nx^LdXMQ=YT3 z`=L66qm}1}^!X*sIY{<_3;*5a=1t(CWIDk03w|vGwqxZ->3%3>44Bv##6a>@Z(LxB zUW@qKXUVGiNtAfTk)A*`t3Q|haGVi<`RVO@j~{MS55AyP zz^)GTKL|f4rO~!?A?m_ybGAIV`{l!lEB>%i8OLfj@L=9ypabG87hs+bK&6ldIeT>P zYgmU+O&B+zc5`*@dJmZ4!}4$W8Q4=#=(m+KC=)XE9_N$mKKZN6!k>&(U%b@>@(G3^ zq!8*8qT>0u=apAJe}+{YB9AmfZ%|WJ^$7!1UDBwuvygsK2XZ<?B2E6Q@D{Pk{ zKm7XPv^3+#cxyX5QkLoAinrUpKYZv*%mg?wy?~AW^}Wo8=PPTgz2^m0pqdSp-TAe+ zoqAAs=gvWL7m6hKEuiy;?d$y0KkZzI?F`>P&?oZIpWIpNf9GpK&spne=U2Ahd6^UO z+pot*|IAV#|99dc)Bb$>^IjIt|Mu%QgZb_E%Lo6%rN5a+A@NBuEr9@jz%c!i++F+&^sf zi(gr~6pnW2df2kF3_;#-?oWLLa*_Yx5&lz0&vHi-k`@g@R_I>{ODGyiA&`5VEG;?x zo;K7KQy9rVU77r3DtuCit1Dga}=vaC3 zq-o$JIf?a9wp4cTl5J@pu^u9u?6^3|v-k9{j2~mZ5`XgZ2|jb=aoRg`WD{d%)yyx2 ztVAc9rhf0>uv_H-i_9IzLmmSbD^zi~-{rf^Mm;VawMZYP+aW^~L}DQfwzGFH@*=H4 z;VBG&3`cezMsCB_Hl2D4g*rk#(I|#q926P>_g+*{<@&>KweSVBm7n--^Fi4aGcm(Q zH3tEtusrRHTSb57@{!B@f@az?_X8RnFb`T{h^kztcdjrautbR zABzkm$QQ>fp@pWG*V2bfjE!5ovm=O7xzhCL69&loVPmU95T3;D%}e1KPsQy5G9z7F zpLZ^u#LcEr#Upfu2pU4~EtKeq8f{{pk_w%T_j^1w(%K8IGh>z@KIF>y=z%laz>@hplL$mWsOj;yc}gvph8) z+L>o?GeAbX`x0is(Fi?FdxsWv_(d8jfH6oePSJ1w5g#1t(58{J-aTw?3l>Y zdWQ#|lsYPy$umzd^?JSltZo^KL)Cr0#TeCvH8P#C^~}P}bzNsaoG!rKBZDSSJXpHt z8_cUhtk~6wWRciv-F|=q?5XEzoh}u`OKoEJbhD$29sTHLM?AG<^n}kWTu(fgzuZ23 zprlZjd6}ci;0J>EimKXMEpA%d5M!G>Mbp|DeVSFzHRSANvyIRbXXH3pSSu(S2UDl^ z;KXw1;vUt|lbM}jTgjGT#%Bh$EUZMCrz?v$cxVPAS3J0kq0;VaS79iHwkeXS4tb)% zuddCdB%W+GacwJjsjn4!5~c;mt{pFw=K^!pEv%=eG7)cnzIvh?ynN^%2j-`t7oILd z$1{~$v&z^+hik|Q#a_=u$@DUxc6f43;1e60LTbX*E3|h=lfxhva0gqA-+Yj)!i(L6Kus zQf3oYm^Qka8O;$KJ2;s_6?dOsH0CC_pY0_~4R&73)bG6?%5;Ag-pESw{IJ!7f`&WG zUCq4IPdil|C&Zs%h#Th8@}M8tn5Y#D{lZf-!u!Ttaa{ zVcfJ824;?HD;7r`&M+*l>b;Sna4kcj@w0{ixg~e(A^Dtu5beWYq4XrJ>T|8Pu+0D$ zavrv_HRib25^S-r!e3o`nsiHxcp*k=AKmEIj5V>eY@&+LiT0dzuy%Nrgw2hhA9|8D zut;X99`g_Vuguazl>D)coAxrMZEgv0PhRz4K@`Cl;Z|3#1dpX`$U`CTVWf}tIr)aOu* zK~)%`&2Qw(UMttt$ko*Jhveu@sti5%l;Yjfy-zY9p#Ax=QMN`sbYhN;l_*TF)45zd*io4HX%t|ifvm*q0Zc^T;J)9UG7GL+ZRUPVr<8&Hc= zxXNZ4LC{hGuakhAO&t<D#<0SOzDVIeJu=;^+L~)f z%A{%-8PU^J1dF;RT=k+^cVcP}ldA0W06N@d+w`ZG=*rd7XfM zLV^RW|IjOW;-#$4$Mp6O69?eMUg!b~IXqe7YbZtNEjBsgDW7=m91}^6W5)LeU2k_m zQF07*h0nm`cpTqH=QJ{z&FINV*Vl+&YQA8A@aS;aXrM`hu1kK*OM^{EUzw2rzYw>& zN}pXUE{M?;!rd{H`k0qt8X$*9F+b1dCX@5^hX^({mKK2d>HtuH6UX&*UW?#OHn~yw zK(p?%hO8ZDB`*Fo_)9zTJq%vt+tBOs0heUTI5=Z(=Rr&cG^U7gkkL-O)wVT|YbyBa zCP!0G+EPoRnRd2O(~McG=8X=iuK5@iA8y*S^=x}$yy#8W&{6G@f$cJmYAl;+k!Nvy zuy3zW=t-JV8r(qBVQq1nm3!e6W@&(b_J^KybR_aBRY$>_cvR@HtX10XpznUi)wf%l zjNwkCtE#JieW$IeH?@X7SQt}-hmJg6+dF2t@Z_SY=&3S+pU|q2N>L4E$QqBiPPqc zX2W^%R*%Z{h(%jVkGj)xm#1_mX?+jH@?>SfNEj^NA^1l5?H%{ zCBs0OR@;Rl>bEEDYmGU4#SL~k^P95bzg{ymwCXBygp+dtvdG(25_J#!7VtwY>qFaH z=fuU$9m;pcr(opXoo>s`02O{l<5gXb_o}U6v}(5KHAxHxBg_ht&f18merl*jB~4cd zgTXK!*Q`GFTP{w%5doa#S^kY-_66UX6)bry)_3C@^ zu}1<)-A9L@k&+L!a*!~Q0JL5|{8m1Zj-RirS+7)&fHD(B^VL5%=Sxb7)9pV#{A)?? z#CYLVExUl+*yw0qa0wytOL@n)tIN6YJkPA7zp4dG#8Lq zB)i4Ca!P41QrQ)_GP^aPN~W)@Ge!ke%FhQ(JDTIYsuvQ)y|?g#i|PHKu4atM*5FPv zIx>`_ORH$2nfm>|j83|H7RKgpwia#-ck5<#8aLB4Du@AD(YhKm-7XZW*vm`GYqMjp z-`m^0n}(JGT&9(PZpFRVnp{%j4pUnT#z5nO%qSShH{8)veFJTyx176ati>YnYB#rM zDveUv#y{L;69Z&}KljXjS-RId<&Vz0ME} zg&=L?-OEQ+ziP3Fv>-=KpYFey?o(bVC)1#BiB?3_q(Odj<=q(y)L*4b*qFmTC`Q|J7XyoP6@G{->9Nda;Wt@2s&ja<{#-28+#=lq1$ z)`y<73gSq)<+gRe{8-OMi)b;R!Dvdij{IgV6RT*CeiGy)xlkFLs~#RdO}ewG`Da~iE3EJSWxQ@aCWTNpV4A<3KG*1||qT>y(^W_xn< zeu(ojNF2t^H?sqyPiLaC8DAf&RHgm$$1|vDOB&K;0c63*lXm|c(c`gR9XZ{KHNy?Z8X0p=E$^^+zZXpN0giz{X-SnK`kITJ0X z6fjbLt9AT?M+3iH;ctd?wU|Q~v~O_bhK*3YNtooo83;KcA9+tFQ29y3ta9OV$^som z=eCB>{3MU9ZqMa&bb*66Z0*zVz(?53=BaIsY@^JmoR_ z5;wl$45(9*#>#!_<)%&T4l0z$R%srxXNzDgxkfFzxj2z$S?d{Xj_^JwhtmknlWLlm zTJ=C;ckI|@YMOCwx?t!D{kmsLD}=dzD^5xe6S9Q7G!;u*tI|Fmqw$De?)%tgKBDt{ zbiUsiP(e{6PeY!Sj2QS>LL2BMWW!8yyJE(bxBJ2Cijtv$GHGagJur~Ote}C;^u8s2 zThUVt+3&BX>87Wrhv>HwYyuc_=W@>g56gaNN~72)@GXXvrW@ZnR=@g7F%F*D&PHj1 zleS+YtYxZqjsA$!(_J~UEA)-=z|@dJcp+!^_owAnu(-Im?t4xFgedp4gu=o(Y2y)b z`Q&L#A>Z%aTu{(bCuZ5Oe^2`w^F2A0Jg}WM&4KQDV^;j@-Sw-ofeW(c%NcJ2`#*hZ za3JIkees=X?LQ4h(Z@)p_Vq2J=`;%cjCwsc=XShaDVWb%kH{prw@UQ%}k9F$?hZgQlSqjtW0-*uM)z&xoYt$lWYZ50dwCa0x`h7gjo=1aFV@S4(O*NYkW{k zeqc+LJiE9j6Q#l9$iia3M3mL}b1AJ32QwB_wiiw}K_|n&L@U8J}~x!YRG zL{2+obz)xrzRx4XXJ%PeU<{?VamOVatx+>{efu+B(JfqTQMrBE^Do>XQU02!O+`PHwv-~=^oxs5~XU7ssv<&(^taA z6;$F#r=F3=1zZ!f7-y6}Y_HDI&YknZY`&fAaEz{+Blvoy4?F%^Y1HbS9W$7B2|{b1 zwGQ`#(~cRY*tzLbW3lo;P1&yGsbxjGFKe1(_wEn+w7xmCy{Y)Mc9(iY;DYN`s}G+g z8ajn)1dMwH2tfbdo_l`&{z^#A)vl z4xUvEQq>*N!kAT{-Nt*p%iszHaAE5jiV`xu2k&f9+VHgR($d zj-6*wQeE+M)l9t^uE#)S+ghyYzEbYFe2?P5l0+*3!}$&=k)G1Z=zRn1!h2M;#B;_M zFAG@ZI;0EG!M~;sEXM41OQU;MGTLLS7mF0Ck%`B@nG*OWZMv$O(ds$|LV>`o;X_-; zLD_Q!sZIi(=h)0K=ipa@Viih@7;@mu2#7OW61zUyzUm!q|pgG}};w|$og z!nFg~&<)7+zruFZ2hm-t#TLenJT~9B4ZE~G3Y!C+aI6=RZia8eB__5azu{dfgdl9F z!H=5$ePy5d>gB=ZlF|c6^%JC3*7r)Ao=slw9~Yb42;3rX`zS->8v*sfuOYIdry$h% z3ppE=?X#3^PW-FZ>ZD;!JOXRQ%LDSMq*Cb86E=s)ZFQF3zOLMi=`pPdlni808+7wg zx~|fY8%bQcl(nRh6>aToBSSeH*6-0*-9I1NWEtysqgw_np-$@~N;V8WAcjmTePSun zoniU{#QG{fV=|x!#F#v`1U!Mnq4MH#4k@}jq?SLhk#*mzn6!n z(N2mu4oJsC{sv-nVViAD$8H-mW|H6zi5C)3?`xT9`dJx$bWm!h8H?Ht=?mqC;4iZo zWLxI;7wV(w`Wkwu{WM}V%&x_5foAg9vsRk_7@6+ zRXf`k_NH$-%t}?q+Qr4=?*`vVgd&0F|1=t5{Pr?~}#kcOfbb7V@|`1vUYzda6J1zHh%h=lZ3 zgGeL-F?HZAn_X;f(e|Z%jAE7b;(c3#$y*c2W5}yl&6SmvjSZ-&IUg`UN0-vdkwVe> z8h=hs&f=1il1wYgw|A}r!}x11iUeDNBp>n{-eqKNt{veAyGOJ^qpu0h1PlUGh!9U| zMehZ!El)SobTQ$72F>4`+OY-Xn8Sw8AwKu}d^ougq|F-<3$c`+G#o)-YOokVcvM;9+8sHsk*ez4Do?zej?Lw*LP9m^ObPG7`M1 zM)*w7>kc<_QJdS%2OUe-$N3yD;PdJZW>cRfdpW_NLuc$w-@~ypmj`~YI^u~YR4}ea z5R6+rz&?mwd-3TUo|dx-uIzsz?f`>Lj& z<>485Thfps%Uxig_z1b zeorJ@JL#_T> zCmpY{*+08NUSBIBigj2*(#U)%a7C^4!PX$uW!{rFnLSpQmaQ+0mtW>k4Rt+x-o>i zu4Z5RUkT1X3|xKa1LbZPo^B$>?&i(|#xfu99*9+4(=#9&#=rUH>Ov1W;KKFm*VQAy zUkN1pNg`C?{OtB-&Ctc!f!P2r*sMb3&Cb*4Asjaw8{mH^1_}ftaL5`UrTYAYcA$JR z6!Mw7weflNha>Lx8`@HqM|zr{vh?)4ki7a%0Kv&MqvgmgC@;P|1SypRNc9x*a=#!$ zWqJe%$eK9wjrZnNsWK3_x$~B^K>y)Na;2Mp8?Crzx`I_okJ4vZLvpUbU!N`3K z@gbE+f|j^;vS}-@Il<#oF5p0PMVE?Py+jgSAbTf9vokMMX|2#_@y~2{5Jea!3~f^n zjfvM_gvkl$rp#hTp|q$+s8d$c8j}PKY_M*ZVWnJURf0hBgiZCp4V}~5>--xY09YAz z&X)>rRIk75*@&G@Zk=Ed6qgruLtixxPRvc=pkflGQDffxc@hf@JAQWC?Sx+BQvb!H zq`+0}s|%&G7o#df1zCgZ4NAn}(E0H|hV|CGLWcX)s0Pq??JiN6fvu)D#svMOVy{a& z(na}{7QKuZchBm`tI6@&?WBgSrP2k*?K1(!Ud2lWQ4dW=x;-~}Mv@Y7;Uv7J%CaHxyP~!S`GV4x)bVf!BYJX0l zsBa~+A0utdW8p?5yYfcU>FK)pW~(MfnNg;tc8b2X+(t&T<6le#0yhUJjJA{vud?~< zq2M7r$v7jHU%5Epk*7>))ouAO&Th3=ro!X3Q@30crNe2_E=h`oQ5o8~W2+O;cW=(%w78pQ_C$Ilu)n__Epuu-r z#62)DP8veAF}hcpDR#mK#2Zt1`_a)JtuA?@-|VBbY4Ibh(~E#))9w9go0VO0*Mv>3 zRO6`iDO&T9nfUF-K^$r=_|n)BdB)a9Xdss8oU_=AjQ?6N8X{FYPeY~7=B^>*D#K9R&Yt=P(#QjY$JN_kI};u2pUKc^_bSH4TGpNgu(FqI$RyGc3yo?U zkcFFt@9T)s8cO@Nkvw9S-7Rh5GbW1q0qemAmDnN?QV+Ae}v4U67slc($ORqW5~r-I=-v!5%%RbdK&ZZC<_zIzT)y3f>_2UDZApq2^(_9Er%ud8UOVg z3VL5JpCA09+ugApyB?pTai|6eV9{FPL^9pv_rf;De+Nr8ONByibnS+l2W z*u8RTtmh3kq2JH@=Mgxy?RBuAzv4;r#e zXRRP+WpCN5e(Z?m7CyN~IdJ|xf4Xko*q1pPudl5fCPUu7lq6(GQZH?E$d8TgL<`fb zXJ=5$H%i^tMWq<*fh%K{Di5;TL6)Ep;NVrgl^E&M8m7nCirnY3_~mkvTycC)=A({D z8po!!kB5?gmUx=J#=&Vm(p#lz-rl}u?SUMHe`i>|Hl}%`q?E!{)@t~hy+!2imf*nv z#Kf#~aU@1X=+isl$%_NiamIxB8h`31zhS<7ZqErrg1^-CMsBj)bJu|JUjru79kde7 zNbQry?Kr9Jpe+!JZGUZuu}F_rs>Ej+ij*_H{_5hNCb4tnambD5U0c~$OxhUL>B=kp zrUf{VyD^un67Q-c9UIV`8I?Ss3Q4I&_JOMT3S8C7Y_(*5b%5XBJJAZZXX!qqMD~TR zhsG(2D6MdZ$tAneRl!hbu`K7CZp>)Hr%OuNue0PKY+{-(zAL*ujpHWgZ+PWj&!9AU z9Wx_;)Jse-zSZKL5+A(oNfU6rV{O}iU?CBe8?&G%t2LhClF&Af6`~U%@8p|lm~AgB zl4*OUwW1W-A0r1kK|!PT=X`Yjc#>>OYLAl(FC<2pN~UZ?$yD0zQYu@I#MF6G??PE$ zDbtNIU*ll?%odcG#%wZeO3R9FO|}z^4$*Iv$vqOqm1yCtUW=b8%T%=$Le;^`pPX*+nVx5V7|W!wcOnQZQO2NuFGNv zfBGwjsfolKHKRkaW^ViGS7o1b(*+cj0XWkhN`E3N1{@d9T zVS+z6_g17n`2N6!>L=saG1C?Q+#&v54a!nh>n+~4%gPvZexR+2Z@%3$d43*kH%%B^ z_p!LTw%m7QAx*p5hJ=AQn(N@h!&!TS9Gjw$5_ROL?f6r%p8jv%vIi0zF^`~3O5DBg z*u;M|LKzwHkM=u6XMM4i7Sqe`1o5uW)y;ElG8CuAo$8TVEs)bq-5N)&$$8|(zI97L zIVMOhJ*l^GAe?Mf3lH#85^zuj;nVonEnJ7g`_$`9;*5>0ME%8g-FLHueLi}BYObC9O-aCD2^-(%6>voVT% z)7_;!86y%b&7=C1chY(&sa$$ewOJAbee>`1hzW{)q{%hGtA|jG1%YP2^=V&SS=}9z zuBmjGv`eA6hZYcnT9;dIm8h$JV2i%zbb@{PUb}rK7aL*K-!VuN*>i<&JiRv-JOMxsLN;R35C^#*D~EhjqYhJ!Um`F7HI z7pOb%PZRK$MZ@c#RUL*BY(6`D-aC?|F^#9_cR2JV=dmO$Y-Mu*SNT$U1lyfV_nur_ zGrVB)tHGII%krLWlkJ_)P>>gXe#|Z&G!wenXB>G_L?$b{_|nd0x3o%AknvX7U_EQC zH0J7|?(@rHC3@LE_efEjo7awSzFk(c7tEG~akQ6p#K8!875XRc2<+I^Y&@EZc!)aHcilzdpM$fr*6C(s(T8?=`ErXpxB13VvjUoUest(s zcxAQVGuqVI?`bWT(YEZ4%}id}az8RI{-pLM%Al(<_?)c z8nccFJYXUeuXo=av*l)#^sS736fmS*1Oc2%TUk~{PS(Bklnw_~_)-gRLeqw(R2Vkg zvl~kQ9d)trDlxwP{43MTmSFhtXke5>x0XaqSK&OxmP*xgTXE~S$-hZy3b?@g9gL8 zKw86LbN^MuYUSE0)eWj08OP(MFUqhMd3tc=5w?PT3Fgz|nZ*P9L*Qd-x{fybF+#ej zojEoi=wltavX3#XyeiVMsNxF~5zHA9WTpjf!Npxb%XM^-fyM^kZA+T9yQqawuQsr2 zPq9Q_W7#=SAk$PEI3-m^q*?PSj@L_=ZTPI`ypwDOd8O!$d?PLmgajua9&7_6sswWz zHpt_DvheOvKnyj+X!a>)YS`(RkGqU`xyN~_>9tf@)_JwGsv!E%e7)80aHo+;Z-2XH|2(yJ&r_SQjN}Jn)JgJuZ9d?zWvq z<{TSHYTT0esxCy-dRP}t7Huw{Uv`IGw4jztL8t^8yH|}`&KQGED z8sxJf`-u=f_gu9t>;A(DnfZh;%RP0H#J8*RD3+ab^9fVutZjYy@lGl_U%TQ7&#SU8 z=@y^~#q|t|Czl6^ZEfeHvU|k!UVQ9cv#TGc?a4Y2*((vICgpp?j^ZLKYhKYmS25s{ zk(JfDJox@@MeyC;Y0pq&5h*+wB1>(H`;Xg&T#x4f^lqrS(TCh zw#c)zCL3Qme;2>!TkqtPQSt5z&?E!!Y{;Fzstz=gyv41bCOy!PdO z(`d^cGW7h3&-EM|v(2|FSA0Cc!S=U)<_HYmt{gciO*J!$;R;iW6dMWg9`_$2+C+t9 zWqG!iXhU^zjPdjYv@pzS_I8TfP_Oi^IX&l7u9GEcV32-}wEy9VG+mp&H1t)Ob&ctU z57)s4buquESq>|_BLbO%q1V;y%f1fPU}KKS#y-BfBi_BgC+`u6Mc!ISOh~%?9mE!p zT5DbQR&0Z2kpj2=sxGObQbXe$voY!w*Rueowzyb(yQn5hc%8Oq!X+nTh;Hlef6A^c ztl0I_#0V7V_7<5(SUWpAlfo7-*Xfzm(44%k_JPQRe5`EF@&KTD8$_sv0ikQ<*#u~A zQ>~69O5p8BWh!l-WUJMZQt8u7L0``>BTx2z4P9G)II_5Bq@_(-H~VKCT{{1p^qkCG zT$f?hbvUXni%C=XW8`W|h&uPOgyo1G*NJHByLsWnh1@t+c+M8LTTcsS*K3rB`<+06 zk)r0_DM7m!EG(xMvf}!keFo79^3)rpvTYxOr823Guqej%pjdIlS81>mW$Jvr3Xz>l zmQSZ?Ibyk%k?lhdzqa+Wv!R!q97TB%puqnSbJneXrI zjW>55vY7T%$nBzxR~Q)Bz_j`8=V>k2r7e?6$4`H}69oyUx1o78kZJrkcQ`spFm_Rp zjNRqiD~G9$9W1z(QS9-0cBcNK?-+u-BGop>wrn_Rr8BdHHvpvfb~K9}c+jCaEQA* zL1wp0D2>xs$0;se?M`Iti^6)RVbG1tGS@whGv}{_0k|5ASfS8VN>&CXOJ(~H=6|yt z*2M#u-Z?nIB<>vlEA0KB;S&EBu>RkldN^IzpfmOQ&h6yguTR~_=6xb0Me=%faKc4d zjc7Hs5lMn^xSD8Y{lJvj9lLb1Q$7_FvB$H=qmWEa$eGGhC{fMM0F|jDiMo~;J zo7(>R%!s9IMl7~RYN&bcO0oTg{Te%1K>>CVJ{5`Ly!9z&Rs5TOSrm>f$TJeuC) zl!_A3jWKA>((tlU@*VGk2@Q*C=3=$Qo1K`U`vd|r)3PE!X+r`~m=S|DGUK;R*CWr> zVR|Yr;*E2!8JwXHTuSnDh{K3%<~Z-i0OYFPdgo9*UGn}-yqW{+_Ji!l^NtmyBp6TH z<|u0hTZJ&*!J#JSt7Ez-gQSauq%F6o2Ccjs-a7^R zLDN9Pc|Q4A);y7hMs=~njnIY%J(t@`lZv&$cFkRp;)*qBJGTV>-Nwh+Em(NxA@X7n zyq#dqmwGN6)^G+T&u;dzugNAz2bV?P6c;JCfS2ue-kyo^Ac#?;50` zOuv}tbNFq)Ghx#Muk-RQ#^R6PTOgVVE4c{?*O z4hmus%>Tj3Rvw`E#YkIXjDWWDXp63Ron^UAc~O>o03q2`kr4CgbqlmggK(pK^NZh) z#Wz@YSlhvZ{W|$S`^?Qf*kBwMDPL+dZ4+C;1UNsRaXV8iMUf^X>hzJhPeQnLXV+_ag!tpFjY zP>a-#-BAdIDVNepz5uSZ1$1GPVJNi`VVD`lIyOG#$`kXfCkx63!oHs)^wqU&BW*f9 zSo%rBNYjxW4yx)nf!W-Q`BAs?-)0iq|0Y=fmn_rHRQRttb;kLLouG!z+Y+KclGl)j zcd`E+bGzRxr_T)rb$Fy4|iy%L3e}HtcXu{5{h!#ow@|fkm@F?x)F-&X*0AGa9Z7B zH-)`EYM+*T~>T!X_L2`()Mwel$aB80}=)Xw2pGLmZ*o+F+;9s zLh6OKJNjpZfNs)#ig>iqMO|3{SGMFTe*W(b0q1t#g}BE&&|PL=Q1H6QW`a3SYUgAs z#Xe0ZKkXc8@!?2Ley&|WNqDfY0;AVT1hH2~#^cG`VD3$$!4V=16j&p~BYz1iD!T<` z{b_=sIUWxuJbk&Ih4hqWL>8SZhJk%wdM;J014h2!RFqBhRqY%b539K7B}=ewx*SU_ zZEflB&8#fo6y=#=->*;f!NVl!3*y zktv)jtvmd|xt3NZG1;R}=T{%yjX`03rbZ!)ozNmwW((Z0wyQ*&o?WGVshB2%;I-B6qpL8jhCE>SE-8r9-PioYvw7+g`Zin8 zz$e7NeY_|@c1rEZp{>5`8Be@?8?F)T+h=6NW9w`cN4ZXXLYm)W0B)u>IxB0mqkNx= zykdU2c*0~DJ7W%Z|BrS)&1o_*umqn&+MG+SkM#{-K zkdH}&kul8$Xc+wIf#X!GnscAtRSv?*hs&+j(pkt$We_gyPu=eXf~5j0KzI;xaXpJv zS}?rO(Dm6*L{-NINLU~i?oK%U09X8Spq^`g15Eq&*PIB@sC3ogFiLQRI%X-}Xh0Wc z4H~c{y-##?Jrp8I0^mGi%OjLzXI*VK`G!96W)enTFUFwDw|e`#KETgYM}gIpD@A3P z)x4@Eyt-Ctq`i&be0ZvkYZsg8zRkA}7P12Z6L4+Oi798)Gdy0B-SllGB%cYxn7-kD z(!BpFXL{0?H>Lcx+c8>|F>ht_TLbCFDzyv9s(EtP$oXlG+h5+2Z!8%*7jJtz{SF;O z94!|%va(8)I^Rik(mB_jG)ta(sRy)SrVQAQSkCIw&iv0O{fVf)stYRI>s#zj&@HdP z3J^$ZWNNk?l`FQ>c3TZWV#CIFI>ZwUJ0E|}N?%&*dY_|~JH`v^%_3BWTiZN^KiV)L zJis&t|8m*YKX$jb^3x;0AUkxlZ;d^FH?S3b;Hr#RHkg_>CQD$CbIjlW1mMo})j-u( zLJ=h|qmMr$EAL!K!CdP?1%NTnh31SLc$35RcVt4Pc?ca2>a#!Qe-vm^bA7`gl2=qL zV8fjtJ}b*=oK`j%k{B9c>*pmiG*5a~1OsOaG;yX`Yr@aWD`aH=$L5lbn=5PXt-sUf zpDhe&3F~w{?G!ZW57PxE8C1Iu(4|H$%GxD89PCxI$lf=uiw#`+vjNfT=KqYFhB?Z5 zf4<}53FoGVC{PaBHs5PuvdLT}Sfe;cgvuMby^a9yg375ON>jh)sc9(XZd;M$cAb6I zRZc^LU0+|h*Y4C&Bq4&}0*PGUZ2=*I8ENu1rM0v#2YBB?8E7Tb(|eF$xp_-zn&SaK z-}kI*x2lP5nBPzp=_57;QVk#CBQ%4{=O#7$|T~xTps=NY_&6P(6a=- za`jM4dQO(2kAqUmN6bU+w!B4*i_LTRR7(jR7Jj{;G2DsX%$K)4Z{i8O-F@&_$Kj@v zFq3cZ;uL+br|NWY&;)_u1329c2OPGpp$l60u=)ZJW3sX!fbF9C;_RsyH**0nY^A(Oq|XVN zd+v)M#^WLa+6RlCM~;hWo+*SO$m-HG>V)q&sD@*egjSAZQpH-{`;k7$S;ESvI{^VY zjZ#89OR)|K5R9}j1~|RUhz>e|!$3q;Mw5specF_gb9xODT!@SXBTSyP*rZb$n~Db@ ztD=h{qz*RU(NDhyB00U8%rx|M`CP1voMLP_SLvDiBIAwUOvUrkZ z+uU(M?`0TPH!Om<&sjj7jZOAuh5@;Bpaj7IsIEPkrM8m1(duFeb!oimon;d5e@#Ja zmLXFxuM2JwhynzjZCZwRmLeh8n6XOPo=Ldt^H*5!bvNpfB@rp-kO_a4<&`;5-k5G#u%)aEogvVoV@82ut^QvjL)INW;2Yiq17-__43@aKt-r3ZOHRZ zOw0OT>HaT4c&Zd5#G9_gV(#cm8;wK#(eRxJUNy1J zlQz`zW@ELHZx7f1^-kGS*by_3BH{J~lM95(bh4fXvvDA7g4(THdn%48goVjpzp z`wpZ8ixI4{8oZIey;L**?yz<$)J~N2xsX-@W>>~M@_o&of@Yns1hjJLbMo7}V`G^YO!=yFQaIDlR?_ zYW6m$>`QZ@-?5c<9Mz4r;{InQ%4|F1+ibINmS=%^w+0 zw;ShKJ^W^e(foc+`4dgE9XXv;M+b-9wjL7=l1p|PevF(fj%|;FnoyT}|e0Ir}1&g_A>(C^Vzv1FV3^PXq35!u` zGy;jNGOLd*E`&us>M=7a9Wp^0k#hRXB}*|~UXtD%8_Om`FZ7L!nq3DLdHh&3)T%Vy zN;*Kn$0gg1wyO44ftf4*(EQ$<|AQmn*JDs}TGe7V6QPS^UeP)it07lub@z^Q?i(Rz z?eb9(vK+rUTF*TWo`oD9Dh}8gD}$#o){mai@)78khc9#MQXU&%O%ITCYt!AT-r==! zj^Z9O;N9o+Qd#wtGtWWJPfMKG898OIN#>(5F=j}%tgYs@0pd1pgeVq@P4&ssKR!eniM~9DFvpeY|mlhC!aCvssEKF$V zGMB6NlgGH$%!Q##xkeS}>dM2zoTE;Y0T4zL^|dw`N@%WoiI$PnMih(=D6;*2FF|1H zvw&O8aNbCIQh6NiPx;6JrSZ>zldNswOAkGV!ow!$)6`jk+&$H3e`NRIR&vXv1z0Wl zGynDRFT&p3hQ9MtbWcqdD21VaqqBeLwsejVY44M2c&QcnkxV`?e+1D889qL~$Nl7h zxHfZS65{`CbE>*OCe5OGM{Mi?>(>KoYx3!j(Sm+lH|P6G+)kqa)_5XIL`71?Lop9+ej*oD`F!6>CN~-Sczgp+BY30^Jz^ZXmN2-?$K>M$&M3GO_`Z(dbf zgyc*Yc}x~P?yt=qaA?TxI+0X6RHB==gES2Lx8+ZU%=qVzj!rjcSU_dR1Eh9J= z+B9r5J`UZj$^YU2@-#~+F>*Z;B}W zyA%V+r63krx{@><2H4?2U8jd4TdeZix7ud){TQq0NGV#^;OdH|!cHEKK_1C5)yuey zuunrPlm=IfJrx*#N;)vrGaC-ueRG{6K7mXe;(7DiV+F;cs%j`X)1N<;={jH^*ptq69 zMx?7pp7mn@tw{!C4v|BteZ^X#-z&a!|I@`A-bJm%{*INMQw-2T6XD|uA}UL3f5y!!`CEjYS{xSRC z3`#Uh4m&rwKbp(K3VF7vFJ$w@tgNp|>$epRU&@+Fg(S$56Fb)E=p4?T|Kez7LpjVQ z%O(S^ZKfB!m9T~Q4R<4 z=s}uzDJCmvB|mGraQd{6cj1?i4W0$3G1X_I-sfSb!Al?;)nS?r-`APR$e94r0JX-a zD8y|lX)-9^9|Mo9L-_ZMewVB+KWpE>nkbX(Qcq1uN$Jls*YCiSHW<0@;-&7${$P{( zIMXeZDfy+?{n3$;(#!RSCy?x@hrIo3Jhx>ccWZzCxb933mkW#BNA}q#LRs4!{&t+l zg&9;687<)9qEJ6|x3{6VB-OQsrDiA)!cp#BWIFL}A-%B$=-3oj&N~Sn!9jhp>C1F< zn8@$nn)gSvATR9^7Yw$oTt%XEXsw>63YwVPeQ0|NG8x=~U`j zdW38sY|x=Jw3^wKp5Rm(F;#L@ZkbU#WDSUhLXnqtdSiPPYIt(wEW%=+-&Mk9+s)3H zYMFfO5rA1D8?&}Kzn_g=NY^M7z@;aQf7N(Ip0 z>Hm4X&B=t5mZb;RnCri2VQD1``*TDFoxANA8@oe#=&$p;cth3}IhLlJAzL3~l=QON z!kUJ$NByC+bjfDNUnD%++RvKEW6__o^0TwEqurp?#Wy}p9{K9t0xq4uR71HuKc9cye?e3tPc|Kz;r*x3^E>oKY3d6O zfw{SPZP}DTT(!iKU46mUk!O)Q8O-IvL3kJ*-elLB14@SZALupFoXZ7gNbe{ddyRJ% z(pUvaGWuDG)7KV8#KgvK?PQQCV%P+m^ISYW5so4+>EuZ%65HB8%!gftotSY%Z&Air zBM)XgZOvaOck%1nU`5pP8+!A9z4(S<+d71QBmEKmiWxWUN#I~y?L0e5!q&BwZwOt} z+eynhcrzK}Iyym^i)NDMh8Y>?d!C6UI4yF;h`j|j$)^oUPZtJv<_&t=S}ErJdf!b9 zLv1cvIHUW8#W8{Q9oZ)r%?Y{uA-NGbW{DvSi&CTi@((;sTyQB-+Xz?Ns-lnLvcFayb7A?;W&B zS}Ee8vM`=bs$hx7&jTKTXmDrIYGrx7*-A5=GmTa=n2ParWi={)0T(;U9${fj_v$#K z;p;V{Jk#%u(atUJPlny8BV|X-=QBH4VQ9o{qM;>%xK_!oS=Q>+IMGiRy&EyIVK$gw z&(krdKwfpl;M59|Et6F2dzn!yk2^q7@2%0t<0!sC;285K_Zdmk^Ge#30_y(29b;= zEBCL9+)YZI0?0cYd+ae}dj!s*ll0-b|MK*}P^_6r1emTZqi!uXx73F#4##L=EK$2I zx{3v+3p^N*_t<#i^T1EZnfClfHg%AE5C+)EzPs!AGIH!uBy)%G7yP#R$ySd^A5nOj zPS=p8k}(PC>qAZ5UtOK{$h3qn{pggm_1bOAHiY+0oV(T+&-@aY5h3B}(1-z*+GMw4 z1kK3Bc;sMniRtGPWO9Mh3K`BSd&JfnPS)w_!@6yZ*O}ZhL>JG4D})Y^(%RvUp&ek3*eJoD=QGyG2Q3 z&iS1#d7@}V^?J*7wL)49E>~5 zdTS8ePAEK#mWRdgS>~GElnM)p z=$;Ez^NVS(YI|pAA2OT4f@;8Q2r`OC7E$Th^G{=AAzjn1G+i|FkPIawqyD5OCP`)j zjpGNUi8CbfP6JP_d}IP6zFa3;1zI?dB4tK$DNb@;k|0>vX9-NC2++;`_=lc?QkdHL zH@62c?Q1eUf23B*lfmz;7E&fKV@0rw9JGVG)zo76pnHF<`&N%p)^t<3kjCt=zx-i? z{NZ>vqv2THb~5|oeF9ktS{pK*IzJyfLE|g(XwqlQy+%n@`$W0^L?w96+NF!XbL`o2 z{}sdT1HYQDsV20^)->u>tzvL+UJ z-tOs9sHRp|w^YcwEzNvoFglW85F~mffkc#LMJsqY9bvqo4|aS#bd6q3L0Vi4V^Urn zdbmyKEB!dHw2ioA?oWRrK=}32f%~h4U_RR2;5Gj9&(((?R`3dct<;nZLR_K=9T{P? zg9kwIk)LgX*4R zNQG?Y+7&K0zKoBuBq1YnF$B9~dB*nQDJUaC%I9zDkwa}o4^|pp{;X=p${n@Hz!x7? z@r4CLs7+21GELGk(iD?0AO@BtkUQTQBRUud^~dbU?HCZ3sGfVrn8)bK(*gOg@E~q} zc#`VLb&?&G3VEv41EwoxqwS*PaFYIzy-Lc2}Tfz0rK zFHeRqDeT{W4lcMpi!%K4H4|C!|6<0GFa2Ns_MNj%6t9)gF!Bfeg$b?HzJ^RK$p5v& z%mmpqWvfHkDN6O;sKSs&5!~MfVQs&vTL&V$|&^} zX>?v)Xu-EN*yaa88cE&VJufgY@SwAEb{Jx;%BRYUx~tH6;M+EO9EHLss5I}T zuXn;VaZbuMUK)?gtsG0PHfr4?<;~G$1M^MHMYSRVUq-s0Vzb$k1L$VZdL(n{SyWV% zO3b+*?aXtLL3n&_ZhdG8M!k3u+W7oes%g>EF-(xyh$%B%Z)`ClqaCTH|LfPUH~kcM zudb?MKx0Y*Dsb*^-JnV+u}uEQ)z_A_5`QQt3mUr)-YSb!GFDN68y13a?Dnh!l;x|( znDva3&#F>V0{SvizAke<{K-yC_j7uFFUL}mZDS?Ks#%IxIk{=`X1^5EqJ^9mW9#}J1*7a9%S-4!Sn^J4ULcvwOkqO@MYpG_YLw>hR z=VkHi6>i;-g7tGw2;6tipwCoBqL)C2to+2ToSZO#1xA!$Z%cIx@|7ocXZ$LQVW5 znYBwdZ`$O$QtTuH!MLcfFairGCja$F+BQNaJf3Gq0YtWMEvk6fimWLBy^-fLh)(qm zleZMv&M^BA-Ip~~Rc}o~;5zleZ0a>RV(5*jA0hXJBJl>Z1blwIzsxOELig9 zQfm}0j(=$A7Ksqer2>lL+|)*Iz0dNG|(R^nG8hsDk>0QXQWjqieU{w5OKTvrTZ@!Gt8_bXFrQwB4!TW@_?X$ zwzjZ0@9yu}+x0G8N;wp%*hC$uiU~mAc>r3lLh9=3cowpAkQI*7O){#?q1o$0aNT7F z`pFu&cx7GAjV|5MA#E4~TxDg+OpX58-%uO1Zq8nlwsV#uVh5Hn>v$ROQ?4~~2nPE) zC3xrXDa=|Myzj*Adeif-9K-ezF*bT*%yH4I>G58-ffl-xZ8tORC4I6dE{V-}xY$0+ zP#aI0Kgqu5$}Se&0g+(>XqOM1Y$RfJu_i7&r}6`{M-f)R`|lOJ6v>b7 zm-QeE{rbX}jVAmRE4|L;`z%hT3%LJ!H`R$$a-6!vIfKaVmAn*?yIn6PDH(z^q`qek`+D=AchX{uOAK5@* z*4%TypFoP8IH>oDa^lqDVg2% z>`AY=nc4XgRaMp7!<(DK-94Kwz;!OhGdyn&JMwJ*YjJ~&Loo6ig@t(xFJ9y1lPYV& zF}%pAxVnm2=W2G^Qe&I3lC1WF({@vW%>W2;mUik82!LW}A#bg04 zh>+OhdsbFlW~Y0F@o=g*SwgH(JRclOuP{q(AqOvI84)fIRHk|OcIM$xD^tximB(*= zoj-9!Y<1DMi@zo}2>YhBWNsAB*;&39YV=EcbHb(u(r@0p>Fd6E-<2&}wwOU+e1Hup z^=K$gZX8)m*{|&WfZwd0Au?;GLW!ALNt1T;brSKJ{b);k^wNqy=g1@JH$MKctc)|; z2AajY+x`9jR34vScT8RV4tBeYib=bb5DZ=6auZ8s!0h%)`0(z&Tl7Hn9mb4Dy?LXj zqOy>ScRh(wh=1Z`?>y=<>i|T2U=U9FIbEw4VTJnS@X^|u7~hs~UG>C7-wP#AR&=tpE{*W^(9s4nf- zkH2}08Bm&5QHg@B+Tqxz7vM6V@>E1=Ub?cB)G~b;XR_ioG@e)d>_pnEarSoP+MM$r zE`T_qw{=I7BKB;BVr5r$1WQS7f~rk9vU$rEf4se7%y4aL=s`S-i?Az2cd)%P(jyqM zk{0fFWEymIsT)iS?|<9w#_ia~;C>|Mlt`CH)4ckj^`UdT6xz-Sx|+3iiEtbs7A0PU zHTRncOHF_#4JYAOl%_&i2COL5Zj-b_MbXd+U0uFP(YF#cNyd`cT>8eh#8SlTr|J3e zscLMFyjJs%WzNZwFUh?tiA`Z6!S~YEP*ExL5s-vo+nJ?HS-y_FbNRZ|6j{dm&#D6p zOcu3K1?AhQ_P!)8;NwT|CLfm99oBJC=Dp%7vE-}AH8eEL3h%EWHOuqvmxxgpH+*vx z4&n3})3ArE>uR{DOSh`K|WA? zK)`Li@XK{6qxfc3kAO1etrcE@%&bvAuq=z`D%IEN+E+NHYs4`%bCh2^k6-%l5>F=rk`lUmG{&LKtMAO=LmNAMP7T$D6COl^+4QCk|HO>ntRR9DZw*` zPahBPom>K_8eb^EAUkcyYCq`#v%;bTA?(h0l>)BxV{Hx3TBImFeg(;rmR%`#+m1aLD(`E3o*p)N;=6w|s z6Vp7dc)82>wH0&6t85JDA5aoSwsz`Ns2_EnI19ju_s< zp}Rf@X4*7uq0$|>Vh5OFso9SGTb6nje9D`1l9YRk5pXuOlW=iog?xdA;fhVsX26dJ z*uFx_Z8ZkAT-kY@^t?Y;+(BaBf*oJStdlo8jky^N`qg!`THL`8B4;;$723Z27)rNa zmp(T3m`cCTyL*dCZcmTJ7$%}Mwu1#Ae#UKn{EO67Z3KL+66emIEkS8P-@)cjM06;u z+WqW0#?8&lb8|U3>?5F*xLMk|zA8EIZ@PJD@U7P~z+yV5+mkWjh zGwWmKP}E>we+L|@IY`mJs#;jYHeM{?8eqemieXJd*-6?Ot0W9J(VbY1wtPF!9{Mn` zSWgwdw2zrqL|rF;CHYS7y9)?Ov@>m}PPCeM{edFiF*|mf`lCG#v1e6TU7w$e)EuB( zbwj9g9JhM!s)dx*-Z>m$`$?E3@%`{KCO;+K;)54A8#$o*>C;cWyviPKSB4_{R!ljI zu1YY_g+@2Ao<^>Ns>P+H_O*OcR;zuw_8AseRMZ9*!H_TY6p1&5IXjF4Xt6iR7jZ1` z&V0n{RFxwOYM|ZDz;i@vMJiT4**8!9;KAk5fq$)BS&Y9VNo@0p6DQvIY`@%fR2G)| z&^Y*Mddlt#8HFeJ;b~Ro(s+>lFQD-Z-d@0Ubs2(wf}W7!*iF)7&^<5x{`Wn%n(oif zJ;~WTMV&AHt*^R6SQzT0Q4w#CW2~Y%3IrrT;^vM?Obo`dRE=ouL026x&RCLQx>5AS zlw@x9&b?9@f2MAuyglDWy_#dW0q1{(k?fpbpWj?Er6Gxkf^zztQGRGd9}3^IyRX`7 zZ+t!7DTztFDuA5)<)KGARQ&@2Zq(-^>t}a8_bIu#WW}4vIh6fs?rONp2-jCrOm<<@ z`DwMM7<4b5rO|;q=qs*PZ;m!Y>hJ&fu^5d;BWWtU^#kPgnn^~vQOE(f*1JCBeg5qn26350rTh*U)(%Nj%eJM2h}++2!<=OpJ_4aR#4<+-2J z96j75$D;oc8!4DAfc=A&{9ndK{+|Lb|Brw9)o(j??%aT@6|V)w)yw_$Iz%p=He9W1 zjw5x}gI_Qf|FnJ4QVIgMN|V@LIOBod=a?Q@QoSEEi(EZ~oVBc!QrlrmU_CH-R!!MD#1`TfR`bWf-$1u}18mW@Z;vT{ zX*NxJnlg}<>6Vn1Hq{>7zyJCYg?aBsQ4`g)j|4j`gGrrB`QqnIVw+@<)a_TV>}y^y zSA_Nc0dC^@Rl5Yghkg9|;t_Il;1L=~YRoX>dKLofORHGFbLa6)Ti^+xScs@Ot=v}r z?#80s?Hdn=GN4T(=+INOJ>~%7^FOh*CfHWW86FzX;`=!ql&7%k;w1cN4>6V?AfaP_ z{e|hooE$@&H{TW>(|A-R_f{{$C#a_`<+(Z$vp%UJr6w=LH;=O10}m$JMx`v~;@~x* z0aXpbFk=ne^|KRr?;9Y-E)}D@7el_xA2p#yV6xB5^aB<~p$y*0xpzgSc>!fc@6*+X zBvPWadP`q!DDvjxsVQkpP2DjD?HBXLH|D#8n3G4${?ob}!t|x`kt7BqfZm$(R z@v^fw`E)@PJjnp7jv$oswA6Ux{ASnc;a;omfW7^>PMpYE5=QDC!VQ{mM0aF28zh({zep?7-R{ke}ZHPA?NL zb@S978apapFJ(U}8tVwI1L)lt?m8NvtsP|EOJGmiaC7}IzUx$`dF|Nw+U@iAN-gDK z*6Ep8PJm!MWOawdUQvb2)<}A`(?TOkHTm zNDwMYh>1ByVz;#hDkqGLj6M~;diClk=t)r;2M>PYFB%F642+6!AHSeuWVFuF17N2< z@RPPo{+C~3B4{0JbdDc?9;j`B1PGyf@lE1rGLlZYD=gK@q-b0#(k$D;aR@$LPsfuU~J!*h{x#w}xgKKb@M@yJsw>aX;~ zybRRV$TF1J?J@0&@sji0i}223FxNP_-ls!0DL(!LPDxk^gR!`$@s3wd6Fu`3LXS_@ zH|@FH$Gcw&g--zKzcoBHF9xe3WQwD$cD)Ii*%bv~NhXca;jkyHOzVYabD9?l~Vj-oSNd1VyCr%FTmSv z$tbU3u5)_#*h4F;{IM&J299f$;pgb*#xBQamCTQ)Z`ybyZ1ssIK+Du{kLj^}E%HY^LZxjJQN;OETM6u}n8X}*iEsTF7;#ZB z@>Q)qN{P$?$q$N9Obc}j5!Zi)HvnmE#fHI^H=oJQZZd7C<5uGV?qk&K%f}E{jM5r` zcHDL?J9w)uG?do?1BgAVLT=uipAI5F- zZGuQ$E$OB&dY+to6n9=C%Kc{_^LS85i05Bt6gnHQk*rK(AWgBLjhzlpi%ZHo1wXMs zVWDG~kK;OJ!C*h{;=*@cK`vXEbrYUet{QJ@zsBms?eFpVOm?hd?0o0;`SG`NG@H59 z;u}Sa>CH-QO~=WpHSu+_RJz@q{AAAUduCn=&OcuboM8Z9(IfD`k#5m~iA#IJEs(hH z8%}`@qq+|MeL8*Tl^-TeTe6NS_k9ePo67jMb+PL2>krb*Qo4`u%ahstbtwhCDG7g` z5pe0-j*_+$PDtpk3xEFX$vz)3R9UHA4cOpRxE%K}j#c7|>rTqlK4Eh3g0OL-A;Y?W zHz3b#BG$k*S0}Cf)p7%n_V+mSoQSh`gjrj-d!b{vk0ZabU=3OI$vpz;`=mx@g!nu? zxI)L4<(QdHd^|vZAY=mcik%qr@c?}66ijOym78rN*w$3<^Hfs&{MB#5Yt95|$KoYs z-+TJx$=l9pkN{(kJy*-#gI9Ds?qq^CHoT zQKwY#ID-)*Fan(PB=YeSFj(XVpvN{0$mbQ(&K`-rw9=yVqro=iA3mV4>S!l&nb zv|cxG)FO(_eb9o8wz{MIv5vm}BV2-5pi5Aj(raYew|#B z0@yFq4mf!=0G`CV_wF^dpp@%o(VRmw67U=bKD)qbXMLwDAoc9*gj4C-wzNaTER zqP0;qz>$f$etqunSZ8D$SOLycLI#G0eVGXt6ZfU@>_R$TX(@-Okneh_AbR3cht=bB#excPD``wP) zSRsFSW*Vm+nYrqU!scYn6gJ19)jvF(Ke-$S_3qt2sCDahoj-as&NEk`@CRfJei{^c zS$-PwJBo6#_S?MMyv~8kgGF{@?nzbb%=ik9 zQFV5rQyW!*EkUalU=OVEd*hQvZtG<)w{N$2F7p5ZcKzzm0<+OG5-x3P^vRm$QdR{J zAZNe;o&$*du89nUk2)t$F08IW8kswNb@7G|5!1T>jGKJb-jdyFs^;>ISIX*PVmPYV z3w3JS?PzX`mBL6~_e&R@=yf7QU`>JK`c80Ph{E369pX=j`n|)Jzsp zJzxW}$C1D(j{1zqdcfW*^EzqWTeY>aYT4^&*%`G@v_Eqs=TDEvB}P7tpLW3Q25`f@ zB!z=VqN=Yp$vEFP?{TM+AgKTvjiwFFzIDgFxHtyUxfgxCr$qQH*Z6q{-94hXk*~pJ z_UgoutCLV^B*UOj`#Gf(s}@&=J$tHjWX_pGLmlM~4JaaCZon{oNm58X+b~q2MAG%H z41a%rGlWB-)=Bx(*_)y-Pe|yesvIBq^z_DMR5O;M~4>XN~}Cu`vMhXwv{pcXvCI33d25 zWgAv(Tw-M)qzN39UI%Hjp(b)Z!+XunjcpmALkQUMYpvLLXt729`3F90`fv3H=^A|w zOrj6$i9w#uC?d5rn+6Zitdl2JZU$6ghfBFI*8_2ljlsTs*J|C$Wjav~|2!#}*B)%J z-=cKq<(ndPmfPx$+=g`y(~xuchlQ=J+%7@y+aW@4t06FF){`fDgC(dI=lL8XiKnAr znK%u#OPO^_sh3R5T0b#&*ZL8wF%L-XlnAQmv|1&$jY(S*z7yx?l)JM>@#FP{AJ)D+ zu4EnH?|-?W*<;4-@EDO~&8gvv!a2;gj*t#U{iLbnD}3$k#*;S|azz256RMRnowO1Gx&Unux9q0)#TFXayzrgRQ;_sac;+4+#iZaZ-WX&nVYhgBUy#l@Rk z+4Ma&n~-rp?MgQ@fy8C}alm-f`yU*^0&^BVE)EdYY|3_M2L%-NXiNn}W?o0~LI)LZ z@0Azfn^2QV zz8guK>aOHJQ;PxNKP%KL{?X$7+|J39^5}9 zM3j^?P)Hy`obP)M2);AA@j2sM#k!^pF#VDrti0p&UN-!Qe#)6!mwT$zGfNuU?TRgv zayKUBj)Z!JWp6y-&AS0EI2d$-gJ{=(+geoMdOu|Q{3i#bM!aXQaI0Q>Sb(>d5MP6b zVqxj(xr5hL+&+ie7ZE1_P~2Tg(WLlodK-uar>i+sUl)ni_uncV;&w#Y zB~EA4F%8rtb0Wo039rm9lkbEh3P31U>cuT`eJLlFyaNS3!hAVKeI1DMeOJaUmjMx3 zAIUdg=K{kGA*jh7r-8L6!rMzjN^v@()B`rAqKc6;@!^Z>>(&eD?v9T; z&)38pFG@CzoYIRuc!#_bg}Ak&V0?wzfo)*vkfV2|W;QE&ZQEjmTTP?8 zi_y=%97D)c1eQR>*be7eCARbhJEO94C?wtlkzaL&oco528%qcz13&B^87V25^W*x@ z?k}Pyx!_e36re0j_V}pNpp-!WuG^HkFrw?2GJA?P@Ev$io$6KX=iO?lSbu@@+7;F2 z1O=3u9%wduuZ?Txhyw$t*7fz5)#C+XqRWqiare^2w*IhmQ&dBR!7EoJxH$us^KDrN z<6ga5EY>(qXRg^$-@2lI5E_$1fU@Z6{BxvMiG!CoeH? z+@h&R@#UAzh_?d}O=yDRHy~d$&o+Or&WRH@hhJ^C^=Z8q2(wfAaJ#7)0D3S&gvfOa z64NaKhr|pMgN%CRe|}Q7tJcviR^_3#HLt1|+8$iAoB&d$zQjB5iAJP(t;8Cg6bsq7 zTz7LUIcI~()(`f1$-;PdAB*(X73{sTf8LoA6cb-II6}&*D}&}TS_dm2QYp&q7auR) zl=1A@GhZKs-)4AiYL|`_jd;?jzbSRo1-0WcdD83;;` zK&^K@ay(y9NEUH&eoH)&o(-6jVG zwT;^G{9vE=X+d%%U&Y1}KG>l&)XvpGO?%oCgZUeP;55_Wnh=RDsj&-fKEt2fzQFZB5EzwE~~=>V~P&$oXrm zIYwtFzo15D*}$*7%ewwV;RAlL{F!OGpiTC1Z)yL1Q zlQHAA6yn<{kef1&m*bUVx%T(V@s*6fl~d~av#`f>^e)vR=Oa_wCp_(6} zoQ7e{g^l$V(L!dwylpwK*Nu}S4YqcO!Fw}E3z=dsK^a5sP>q^I&?uCN4v&56M~>9E zBFo)9ArpS2iEaugcy*;nEW(M6X=ls-$nyAhx8v8t&qgvNvPHos)H>~4#Zp@IYgEus z6lXdDxu2N4RhszB?PI2GOX6l@=k92sbR6S05^*r5?kymu^86>k@(d)@Mp)GTJs-ip zv^L9BQCSZfmAy^Dn0XS=Nd!yZNEX3F0C06szPY*ykW-9~Nw zz1URyJi_a7sX$;(PT|#deiXrxg(PzPi4Z;DHW%M`eCu-MtD4+ zg?N;3VzQ@f^2W{{X2PAqGGDh)-n;?Sj{7Adg-8DJ;*j&Q4rRj+ZGgUCl&Mu+@;+js zm?My8ZAl+6h`%!;n}nLui@veu?7hK~#_R0D^@!5&`4U`JHgd-K)cn|34MgT=FK0q) zQPbWXz*whmi*DE0QW+qRE)^l+vkSZGWY)?M-U1xqg=~b^E4;i|psH7g$qDW0v0#rIi?f|Q6$#|C-7d>DtR+)i*0Vb(G88w)nEmd zZwFl4?d!wMX=^VhBBH#Khi8$F$M+9+j9AB}KjwG3(h-L_OuR9a2=eoL%4FT*FQ_ohOd9I-N*+$Zk zq^#iu;F8FET{eL{8r08iR4@+Qq)i?>a-{&Q$K9*(o&u;hneojot18vJG-u&L?qj(w zqay|_Ud!dkHQUa++ak(+YPj~vJgrSR<^4FaanGI!=MSGPd-%=4_5R`%jm_xz)VeTY zzbCv0bWx5TIdpRz$X0Yi_l(hKI&x$LCyx96$&qKXqR7)#NuSE}^!o(a0!EUN^B zuGaDPGJ!t8M~JEx3!rO06!gh_vk1(NOe&sJL)$6^K)M>&1Z-32WJj7;b*rw*F3Ycx7R^l zD%XY6sbgpuk3Uzxy*AIm0mbCb(V6<>-hb_J%s)89|6-3VB-j4;Ju0uI*D>$h#l zI6Nw`-Z&CaZ?>+DV|S(MkP`_MDx~g@&$0M@J_tqDq3e@SJgp(izSGyeJJrQYXUm?> zob2rS-Yo@tBawM$CA~u|@6sgdFEoN)x)G-IbDmwBqN{+FIIu=JerBQZPzOx-lJat{ z@k!4=&jhijY%)v~ahzvydY^0j|5@nZX7I|=d6uT8z=rR+$AZ&kzmaAjc@MpxzW4|q`V}p2in0dk7hFmThb@izS!0ooKfg$ijL)F8z zOh({oEXqol#L;ry{Vycs!&UEZaZD*bD|&ndCP1|_OczKkCLkPtI#eyzC6u-+#q|6uZl@q7hoPNaRn;@&_pIw=U zT^UduII6LE&i68qEzMzWQ=Nw`2)-2!PAQ>YlKvJ#8CbY)P9ZVX8+Hv#h>t&{I5TNaQfJT>rP*k#&;VI?mu1Z%2_$LV4Vg)X4%Ir9 z&krmEM|W33WQs6v=Om1C>g8^2@>4LhY8c}nq_3|JG8+#mT&*YYJ$@Ak5bVzmChTUDK-?aHn=WBUE<~fFqk(mA^*|$-IhbN37=mrQV-Xps zP536WW#fX|Tm%aswQO`qs~V}T zP@2hkA@BO@Vt_O0|9W`u-@gJMwU7qd{@>p&zEMI`Sj0`XS_tVQ0p=FVltTIYIk-0z zippA$G%$Ka4V864XE=}5ZFj{IKLw&=XDg{%#SS2Rib6Re)EZepFi1daYLxH;f~WrV zJf8tdzZC?Y5AY2)w8+adTfnKLHq|y|qapXc(Stv_JxRd=%qt zxL*cn{)Jzf;`y&7C@fuBV(&}&H4F+@_sP!NAo#A?feP8Y|9Qjs#mDAx?n2KA8hz9g z9&87KHJ5a?omuy<#qA-BvjQh96~)IjJIoFq9F{C{*G6 z*9Y&w2mk9IanJv=KDPf&o7?~YHrdL7cF=Vh>93X6ckhxm8>WtNHBmXpeQ+`0wP&Kax{Peksw(FQ9&}2Gbof2 z1p{yi0wPIr&gspK^@TTHkN(p?`n}QZ7*!TxanIR%?X~8bbFTg9(nU%7wM=U%6bk+M zbK-Io%Ic%!pVh1ICo&4DrTA^tHEBt4{ElDKXL6kJ+nSr_R4phJp1tIsWi}CFRusx^ z%6aiq3N|5qO|~|FDK<YA1JPCi`e#k}gTQwk^l?ofQ7=zXh@^)c7-$9%_K z9>0FgdWh@k+J`S!Dg4+-^VeUJK?m2x_U$`)a{0>Thq6tSt{_E?TJDHgN>r0omFJJ!aOUlj%Ze&^h_3P*Hqgbo|{3;F)U-qA`D96|TpYqWm z=2qMO^WfXP!@_uJH?a7&x9gsll?@mhyDfP8w^v_Ffwt4aw7#JIL|mo@&zcPz0;K#n z&c~~zy|Lf#lWq$k5ehmOQ-m0Q2Jm=$+_<4yqw$p4T?gRJ^RLcsRAY~6p97ehs?O# zT;WHL9wp^Galh~Cdfs*IR`SVm8K#<#JUs*4=yyo<*2YI%etlLh$I4_49bHO}%hJGpX9nn)pkd_a0N;v*>aJy6UW=&DmU8djr%2@a6Zkw-PDDU^Ov9XzV_$ille}9|SnKwI-^X;wdF87$b z^&=xAZ?GU%0pZ+7k17o042pI)W+eWwYBX`0W^y@sDa%~%3_bl3{YqcSU5?eXTbH?r zlqejcE8dLbc3aYu#ZOt=QBljbV=Fs5ds3Qz&S1X!{)-_82phyE^*WL@u7TbfUkJJ8HGk5Y=l+a>c53UboslogeM|+|NU^nghZ4Uhv=V8Pitm zS^jX-Ufr*+B&-6=y|HqocWLO}V7aUUHdmJvo*Y`6mP4T|bk`_rkKbs1%6wwq-n~Wb zhA!XoCY$ZQy^^4t9t~UM3JMCc3c#898St;CKVH>gUYcs~{moeqrl-c&H*TuWy!HC1 z=?|5&Pj|BGSB0kK?3@xzKJ?NPho`~Z!lGleN^H_*0jr>Ujo;-K+5EaXmFdZXMeZLj zS5qkOkNoq{Egv_-rU*pb6gS`2io&Fol#@3vOO-x1%V(!*Sa|F_ zVO23;o{HaOf{z-o4i+rtH%06|>E(JS8T)*)@&1}Exxrz6er%NOsk%K=n7r_L8JVMcVrKc%`wIeFS0n15InB@1Ya%(hXz!K( zz_n8vksXOxE1?(ov0FXElwZ#|JUrZ-s%c&7%PzlxB*weYxai}Qod9kuFa{Ce8&&T46eDn!eD9N=^K_1aU^=l=bbIpvh)QXOS}9Th=G^qxM) zHVV)Dek~fcn$mYF@~-M}e?0h7M$mAcA5Ye=Vo99X!oaY9@7X6_c(GDTs^)>#)>f^4 zUI77eNZI5gWxQ)*mF?3Kr$@WW?`;tMT_bu)DEZLFT%`9ab(1a5W`-+HSA~k`mHMzn z_HXF?PXB0jqW>9=f3RB7w6;7>F?n+u8XBJ$FSsA9XZFdnpDc?}jMW|f^-=E9rJprI z-rnBkb5pmXHL{W!^;T@evi}tRXV)on9_1ZAI3Z=9Ja&jQOUlSRkqH%6otfz8+{&qR zG%1_z=}tjb9Jm0SoT@fQY)7On$h2Gf6vcOmg5MTT$Kpuw94ste`f`sS+j7Eux+xhudhvN*nuzyxyTF8ubW$* z9D0RmplBmnCbMtrHyG-7lMa0hLw!ov`zi$ZI z482r{SF5>Ob`n`dnN-Z74fXZ)kpf2^KIBqQuNZS=ox1PlCUtKWy>8+CH6!J`1toY6 zk%p?V?(b{|4ivZdkeFTZPs~zSSyS|@CNhJXCa7&%HkDu}@G? zHPm6`e18@`ft<^=Eqm9S;^aCYKOJgMsS-`mEx>*z=@zWkx_tSvPhjA|FsGSl$A2~SZ-m8vN{oWq)1iAj1!S~405J8L7 zuKjFm!-0BpkGa+b-b2Q5lLn<#o0%LmJ0%giL)hk>@N8d-n#IWIsNT$2H-q9z zX9F7jAxHGtQ$vi*i(e?NP-{M@C7@Lrgno;GWG zo94EvZXa5QY9rNQp4Fa4)jD!C9m##0?eF%4y>%-UQ2F>w`{iUV(xFCyv6~G<#)n285EaeuL}OP zS9c5$;K>ft=JA3^usKhdPt?A8T(O0jncJePvL<*G0W5v~{3D62AGGmVjtIPiH7Ho? zJTII(H#NSPpp}=MYDBFZ`XSJ4b4G(FK*_}Aa++a{4~JsRc9sIiSu46&0J|aCf7PY; zC_=mAhmn#-N)Lq1&9Di+?WHD$RmZDSho<`aj7ey^ZvC+9pAXB7lYe`$^zl~Cbsi>7 z*=c`&{5U`0yaNcMHSO`^$GV?``PIgkoprr`za&1R+0bSVVZbWIPREIN91{EYXFdxF z;d(A$RvSDDY$1h|Be6Az7f9oJMPN98*LPX5v?!)2PSn}N5FF^630P)E7W?SNyO!PG zB#iP1`Vq1oh~uX{6oY_MYm=6edZQsY>wF;;1!w)vsYUtpYeffi5& z8}Lgq>b9WWSQHNA*|Gp$-ZUesKT@T1+b53*Y_55K8db`{A@{!9w}Q2lL!JfKIgWc4 zut>LC%rP)BQ+NW88u-*sA%4rX7iW~+W0Ecg@Mscn<@5Zx(T%ye=}{mst>Nc6m);AM z6b@PESALk-HBZ@jo}F#Wfs03l^HK4(&6@%G`Kg=bDf;;Mtn1f7V)qFMIDi!6Mx}WY zqnZ*~Yja|;q@<$4H?d$rt+OIX=Xd&TR0Q*p_Ve{P`4Wp(v;7(6D>ex4ZpyI^;7rIY zd~AL-9B|mS%|k%9IoH<5&(E^{mV|_aPjE0tbaXT;E1%=c?M;G{4#iiC+)9x$BLK)m zqZuh1>*m717hPvX%$% z2B6>;wJm#n`-DnSVIfyc`!`>?m=tg-C;0ktDnEW$0&K@wB|Q2h z)ugdDbv~>MyNwM>Hu%0j-u8^!I&amK>p@yo9jGk$V;_Vd3Y_oStsHaNe!SXR912mp zQ6~!)3h?jETej@Q@^g)P_Wk;GEm|e%Rk+a8U1B`ghP=K4v-)I-P^TG#=_==i*W)t_ z2Tz<(CrS0$0a<^9S_x-jE^B{7+Nfa|#pP$`m<-Kg>zGby%V^eWM$P+A)>HCFKG5#E z;bDg6;>WFGWB{E!@}A_KvGPZc{D)GTD8c=qonH_yg{^_PgkD7?0n4sbTS%ABW-BGkyv2+Bns{ z-0JDRs0dQ0P9cMOxVt|SXmOCYZx)&Su@}HJRfwl+YPgM0w`60yAexJzdVy6+2^#Dq zGk$d6rk-8-EkZg1aBQR_KwB+)J!SVH!Nc+&!~};`)}}h}oIX2A4s)4RU)|yQ470G> z5c`3w;#YL>D?nKqK&Pccv=iu6%5p`% z;kVS<#i=&Wv`;I}0!Y;l)%7M8G#5%$p1*LxZxuaL3DN<#cCUG}T`zaE{M)C-^~oPo z9Z798&1_v2FWBAP&1XBJ``s|}uL$3<{zhdfDXDc;(a8Cd;mQGWQla((f>~`(PrQkW zDj69U7st2XpdA~*N4humPm~5zT;BgoMLc$->abrT@z}IQ_crCwKx|_EH>Q@ivSH<- z`E_A)vn`7Z5x(L5FRYuBax{*wQ=Ph|5zC|b?$1l>}>aFH~42X+m(N_EK9Z-zLtd^d&S7zX!$Au%8>HKGKC?ti$eY(!P_b- zx>$8@zeX~BS&Z%_nBOS1^M_5F2ZQ2@DcaMxEGMZ?UU$8 z$zC%;{yHP|A3**R7Y-VOQInNBRz<*nLOHKvo0v5a9d*tu_D%v2%#VmCDOK^%w z<1zVyM^?>0Kip#z6KffonwqkirWP#d*)bPH`1)+qvN<)YzD`Ls%RJ%-+M#8Z);r&Z znNfavhWJGPTnsVi5)|PL462eS`K`AH>zogm7(Wd1gn$ec1^S=6N(w*SjGx(QKD2n5 zGUQAWfxEjr>$MvvP+D6Zw{6`TjRH|L`}E<%OE{c`%5;0NcJzxC;^O@+1uX+Uyvf#s zTJhAOkK43Wj>!4c%7FO2}R%WW?4-h09JGkSfsuDpj)_+URjKfSUUDfTq;4yk@>SV&0US2aAw z5L1=tY+P&7*RNlD0EHC9=7#P`$;v9D?Vlgl*VfR8yZAyV0;nK@flKA(KAp_EBq|ee)ju4(jEzAHX zAvH&L>TvQq+q;M9p52>2L2Kc6|dv7#ztQux_0XWw_P?VGNndaTBHYc(# zTZ5-2+tR3LTscyrEU9b@(2#{KE5l zS%q{zl}YQ+y1`pkY+k{B5jp((%*&pd*Z`Wu%|dg6`?8x%`}YS|i7oyZ69QT_L`hU) z1{gI&v)j=6Qx5M`Lt3F6Sqbro$Vj`qd~7vII$HK1F|-mzZvVa%&krm)aCx^_RfX3S zYMK4~XjN(HW$Px(fQbfv!|F?bep>O4p@}<~c&zi6xil?dZJ)`zB4L~oXD4sd`JyIY zH~jYIQEgXHCA0G#F;+Tz-nx`Sf_2Uohm>uWftcms;;NouGoKkV=;z0CK7R6~dgfhO zd3nmun!lUKUs`P%qdrinSRHy)OODt?9o-Q3Dwm{G0>{HeSmBh!MqV?RItrd;v&@!1?-mGtGyB?QYg>-r%b-K&G%WD|nP zCY)rCs2=Gkr+2p5w{M?KZe^RNSi<gU1ejQ zeTLP^iqg`+cQxvlTDR`c>SP_L=w{EE!OI+1Fr@%X^0uTLxr1L)}^{_BaEN2Uk8zur57oS}L#R5*H^(F*9fL6dK8r)u2^ zRL+tQ3jzN;umUKsbu%EX}*7X_$hdY-ue2R&juE&^Z+t?Ty6o zYI#|M_^%0?C*29q{hb*wvUaq{m zX=k<9cdq57jDr$1nr9vDOcw<+!@Uo}KBedHM_UXR z7v>E=KHk~`%rWshNV$OiB*{5!;|qh%i{E3=e3beK@#q0bs-<0cAyngQDI0P;oRyU| zwKhR9)}Q0x!9%&95;SvCJ(s13>g29@1d4($!tL8%fBhAOj2@qzJHO(CGCjTCe{F%_ z$aDm@fR}6m;8Ut-!G4**D}P?2%G;Iq?D~n6oyN8jl%0d5SDp($40hsnu0}OS^ULq;{NE-WpIoBdDf@`d>ZZop0|dphgys1soNMCqqkN| zrQB>i-5*v{m!w1Ap93-ir}CUp3m|4Fd!jUZ)tPHZ*NPxH4J>`H7rD`^rF{++X^b6r zsQGfKc6t@X>JJeZx;IRlg>n8Dx7QINN+980sWWpkLq!|xnkF(DC2G+Z{mtS5^E>-lTj*bqh#j)0!(*dUE#scDvs0kdryj97Q7bb0W zt%Pa$d3j}BA3WHRaEs7w@s5*C)<%mJa&mHIKL)`urcKxuGg}AF)c-O#H}~`22AS9o z4*~gaI4;-~fzv))DL{F*V~I-|SvQ?)tUK0Xb|(bbn2U7pGsfc`0{NQ)OA15x&;>l* z*|$sZxB_Km8uFRc_3M%0NknzXyrq*!HLi^d`up#{x3f4C#EIib?OlHO@Zk~gtYyi1 z-EF!10AC$LrKQ$ttjVuwR3 zu>*%5B=T)tzH54J`3V9W=SkmprDC|PIPH_9goLWX8n8`;+iu1O@6=#mVshCnU_W78 zM7R&5GFroP=N<|V|Gh=cf{-7HREe8L$hAa+8OUr~FHL1Xc+l(bzr~9{GVU_F${(>q z)FHDq35*Q*Op~%~)MG*e8hs`p8CYQ6XAxv#gmR*m+U#umGuigXoC#lobzBK-K?m9O zoj)nWXRu6 zjVb*Q0p)A;HJ}MT>j90Tw$FVPJ>TDY)=m*V1=Z++`mPTL`1utLsR`W3=4c~#me;E0 zSjD#{VH^E3Gmn=WvX=vmu~W6|<6DOTEDxLXgO`w+9B4}Ge8M84#>dCUGt;tV%N9LQ z(r%OAbF9s}zrKD@+n{v*+_`spO>aZ(%7*GTh)%sPl*)Z=k-v;m(Hbk``d(7BAn?Vs z#{DNwENDiauyb&HW71B#CgIMpY;MC6L{ATUW^ss~{^Z74bf$a3NqwnTA%^mk>QobrW7D~B=xEPNa2ewY5A@n8~JKn$#ty8@@oxmn<Hrewr;EYt@sAfi&Y=MWt}nxd+CO- zIZ<1kcINbHT?im*7T1BP4Cz;!g4@W}ulccLN&x{RWIj(V@icZMf4t@@q?fT%2Nj$(qbo$d?bLqw6fA4cvJ>SdR>+MRO^EXWRT#kYF+;7 zrb(9b`Hr(pEYCwijIXkVeiekQSj%@pevgfJReu%fBu-4*pQYWX@nj)ii1(=P;!YZ0 zH!fpmhW)gSZ{v1Wm~GsBuKRZ9_+X1RSdS}q^p-u<-eAKFKTr3>CdwqPIBwql@TkEz z@ul-Rkz(1aRHU;wLoKjN^H)W_ApD72@h%a&>M^FysxV%{LlpznpNC4(afg=Wknmfy zKzv5ET(V^;GRP;!nv2j3_=Jz~^Vbwg2`|O8Ls6UzjaOCwXY#x`Q%lc#dj}I``x%B# zwKV3C(0c|qD0jW&q`<5g1GHGU-xir}f2P(3U|@Ke&7}n0O9%MhQJV$l#aZnloyH8a z!C|56IpekJ^qv=_rH?qyLx~{LQ*8)%oAY1>T8F_YS&Ih@+X9$XJMDj756VKf? zd;~dX4&{w9G$E3rywA7doXKwb@c3U|fG4KgoU49Q?v`&=)(Gd%&&;fQCFSy7oPlQt zHRf~c2Eu0TUJb_a!o`r|S8o_ADEJcj$G^tBN@VheM@y=~Ga}NxGW;2j7VVK-S@P$8 zE7HRfRuTWp9s>gdA79^n&>s9Bu-KhLFY#;K$fi3YKo=b*%V)F$NH7St@f-AFY)rrcJ4z^mTPh z@K6v$?yzFwIn0OB6U(T0%3Ln_)|rj=yT4!ZiyX+iH04yI;V=v&Ywxl~F>adyw$ zd3mJPaKRye*~yphIOO+Cc~$XtRxi=4G|uQ}?>?*4xlc{hmfg!RL<@W%$Pa=fURf=j zZG8EuYXD6|#jVqHix!<9lZWK+q)G36)%^z#%F$G%b)sd=t~e~@d6Hc@A*6OjiIbiE zuyCz%Q?Q_*;0PeQ-O&tS$EVKwJmgIeM~8* z@xv`nvnD}0bJO(^U;HA!Tn;v?TZe7Ks9 z^J`mG*AB|c&76E&?{1l%n+ypgX(RtvA|vz3n}+qt5w%mK1}Hol%+lalLZFg7STxXQ zt(SCLTP&`Tm_Pd`=2zpB%Iyd9^sO2F1CN;mH?h6nAR#F!jgE1hr#37`K{~fh%_6px zIh^VWGR$B7h?pjzh1#cic7-`>Sq(Ou$VuFh?y3~Y&wp{tU~bxBh0Don5|O8GvW6{& zekXXkDPWEt`S&97?;?Z|u9&|kfj!^y=OYyWJUL4;EQq|-yK4S!(AR&dw7X>NO23#6 zF$dyMYRT6;~;|{+S;pjli}MH#U>8 zYX(pbKl=S1?gGkO?ol7K_Jg~F)17BaPec9lG^EZmi8(Jg7_CkEK!`+s(PPJIUrB9T zjdtZYJL1aG9i_WOaNg=zvl^-zSs8vnA0r2VzUW1*cs2f_*>Bx^0`d;`K( z41<;=DhD0s$P3Z}>43@NK^K?uj%n&d@(|6%QW9C5+_c}nP*!FZJ=jo=65q#DBnOwl zrU+jW_rKj0Aoryvi0sZbarpsNs?k-S~xB6@o0L$!;=8h)z>cvuwUm%ot_Z6 zyG3x-ESo;!&yix6G5sCdIJ=wb)NCciJ@%#A;)i>UbSxfmD2niK+VpoDk=mQ`KmtX|1YNV4Ygt^dri=Z0glIy;NGd5&n^$r)H8MZAf8Tdz zkhIjTjwW!s7@5S*!_dVqT>IE;8GA%Kuk*CK-YFgt5lx~2N>B7hqan(X{*vw3$WPVK zxym;4=XmH?MV=mF4b#42O%iP5$FL(pE~iwoP4S)AG;2PN|=i zqb`M4J14^9)2c%nAT=ZPZg`a3!oD)Guq14C^H6(t<&MMR{G?m4^YM) zFdlq%O9Ytz&s0}GgcCT*LLUwZCWP` z5%sSO#4%v!WKloO1vN~~U~+iJ12@)HL+m%{fQ8sg7Gby|6L=Od*2xZ=*r zPLFg%z~qD8;jh0+pi*G8E{5V)xWR_SFh79ob5=7uGUblTe5fPBIRP?X<2 z{nraMkzU&LfO91(&hvpLs}|=)MQ}*FamNsSfpG~O_I-=hW zI~bp^Q+tUwgHl`2se7voJi_1wlknTUF&>=dP+ef)cKAwpEq<6}G+nm|6RKLC@(s2~ zJ)6G8S?9&7>NGz&^A^WRV9ZCYL^k&({{ua}AGmN0qr4|i)-fKr{=_uM|D2Q*O3C!t zcUgMR_{*=|T>Wg$c7e`NDSixaAucLbTuCZt#`6MwAhTH5meAG5^LK?U&b{UTsB-YY z0m<2c&DJfB84@+Sy}VqjTGi4-=JqUYNfdAXRN+t^vQhV!@OvOi&Q2z6q1(peivq8L zz>>Il@u@Kyh@mNTY^=%GKQk4zCFV^uv{;tZ z!Y_-pj|ADlcqBD{T-Q&;e&QUAbSAxIpV4Qo^B|_52#qXr2IV)zO8G8K5y|@jlJ^q7 zaS@V26---Y7F8l|`Sr0EBd7|h3f}xUxvZcyhNg&3@ztwWBw}2+9F|dI`u}OdPUg*x zl%r>XGWK*XQbAn&{#Y+n)~FJ>-{dm?>V4VF56+%|57X4dCJaxm))cBlx?O-pMy4H1 zOdQTL-@|0oXF=HV5otjX?R<7rDcGdTXh*ih&)@E?y|8xe+SE>!50&p?wp4<{)S}}Y z4k0AjJGXyc^9$(NG<9Emf6AUAIAAx=jCr3+ejG(3p>ng6I301*09~;cNG6Ll9l15CLvn zmgxMJ=hhsf$Z7EPl`8`45}@KwwY0oHZToVsN)y{_*RH)m-(9=4E#kRp_IdP(>pWXv zr=7#mWl&n_3}&^ZbSd9>K7D%Zha%(V&8(+*NE3Hd->gPS!=&r)krJ8OW#HE$1VpNIRMH;O8Tn_6A zE2u|U!9yVQ3HMag22q_G3M_+C`wL(-+n;x6Q#-jdGQXg~A4GJ#AySY^4mbaeaOLSQHgQD$A~2iEtVk$BTGD;Dk-;7|$2;L)L&w4+pr72at{3ISz**ae_4N z{;uBk-WHCr+ud?xtO6$Uv-S&_x7zmc@KnA|0|&u{YMa|S3~cOsSm%>Xs(%8!x95S6 zTZduhny~u}zNfo3{&{T(dKn{;w*Fj9bxilARHb$T6F1s5)}m6Lqb6v2SiiRW36mT# zc^0+pWo6X`z2IM?v!874%i>DV_oqb*j-DVGDvxXFWI`2jfQ@bQ)~yjD#K|jH;N(c$ zmNb5TCiscp;#7~+r|5f5`~dCUkXn3t&pYH;52KoGdug=^qMj;a+IaGI_F25u^_=n= zB)>OclhcIKl@hi3Yl2tMu2+Ca=azx}3mP+gQM4;ZYjk9!8iNuFkk~|ePX4uN>$Yug z*V57D#k2t^a**THM1n3{ayEsAlICN9axPoLJt=)n&Z8Q1TA;^;xe3DiZ%cR}|YDwEpj{|LYWP#<~Y zRZ~92R<)uVh=qm{R;>nu#r_My?YH7lmi=ob8TQlJ-$Q8^tP>+5{2fY?^P*Gy1{XGI z|2oa&^gUJ zxYOim5FR5CnnA`H4(Sz8v#^Lc8LWXqU3;6W@A^od!;zgk&N?v+26>MMAOL=uL>AFw39NpE3=MKVtU?R&53 z#j+0?tu)L3#$QeoT{$dK;~-jt!jhj5lf=ix2qhaWfYkTLPoJwl*cY8g8g1IDA&D2($d)D zZSB(q*@y{dHHD-d@X2ms6w+o}m$KZ-(%=x*7);vI{6o#%D{9x~c}IKH!3)kCQj(KX zJsU?GpUH|wqq_Ed&Cbfo>H#@ZJ23Z`;5NC>zjGa7icF(6C+oRWdl!^&w9<@J@*T1y zje@prt}=6;ZER6Mv#Laol7`ObGFGMGHGf`S%I95p%~R3kpv&O7@DnWQ+9`c~btlPH zO^w_ep<~s3z~XG$dp2+;=m*RR#840&Asr9{z#A3jyrA0A)ulalA|)#7+zYh0@UO%W z5P*^_RRf~Nmx;Lg6fvRkY|;zN`>`{J^wCvYKW`EY_0RJ}8GoUihV7Hfo9T%)MA_!x2e5*!wJ`0Oshu660a#gHjY z<(ueI$|@_B)YFYGe~-K{+M`ZGj5VmY*YoE^&2C)k`G!(m=OLrFenha?NA>PuVyzLd z80|u_wgQD6*%bYuq_b4uj%9kISwWNj=XFxvu70d^&)K#UpH1%Pgq;;zwRTf}&z%O> zf3%-L&`Kr4^u+|NHVAD=qfMLd9oV;j|9-Uvt$f%`BB>@5yRL8Aw8?O=8FfY}pgbZW zf5tFA?e(iyGFh5GBOK71HVjI5vWTQozpi&^7O`u8uO@sW8v0nsKp>X?V`PWn;W*K*@2sFz%dZ92_($33w|bsV z8fl`495t*i>2=H-Dx~xA_mAZ7BEv?gn6`Nn5tvhvG)0b&7u0qbcCFQqO#ogmg$13B zi>o4;|H)c3jbvtt3=if=ANJUao%lK85EQ+!4lKzZpWaz7;?G6vwO?#u>NSQFJ`czV z^T9t5biz7euaov}Qd@qijSqU?lfc-~+z+sR3H%EPKnN)<2k~O-n2w$^sw`L-=e;Zi zWHncVX%|kh`LSo1j;qr*5=HFu=~wOyiw7mG;0trBs#>~n_jo?MGJ1sJupoxHZs?m- zBkhZ%^kLj!GgHhq`^}p-w?l_WisJA_fiG)FGvaP6*o4ZJ>@;teh0QjJFIsz11pMrm zI*7A@|9&SS(wgkRV*A0|TnZt~z?$9dV{x&xxq0#&)+4~nYhzCNDHky8@6&pu=_ZH> z^s@_th&ODEaR%Q&x<>E5V}r<;SM3ziV+qn#Jo_pq$VZ}N^oKWZ%t!p}*%^mRJlJlnPoEn%ult+<3;c>PXHu#KqsHH>rejs)2FgH)s)mu_;Ah<@NDuB zW`P&Rb?-j-4^Yv$p{mQC)IKQUOq6|n>&VkT-_5G5ZC~QQSCUGx7p5VlIF&tQzr`gb z8#OORLr-NRlTTp6>NM9bha(rb*3tIEl1e&Phc>GHZI~0Eu;`_1$;MQJ*Yo9$AVpvw zb-n}!(-s1B2f+3SHdG2T8Yb~?p(cZ~=MiYS{Vd*6Ch*XyV`j}~S@rMw?fX&sN7|eamFS=*XhgVV#oLpQot2VI2{dqQc-7ZVqd<9Ch3{=BD@aRNJ zC58r#TOYSt1&qgnQvsmyAcJ6UTThC&LxuJsJB@P6CM^8J*AepQ1+>^P{BIEre8zQ$ z?Q&Q1E1JP8!SmPZgS*KFB;4nztO#wI%N0I~p-cmu|qLpx?1PjlxEmxHZF zZ0(jf!OV~dKgv59RL0zi1|zp(0ZhxiETjU3E&1e&yTIaOlq3QH&!9x3O@27kM`=`X zHc?TnU%!660lT&|kpg1>4GKs4VyligP8%6QMs?&Mv_9fQjX3J-?Z`|bVDCB1UdS|= zUB2v1$PN2uw4kYBTRY>)&P>ZouA+%UydN4j|2V54<$VE-ROH?HbrTNW=$s<=WZ1(<8gm2%EEO|0(O;|JF zo5YE2n>OtsBg3FsN<0Lbe+TM^(-3QL(Xu{5eIHRdaNs~W@@NNq9~*IAHDzzyh=QS8 zopfV_QRS`@#l+l@e!In@B(`ml&@`&3KU|vG3Zm2PTT0zZlK*`#0OU%&0;mJu(u|as z=AzBZx#eP&xaBA4R<2Ec=S-JMG7W{Y{*A8>L<4Ee!x=ZEo<}C^z%e3G1cS@7yLXpA zdic-_WtWT(p&^z1)z(I4Y`($aYXAmTAyKQTOEcm_MW2^VD4Znll9xfO-3Nm+O4DAL zM9m?Sk~YkjQ~4sMcIyZa2HB2yRn2d~;xBiXlX9Bw*hc0i z`^fn8P(wv{aOJsl7LpP}?fp_Y+~Y*nx>k#MHC8bB9tEg2&(B<0Pa z>=0Wk$(rQejoY_VG5RBev>_Jzboa2y)2ay83Xxx&oNjN`rj^>cL zrl-5Yh%WuhJZqn@um-F(9GKq^z|W8(RTokap>Bx(^lyMsXk7hH>@2N2f9|AE4(#1A z%aG-waq?K_&eapRb;iLXw^w~Gq03stHo)RNZ`Cpy%6hM7&t4M`2-L3#@xNbl1M;x# z+ZP4uojs#bv&RnU`dDgJ=jZ3MznO>PF-H=GivwbJm}Y)xo1D#12TH6#`yY+5{cDrb zN4PjSrOC*NRsk(WIg}IgXJX)6Or2#jAaqTzh6_pOpj7^&VCeUpP*eAaE`GtO~-uR4|T~1Ts6=M7P zk|F=rpsGr1*^}2mZQQxz=Yp8MHA|O8-s0lo;la}Fy6Zmi-8vU!{9y0?(!wn>o}TF_dp=y|gddovZ%zC%&R5CV?NgJ{b>A&Q8x3$)34x zo8LT09nmtSmUoQHinJtlwT&P1oE%*UowU$0!wd|x=|~}~z8l?DSQa4m@dl$rqVm4w zon1b5(q zMTS2zZ~61SVLoBSW$`vpbI$~thlVsBfYQV)4#aji!ko)Fze)`E#JmAa;Lh3qnsCkd zQnx&W4hFp`i~Xd8cE@Y@P0SFH{2!k4-96Z-1(>ANO$mv72v2T;z;OF6MW?eJ;1G&db6)(ajtEg zs%_n_e}`rDAPdFiq~tN4+1)$T_x`Y0Rv*Z+dXfdP?`2&sT9Q+{dNM6ES9-&J!=BgD4$U+!5mJXu6iUd+X70t^gTcH%sCFYf zA{)y@-jjHphWl)%^PU$1W}$K%V`q#(aS*3>Th-*WBCCVkMtC*GwY4 zMA8=K{n`35Y`txvi*epz9BgK{Mc2VBs~C@Fb8pm4L}q-K25hwaxO6%I~WXnef| zUGBO0iw?pJv{6;Qe#Jln_)nwyabDHrzlV*gMOYliE=z~5u-l!B#l?cFB=RID2^NZw zn7eaxa2e(1a$DS&G?F0ruh0Fq^tsVLerR9}s&~{~6YY1kj;Bau{&eRKOXO6`&I-nk zaXUY1uOiON(r^q^jUG%f$m6f_&3`;rce)R!(jmJN1tkV5R1`Fk7^vimDk@RAT8VN! zecZ8NycE!ANu57`88`7zrFdN%AMnzQKWi(@ za%R*vPb&?B;$dd`{BTgnCu*}tgxYp87Fj|S)FK10Zi$Ny=rwwfASSy{WFu9{Gi*1s>K}H=hGeLP_uX^gt%^(adr&mf3LM9xL2blB4f! zt=ikK)?1o`;2EdDGq3WC%=?U;u7yPbUVirPy~izke91&(xLT#yUADgm>Qf}`LxB@! zEiY^xw#(~*K3bDNZWMB=%EF4DS&Sr^7LU4LqyM8Yi)VIMsQtQ{QH%ow^I4P0m99DX zATI=^2qXN!h^pj-;#!DlkppDgfvk6gNgUh1t`%mzcm+S{XlnQAyY% zHk4)sFM`a*{_NK@sK zDw6;R-&&1t)g^0YL=vzH)8Q}*fTrSMh2K8_U9@!s%sM*bqa9fQ(s zr5vk%-HO1&{#9)&J&X6^k{2qIJ+xm{jnAr(_NXkxS|8RqWS7T>SL-K}5&?jq(?qC)b>`t_L8A+$K^#6ad5dt;1PRE>UFVRt$U4}Iy+ zLvJZt3f|wVI{*Sscw6@ut0f-rU8=+{_g34v;A$Qjei$?X>}#1CkuPmAd&Hd(RgLlF zmwD1$fe>1aJmWz@xcd2G`u+|{Oh$bm(;b3!Fg8f=6aNI*xMv_9XODU&B0~{sS54;# zA784qlD{6<7PU4Is2!s_^AC-zQk=AW%{6wi<1{MdKMxtD5!FRf*rlLLC|~ck*ixP1 z#{KBVmqJ%z|6lfho)Uy*e-h-6XVN@be-|3^D8O_{s8y5aRXk@IhA_fI$C-5rL~(5< zc%RwZ3xsO3?*oVC7+kcACqP=uX;LQ^D4cZ+j@-9DX>Jz9GoEMKJYq5NHKyI$DfYV zNZbr+8ecyW5xl(MNU13d&kZ^m#`V{(vTcI|RLvBCIzIISvnCB0eoQE1CMOO%o4t2g z)*xnvDV-5pjHylB@JJbD&|$sS_*}v6HmjL1f{#CFO~vX}iysNNR)WR!4W;XqawOJi4>PjTB6WoJ?JQ;4@BFb)1RMKI}H@HM6lM@VPIMiy1(qG?)B?RLi>4mF1~vG+EJ(= z@yVQV1OEn*E4(=b>}{&AV{E_s*!9d3*4nz}0YWUt%lgF!HSMIEDoY7c0tblT@S~*1 zn5aW{rmAxOql4<9<@LCYE=I%(%_+HVi7qy&7}v?Aej?`IS^MX4eDGlPC!tjtGk6*o z7bkVk=i(Rs=e#)=98YcV<<j*V?+c0Mv{fQE z8AzO5!+tdApbs;=%I1gr0)lV%RF{5bs=$;rGof-PrV0yB6Kb!oA+5YHCN2e+=JY2y zPnT-T)=eD#~KwgGzAS*V+OmI#)$vp_l*0v%um&q&|m@7-Ldof2)vJK+Q(|`@L%x~ z8$v#!%WxXC5gs8E;T|53AFqA5t%h8}*}Yk&1{x5#TvXQcb5&IU@dFU~t{YCTick@C zQ1yo9uAK+Lb%5$O@G!yO%+$D(Q~_*x(cT!HiL0MV5gc+Dz}15l$-L1d<2))3aZA@S z{l4S=PiTym&}`egtqzN`>z~D8F`ECV(%X;4*&uSMXS25ZG8YRn;a^N9jG$Uxy~=L~ zDmjGbg92_tAz42Qiu0UM6`&Tm-HX-SN}%QCse8oX_AOfe0C|VDMJt%u8gx(;5MG}k zWu9AlMh&~}2nHpc5IHH>x%c5V#`P@12g!|E0Lb-8Iu8gbj(#SD$D8Hgihm->Q{(1g z^Ecq%0h-3C^2bY!Qvo=?8=fYJSJ;#>e10o?<@a%1hcl2r zYZ}CFxPOyiroxG+0{sa5xq`mVlzhMvj+lsE%4t%CaL>|k%0r~~UH4Z#x5YV1^l z&Wi>=bp?feu(g@P4pk4AR9{n$GGWPK@$$nhvXX{;k6AJ|{&`&5RpuXDOK3iMdGMay z5O`oa7MbI8GyS@_@om@Q1>AD&58J&LRvP;s?7ewh&g<7Ue3>>|k=ZU(=H?WoXfk9d zL!;7&B+aQrb8KQ4QW{JRXeKF|Qzdo~H@7lhOU_c^duLUtJ~St8g38dRaM$Gr3Zzk_ z+$}I@SmFJWWsGb!Avp2H4yfvT&kc`=Pa{Z#J^A8ptx0M{`s71`Oem+DAu$ZVXI%Lp zT+nuj1+V{vZ2Y-K?v*;%b(F;8<1E`|INrWFWA?f}i^dZ%nTt%FtMbw^9?k7~R5R<+ zPeTsI<@??>^`wf+R=7bfr6n8h3W0?rdWT5c78{tY6wt*IVMz2Bw5r_D>-qWmE(0Mf zYQ$apvA_g+0RM;EVYsH}*ey1i!!^Z?1DgCi^NBbfh1uKgO<5kFWec6ey4 z_TJBF|F+y7C)_$9Z$5y;$Y7%x1%nSF==~kJ*dB+a^|=9Jg`5TBOB*ER(tGA^&FlCbh- zxy)8ose@ly`}<1XX>mE>N*>R>%!Z|18IF9`(F{`StA2ldvr7vUdb5J8l+e$LR3qN5 zTZG!feVGzS6)U4Z&cX<^lrJ2Eo zyML%yNx_-9WMgFky0@TQr(RmXYwMA~2jFS99+6=wt6)#>k^$r z+!DVp%j!f7+rnnu&QG)6>`I!udzy16LqG#*V|U!8WviiG!aD=$EfuImu~I3CbzqM4qU4bLfDYlpm>`gp^k|oYcUH*4s=wXr z(qj$Xe(0D3I%3FUMMhd&L_`_DJ2$0j*qksL&}a^SVBrG_S;}mt8Okv@`{uoWbX8}O z4uG~Npq4WC*Dnx6e7Kr!inS;~xM~B$k58n}J)~UaU#N*W1 zPgE{y1HPnMYfs)*E;uC)b+_W!eO2s;Q%7HMJ_oQ2QIk@h9Iwv0v?P%0`$;lRs@O+? zgH6{FtNz+0zR>*N*9g|C$6dU9EDI?gUg}-SI4$?t{nK5Wf>y(UtNj2GYq338U|j$0*e zwkV9wSX#m*8?RhJLjlu)8&!u74E;udXHmFvFWw4o=9qIDI_ItqNut@=B>C2fuY(ST zkfgYCzJx@Pr1k>QJW@E}+#1%ex+ZLW$tLgprAvULdgbaD=sz3$xVGnyKOC|ofpj)* zU!V3C7{S9G=L@n;2FOjXeaY@4fV=x_)kYle;dd_9yCz}XD0ka(RTI{=3^0x^Nv%Ng}TxnGzhD-1+*}Jw?xJ! z^-!~J-6nJQuTl0}@G=Bosi}Fm$~Kclpp*)-`n>lNTq$sV|CS|>im`2N&sV2sgG1as ze+W5baT3PsK`j@K&q`**BQ}#D`0RqF6EM^GlIiN&{Sz*eez!3;N28%%JfWNG31_T&4`;`@d*J7eVQ7dQ>LB{1uo z?X^~a4^;x)($YNGf*`vlQ1)RuHhZ-J+nODrVn1SCC!Y>UB7-;Wj(hVyZ&e&MvZU_j z3wc?%trTx_QBdA{9+s4>9jCuF5~S3|-GlC)!E(IKxei%7nD<2axYuFW_ye!d);#E ze${Or6<1^+%T#eAflFC&OjRbfg5NT8GI71lgBVC%zW%(3rk>C*>v!&~@#erb3`Hub zWpI9FHEGI=UBABl6J^k6PRpx+o%5m5do>jZ@+tECN7Q89qp|6I3ZS!l6P$ucW#6}^ zm#_;$g@E`26~Z-tp9!4s_pgHP(H)N~*AP+z#PZ|!ukNK+v;j+vOsh@2xZq8;KCRhh zq-k#Mimfl@_wLP8*U$|Uqgr@{hH3`NAJdzjH*c14Xh8nejz;C72`<-(xFJn`lI>L+ zz%3|D>^Xd##vf9HEvIQX0}bEQKzFZ;y_RJt_JlzwygQ(t9G>nj!1tFPXpGW_^eq2L1i%VW-gFD{p9 zMfDabJp}q^`zz0~L%;(2z9P^2&SqNfh)< zH?2HzwCfYKw46h8LsGI&A4~+)O?42?UKLkihywOjDTlU>j@em_kbBg$hRj&Y01(8< z?tU;{>W*Cis}geWw@{GJOveK&4>%7)0;dae<$cA< z6O?CD6I$jdw|DO{#@(}D-~OYp_mvlE;#J@_a|{&kcC`mgDtBD02N>C_R-!7J`YmyN z;}dwGeVtlPSO|}F8~$0knKjT6h+uW=ty{N_k!eO7U!fh?7&v9W>L7sDI<2m{b;#kh zyUQ)=s%rAn;~^RZ4eVC2?32T?*Er`DBl4cuC7!XU>aNZSki@G39?#8wiD!DSxsHW^ z>KMXd!az`V%?R`Tx{%O5$n5rf!?p0i;2|#ZzRJ=~hpYx1?>wWK1l@u5)cN$TOs9)L za*mZSYetPOV*7*oqa4lP#6ezC?jL*DaA3jY_2tloSx2B>9B)u=?lOOm+l`WTL26KK zFbTH;>MyNM+fpRQ*7j$@uS-o_nId;IvSnucIbH|+%OD=`Kk25zhL8mW-;Azr4qI=#>Jl_mDl?P26k77wOggt;WW~#J|7kuI~(H2oylCc%!=_5;df8MM;eI_RR0dNQPM_AK*~aCH5rrsURfuAy9>yMfwv2oUSbn z7^JtjA99dGug~CCP#7AG95y|^9~oisc@VW#IByOiG=z zz~Q82(u-V}1h;>FK|!CrM%U7#QYR%oIK0+lIui;$gAksNmpAImxi?FQI5eqGPibmR zfxZ?0X3qyd*wz%5`SVMu0SJuq$%|7kQ6HD;83jzFhERC4BJ;$Xnd*pb7mwiCB6V+7 zy|`$x7+z{-tRv1?nW8!*8N}-5^h5G+2-bz_1gbg;)m6Ab>0K4udii(U*e$+k)g6{+ zMZaS4MT&Jd(-rFtW0LGZSoPhq_IKU2Xp)Yshn+?OdS1^X__64neXSQ; zP*kK&Vg#5XC%EI@O+{g8g7mxtn?!}WgOFvf?5^bJ z<5L0qtpR*b72#ZiQW@(M9hst)OP4-@G3{jPnU~LHLDr#R)!78LV&pN4%wE^3o6~DQ zdOV)u4G!WsdP*S*EY6rz1CWKoX+Ma)9kiT+zhg8IZBW%CHIj6_Xil2DaJ3S(Za83) zgVX%8=)pKf9XcGH)+wbZ-i0Hdplf7}jFYBgtAO;PAY|Kbu9!K=rEQ9jbIle5eOWZh z4kRE6k=D4mZdSFJ_l3!&&#?e19tO_z0Uu3d)HmQv_uE)u`5h)fY~&(ZEjIpgysqGz?DVLYNDP?ruCh%3 zscoK7Kfik-=fL$a=GnqsdHa{vVO}mWG$Hw4TZ5as=a|dw3q^}>{oV#LzjPkdZv8|! z2>fPpNjphW7EU`3Yl#HsJ1&`C$GtTk8Cml zI#`wt9EL7E9O4fALcc@af~w@NkeUQp{mvz5{m!1*XYp>XeT7t0@~^X`=`)kae>#U{ zg+$+1dzc~V+G;;gS`eqei*Ou+RI7F5@!)t)LE!bw0B`TbTZ-R6TLvLS!T`2xEU`2O z6_s$$@$>dpK4VU9y85j{Eotv?qITkx*mwF{A0$61*@9RT!h6}S=p#ymaQFDT;!!NO zz@r%6Js{UMOc-RP5X=>D`hH4WS&WT1nxyR+DC|oQ1Tx5{)I9$4o#I|K$dPeb0Z|nZ zfS8}6ER(dWgE~%`;P;pcDO70Mu_9pNi|%cW$aW)1T;})Qjc@tn*?5*S7pl9N&d@G# zaeWCSrZ{Aop%sfGsq61_(+n$}Uq{!cA2V=tS?$Gv?lAE)SJ3&V86_w8d2$%zzHyChasN-scjsN7Aml#m3DRDBsygorxx0Ub z9AyC2Cg|u4&$#&h-Mc6hHhQ+&aSbd1w0*GciQ0wQ=nA_z|6M~w2U+Z?4sEa z;Ku{dTa=H?&k#*!)CPh!HWf6}L}A>q7+PD*;oC_cs-tH000CD=Rd3Qorb`( zi1;bQZBb{+my!~i7)6eoSh`>04HcPp1n*MvJ~c*z5N4@hBFz=!^W+H#AACMC;y~_} zk2HSoUUa|h!>(u}JCk^s3K+gN0pLr6ff&SaijB7~W{`14#2)ye* z|H+uW`hWZQ93YAR`B`LzD)hho%v^|&^q(KOtdsxu%bAbk{}+$_L>iK&e>^_9`O zX++_iLzvf+;K+@MTM+lEEcUT;P)i4M7V)!^3fces z{6F3aLg)V7cvpf^rg*3nw2R{7+(Pyz?&JCPfA-n`XS=L*NdyaH(M3opDQZE+wu#IU zVC0}qQ})Oe8j%oh!W%XZ2Vk!aD}^HzmtgHdvm_NDE+9sQdXIqSoF7w}AfOo0g*SP)$9GDOqxUPa{ zOivy(7v@iSbzYuAWll&t%?zY_M(vUZyI%52A<_t{WRm)mUI4uUd0bPyb4mOZ3WA;) z&2a$l8I#_d47s5{9brJxNqNLPk?{S%pkctR5Q*#aBG0Gby>3?al1hM!(v z`2JdyktGBTY&=An1U6Bx8@&Z0iBX&=qBVhz0>B)jHTO#%?U_qQ$41kqXb_`mdss}T zaq=*~72x%1C|vO>sh#f2i<5i)>kx&vctiOZUg2FmFTW8d#*xQ8%Kr1he63UGF+T1@ z-7TQ?>Hs7k8)1(w*76YLR6;F~4B~5W=qw80@3ou{rq2*IW7I`VLr0IcwtWfnWaX04 zac5;;2dH~{%Ig76j#sRcUk_F5XcwUmE0-VqmWnCyaSX4GnA zyxDQM)d0AfX=xozKJyMe4tYKs6`N5c40fg#6Cqt|Q!H)WU$mVZ3=c&r>BC+M_jLB= zB)mDAp|*UH{J8NPjP*wGj1A#mfg`=E-yW$wH!;P~IsMTkEMp&Qwg77XNy{J*knpyR zPhQ8c3POV%WG+-SkP{F}|0Ww6wL^pd+TnttpLqv}SiD8uj?vy6HbY?0$WmB?bI>12 z1E?Tx4Z#aiz)4;_sQFLv+{O)KoPH{dY=6LW=tNP)vQk@js(mr$K@dys=jYclU>FdE z6vY`0|9o&Kd}Vs;#tk)UV+9PXnbIGGd;riw*cXGo=6rFPRYs5y$-}(4!6*0{si6VR z@O$MNjGsrWtQ3T)G=IOk|4q^h1I~#FOo7LnMU~i9(_^(@FgY+gDXb?D%P@?#14P${ zqo|`LwzpMCRP>9I^A6cUxDb~|3u2RWIw8MPh7xeN)BaOnC-~vm0UaunVeuE&?A%Yi z0>Co#D@-=k^J_l^)i7>f`0=A%st$waj`v{t;|fs#I`F}XMYE4d_5Bja`vxIu;KD56y$qT#0H0nB(;gGGXBU})sf{|xu zqLCX#12T`s8jVI}PxCiuI*$p48k&H!H6duT$8)BLcFFM2z$8X1B}_}B=|M0iOn~n2 zd8`!Do9x@U-;`Na2yB_WdVKgIW(BDMBq}+YV+otiClLQywu_-}sgP9Ok5h^tNQLCbY%w3txJKR<%f0gIY?Ox zx4*i69qfh@$&htp*)PVLNxN>}wrs_UXoCDM70d|n#S>3w6CZ}_Ch}2(Du=C*u#rCg zyfh45HHcIT>jdUd7lGhcG-0%5!!lVe2}l)=CZJ!xs&ofm-{<{Y?9VMRlcKtn?XB72 zhMJOL0DxuBF)H|-4+kHO2s~S%!TF#$%&Fe9SO7f zy`|vU?!vniT6f)Mcp_N8x@Gmz1J)WTq%uP1*y+x6kc+p`8c=|U(AqY>>ER$r2T(j3 z5~)+1fJs8en5ICj7JVrN*^VuZFA!Rdp^c_7S9Yn(7`=sfg76sI9)MfY63z53S{m|)(@`YM z-2>9a0>Xf$zhf+yH(HZ5)x2M}IsOHHo%;rw!Ih`L(igzUIZy};%oL=x3eagZLnN12 z?2JBw(URb)4PX@F%~A4PP{6;<{5~q%051YM;QFAU+#x!R8xO@d_q|_b*;}ZE3}RXz zeGEDfbJ5(p{hjkFp0)kF*j(?}Y3W%#@m z*th73ECxHsCBcO2*EfJvg;l#*(Zxqoqgi+mp;$=}`@wVoc>fl|sXm@C*35|Oo}T^2 zfA0%<($n2DuJi`ahLtDm^xNx;`(Suk(yk&z-h!jwxTblKFeDb;LmweobK=u$#9Jjn zt1y)j09dk`gq9j5xF%m`^+c ztw;fE&YRJ3{^EQ+?9cLWunCV?;z3XkegSkV<}vckUAp(+C1ySvUT1~ShGPOnBd<_E zoR>^6#1s|Zc3$VEOdeh zU(ca^qdi2u4~6D1Ccv-F<-90|xt&dU6EvC)9e&sIst!K`hwg_0dxwhW^*m%kEl2?3 zY;ReOIdQ|N0IN|t$7>Z%qK#ZzS|Kdcy-;V^CPHK0nsy$Zy<==@x7~nqBX z`B-;r0MGp#Gk#$G-3A_~X>H+3ydBLmiYT0CPyX&`8h!)9}DU~w9NrQ1vt&2|e{Hp~pPJsz6i6n28V|pgk8`NRBv2|f?@mz9V z0UWe-;4U6Y0bt_O1rx0_=j73iGPoRuj0}rj&Jcd!=gj4S^!>^Uq(6lXQ$yQ>IagsA zJ;ZGOG!YL@KCpE|-_bvaO6cMscm(#~@aEhEala1)HTjU%Fz0kuj3YiMpg*P9D>g4h zduVKo<$h@B2EbUiAn{ei^d0<&o74 z!t-#{dmQ`ukdJkj7$~QZNSYie2=6H$fy}88Bce}Zzy~!AV?guDbbSHTDU>{tLK1Uv z`~c64s8zsnf`2X>=RkYh@}}3;y>~?oJxVqL{FwUb<(dbrA!OGuyCH)KoV6=Y7oh)3 z61}bP71zQTc;k`IIeR}&l{q1qV~+pxN@)*&&BJ2+&J@lc1(Yz4awo~I215rkTV;(XrH1Xt9EPrw&%^xhNDv|ZlAjN!VwSdx7nprdPvI!Iv z4(l@1T+XRO@LRiU*Nq^01W(!h*bh`?VuG?B*YC?Xr#5NjNb&>G_rvhSvs1wEG|^f2 zwpEgiQ!0|u=9~&dD|1jr&%|<(?Hrm+`65ZK8Zp)IAqjE*h_yXBA+;({vGpt*JBa`T z*6!W`tuWJUs(rF=51Vvzg-x$xx`v$|mOpRtEQUn>2Qj#^M`8F!10SeY$0@9s^AK}s z`+$&T)4=xC#cnl)DrZzsCbs$H~sB zKTRVfk{$4XjoK{Ewn6n}Cj+`9_C8F7$56B4iy|;@Ev~^{u=eFwFhmKhH*VfkM>4+E zP%q3EJ>A%k@*yk6#z7-^U+T3N%w42i}4r&`c99 z!45L@{5!n>>g~RC+|&%&2PMD7=hNZN8y+*b?lB0n=a^RH^t=_&Wd|nDh-_=cA?Xy< zGd$wd*!8^#WM+Nu1R7NPkm9W0&v75KV#?jO7fk7GIb%9j|1iU7&n&l)K@866ULLB z!b2lCQjwytmMKH%Nd2O!op@L;Jb%C^_!h7mvixKpD_p)l8*A~kUU$)I@Y#GAI1|b* z)bjIUDI#M+>`u@Y<3bCT=NA=~1@$AYY;96doKqvL3xnvxlS!o8g@d8ES`N_eL-!sG z7hHOCW5EJUpgN-ehuapT_Z;IG%~s>f_Js?_K&I*9#bP**GPeu!g~0>y7*=^%P!eLN zOR@dJV77VgrWnpD6fPu^#Lr;iTkkvAYp)eY#N*an zJ|AV)0_pFN%WX5XsOP`tj@qcZLWnU>4YBYJCR-_Be%*vj1x6%)y>KiDMK*a)=?G2B z%3vVbwpZn`$ic8)yNA=)ImuWZL7vLAKH|KC)Qz0Fj`oAAGHo5Tp|L>uUq{@z0uw~9yq9L>5)01PU0k%7B(UV_V8P&^2QWg*b4gj`q~9h_>I9(Q$b{qxMg zq}XFWR*EnRK)xFcf4OF2$0_XS(B<3e?P*{qnees;It5 z7Q95lTm@jEyb{L@xkK&6JUFd8zxy4>SN0?3k?)w67K%B!5He4t^xpsDu4Bu(GegK% zn%6Z!)f<1?o{Spb3juWjs1P=IWhWGRWHE<+gTi>p8|lKud3m>S8fSk0hI5++*ikr% z&;NtbWeu54A@CQ|G5fj1-+lwIKzNZ@%Keu&n(ga!^cKr-B`eX3z?Zl;%3umI1-L@CD1T=X`c z;Mp^N`56y#xYLNpS_ZLcKX&A_4!;8&nUIU_?N8YXz391C#NiTg~>iRv*_+73ylOL1=Ntd%6^f}*_U zlK}#HGv;QMaCH8>Ncr-oQF1UwySqE*(ho>9?tLD9bPIOL^Qy4~%O%#k`kizKPiE{T zC?qswDzv^~@et&8RYQu$7kd*FlGw-Qn4)|Gda6GA zJP%6H(DgTF+J+|W1IT62^(tYNRedU36Qw?D9Ul~o0fnEgjRN-^vKOl7pPPx=ge3Cc zZP^)(0j`ss`b$==GR;p}51%SJbU3L+m&!fCsQpZ~j0PXR@37bxIWL&a*Sxp!%@@>h zd%T!lc*r4RY-?eYV%%mri;|=^)9Kwaob_e4j>(k%6q+$_S89^4XrFZ8nJs;ui(IGX zH-KX_jeQ+1CJr44)d0b*ee#HxQj-HEiA6@IpCh+`^0f*yV>;lX>Tj*k9Gw)y%f56H zI7Fh;i~Yy8B|ch;b>Pu8-d_+tlcb00F4QTobg|e@2ihEgkh}lnJdO$lg+NLiXSJ8^j?Go zSs_gSrQN!%OtH~EC_g$ltd zpVmFs@rs2##4p-bq{p%&LoeRrH(YXGqXRk`RaLIYB$C0W@ zn?D)HMi9o#Mpy5f8hZ`MHL-TAA#XJTyi3vYAHi&GchP&-l%`wf8Q4-o`FrHmyo#)S9n8LiS> zJ$`@dgSt1LR@7p=xctMRm2G`&0O2MtmNd*R2xR?m27xgZ)W}94Q(^;m(Ofw-bbdJ; z;7N<;`V`@mz537^g|_j6t0oN(m~BN{A#*Eit%N*gNHfB+yA*&nNX+=IiG3F52Lm!E z-o@{*1^023+2=omlI&G72ZDgnU!#rnT&Lfu5PbyN<*b*mfPgQeD!W6^rABMC;Y*5I zqDoA7KWe>Gi?#;2M16*g ziyGkZAV-m(@{_J?=o?`U)N1u+{+?ORv76P#>jg;C>`7c6XreQtQgpTsX{Nax*9pQD z1I0ZbAg4v^iqeW+#9HHVL2Ek$ zV|-dIHb=Er6!be(cx3plT+-%v_Yx^ZlVDAOg5Fcmh8$0-e~)oF3Yb`6=P=-$DCtDN zlKy2Uuly)JXkx;*a|M{=ymlPL<~H8Tg$H2IIi})sW6jQENVL{NW9N_mAG2LJn=``Y zjd6?q^PgDQx@h!a23k`nAxk#uy!|Kk-u&%$E;1+7faMs%F&nKX03mrX0-Q6`w*AYC zscN1v&NJlTQ-V<&Ol$yZAetP<1f9NruNF=Ep>LoLg(`%$7U#tL(x6@ukhDbowt9!{ z0aG))>NS%trTzb{pBJm7QW(88{x}_1cA^n@sC%mLeka%T$hFcKZ4HN^E?$}r3DjfE zR%o_6AdMZmm)kGKuCB$I^C**Zj+-2W*;^wNlMeunekioISz>h5O_+u>>~Uv}Ypw-Y zkPK!@%lgNOT@5*`#BRGaKJoQI(-tOh`65JspY$Mfh}vDz%QI^M1M_a6ETcczZ~{Xtjeim&6D44Y!1J?1-Y z+fJP0Fd)t)KN&q(+iDY$^ZK9Wxruw_ut1X_byFO_3r$Ig)4R8CeG8?YEf@Z7C9w_F zxGpATg#BZOi6l>7nUwJzY_&^FMlK)*K>GZT+T(c6;t31*(j)K*^|u<8AM%f9LKWQK zKTA%o*Do-0iihWV&FM3v9g~;h$^M-*30^DoVBpqSrlCJrd2!04$MNFKX#>Xm^O(K> z;WQ7VbjaH)fO8FCuNtGgsRj_0^lf<#ZpEAMj-K*-tTZrsMQB}+~n zT=??gk%*?mE>gqHJZvA6ugSmS2c%7<$Zo=c(B1!`eHU_3n*B~o*49G11nzFTU~sC0 zd{rGS`xZ)Lk!Zzo+5R)B{f66!REwgH*a%?Z4rU)< zAjU5tQEBjPls}`V>Ca``7)p5A(w%HpAu%1Fh>Q@j2xX^3)PYp*95aTO|V!+Xn7w zuz!3YYPooxBCXy{{v)8jRKCZdCI2aE zr;FTv)8EE9gXDJ2Qrd;{r5(rqCz>)gGMSR`@x!{OC^c7X5)p!jug|&3bK1f{+v4ei z8Ck+{#{{%sc}wgj^@Njj*eaR@OtcAj;QP4h4dif_3htlj?t~m#N~~Fa;kBHa#Zn$N zhSM6a9nM?sXE3}Pjn6kMzCJuxstL@~7vM9%-H&yMkS`xmZhuEjtZEqUot>66i@_rc z76mc{6@;cz5bfB3d?73N&j@M30;34);P_zS1e9g|H#!wjfB)x7^)xl_;ur`cd$qs+ zQAh-7BR%kG4_Wu1g4qVW;2QAZI$Ikb%JH9V)Tx@DQ*ElmP}5mv=AaSMz}0&Nfg8|h z>>&e?)e?>6cMRVQOG{n4{71-Th(;sOr5%EE{`gd=chX&Z;j>T=2pl@~P(AYlnt&|w zlQWv3c&NXHh1eLN$?yN6$*K)V{b!&b7%kTNNbNl-kTFF(67lm1uyJED8%V2b33~E) z{wvStw2k1hO;2ki#ly-qOO<$Kc)>hTb4EW;By#(U5{nu0IouenwmSx4?i-0i73Acd z3hUZ)xofERQZVpINJy5IwtmWAjn*jw>`Cj=Z{hlpTz)wjb5;i{o-#?YIK+)`vX?vq zh!P3h&cn;A0`G*^%+2^A|15^mIrY%-SwXh&w7@n96A~@GZEyYfCzT_C<^foZ{GPq z=i*Pli2EPRCXM&WR|ehLY=;X{xR!9Ly|UX5HP2yGcd9__GA4(#K?xp)yYtY9&O2)4 z1K%Ev2lXOQkhKY`CQ#DmeGQy>UBcJZ2*6tRoFp46o63?SOGQQV-|%>Id=k zJ;DQ%gP{ZYLgudI2LjzuoAMHk2(cgz)$lz4avzdfa;fJX?CczK8yg$JL#Jv1P(r|g zAmek+`Oi5dj|$7tit9qx@cEnt+uP8Us|2!uI)(*N;RieQ{X-U&?X^C>K0c2j3o%7e zf`Kw|PBJ6gDOA|k-GGa@yN82o)=~sAjqjIR$Y%*pUm1Cjl<)jr%OIYQ^m?~o^N~aa zwi#OC=dgIgad1ST#f7G1k_G}M`)pya_F?QCYZ8WSzuNN8IkZ6f-_XWZ&oSS8_3=__ zR}YT+2f{EzR@u9U&6m`@)Y;~B1F(1qB2L_qxy|>!>SWw;V{EnWJB^i;s^$#gc_gg1 zj?gLs@-O}HgToo2FCzszjp)qCPd*d$rO%J$7%q&5>)G-cbzCqVb*acF1_0@|Bc^CU z{7i5YM%mOp2`<4Wk>4cs6-bG1n#tB$Fy)2q;AG!ipGpOSZ4-$Wi9(WtP%F7cMBb+s+g!D*xqc$QhH&4mTRinmUDZ*pTz@%YSgok-s;VxqFQl`__Fx zjFYx}euvDX#Rg)Aa-}pRd>x4XD9>y#{&&LSEtp=v@jvTkfoi6AD~^ zG|+`Mz(!lkE+C(;?b;hhPYLYdPkME1-=^f+sW(&$0ASM)xloYeT-7EWusmnVBbJdT zxTlhxxy#(?%I;R(io*%+FxDO+ct|z5?_#Ve@=ewxX{$!J^Sf9_U^^$Us;0~FBgsaT zm(U~Pz#}SZvN{W>nF9)gC>H=ji9CyE&cOQa0VLl4`!d|@0jyNeWWwavIZdCCk!-VW zK0r$SQXRUi3eSBrEPG1_XVand69^%@#W*x#{5%+cw(Tmv*KiM#nlh^zYDK*pdJ&NY z9A%uD)3uzFCdvu$r!9=f!Q=w z>;u4gkm9O*4F+)HxRVcuxV}LQ4|=88IcQEi7S>l+-6lGm5R&(pzdmmej0OB zenxH9p25iYdwkY+h&wu=nGq?Y0pRg9!s%gSKto9L75*N+9CVCC$;chN{P*7rk_3BV zGeMMOum7fm5xI=5vTkH@@Sy0-$@|&pNzj6l^OaK&HX@Dnv2r{*xkYTfm{@{N;wKEY zjA=^51|d&~tHug;)M2cjsfVVpjZ-uaQ{yF`^2p9|k5-{EiNGU!48kKKv?qiG9u}QZ zMV`l+FnIOx(h(u-%N(#Cuh(!@yDa-x3owJx_;<4GiHC>^Q0iMopRk7t3UT?TJl6$@ z)moUu8a0Y(wU3}Dc&o-00?F)J_nIK`DcG zHw81#2L)Tu1*96A#!xsl@KD)@{Hjj+ut0UB!MVy4JDhPhDpCp_+gA_Hhpd~(hkzQV zGxan4G28~Up61=}yD{mw9Qwgy7X8?S&h9n0up~`ubOT}9jc&^LM~MhHY8WB@?jJ1m znOvswQP7mQSEF1h@4XvjhpzcO-Plq_=a!7@M7q!b0xM<4Oh)p&;kh>?ao~`uLlxBS zJ=L!zJ;Ld|m)jFY0HzT|r0VSUnA}^eYKT9$+w6)88mRfVxStfs!Bo;~{FOK;lJ2s50Bl(Ak&e3X!p&!`+cVDsjQsy@u$t^TSx$6sq zk<37J|8AWEuNQ7rXVO`<4O+f=^Cnzh+WY?fXqqO8CBt*Z?yM%PSFRqMGJ=n%yJ!E+ z5Lz!7OyOR0#>gn3b6g*3a!idyT1@Tt@jB>%Op?u^lO=JNYEO}9;ji-pMSr~6t!!{q zZQ#VW)lR`xNf{IGul^%M69J_GaJyGivn?G?%$LFUN4bXzq4Wtg;C(2GGch|V0k98k zFAEaH#>QCH%qS2c+_VEB{YhsiTho+W{-#5BL+}*YEx1;!I1?S2f)^UjvJCRn=YISe z_d8}S+XMp`s~XfZ+Ip{a(A0~gujYw?3T^BMMd3&Su^9C-H-LPx1@gqxM5LLO-wam$gv5~D;=zLlPeDHxWN%w(y(5s^a-A-9k!$M2 zvb9)X3dcTIcpz&Lt&K>&(5lsf-dwR#A!uoll)aR=S-E06!|M6!zvyKoSN@6Zlq{>1 zPDdgXlVW8?pb)|>mMDH9{@tY0^&sU+g|E-9zO)&$WXQp|)&=iqMY#8SFRoZX$@aE~ z==}K%Mk2?Y#te@RT|wMQMdADkP?KUSuY#4;3-V@Gbtc0KX|%j^I*-w~M&!SrAsLbq z4?hkuEQh3ZXwwjvQ|~1JfIC^1211p69{3-7{q7`S9UNfS-bLa5`20OGj1g zv&e3gJ%B`nN^E?Op?)Bn?>*){X+1KYB@g?->H8N-y;#^J4x+aE*Y&^CvwJA1*Qpb*C zn;yXiaIet^R!1<4p*WIN<~3n34t$-GQ>H#+Ea4)x zVA#MEo_XnKl7TV}hIc2!$37rCgDhIO%qgqq*8zwUZx9|Qh2Pj|LsaqS@FJA#MN8V@ z1TMTI*!Q%3W<@punnKyk>>1R~O5t%*%4>jM4M4DZ_eT|A<>k|e;qKMLZJ%>WhaS7G;NU=Hz=;ECUzkeqoQA9v z>&Cm=jD5(u(=r!lAmay{ju~od=%;+6WH9IXJ|eG1xV`LH+j>Zj?st&VI5zYCtf?6I zEreIg0>Y@qyuIA-4UjjIB?Is*ubZR$QBu!Xhi*YMO^B66Ko!PmuMt+$U5?B<6mN_2 zSu}GC_TNRrh#}`5AM!y#)>dSj2`ef(Cp=)R0oIj7fp~@F5DuDb09)y=9~$MGO;K4; z8InAS0^mG4dCOy_E z^jfc6xuPPy<{XYjw96`^{4XUkt!*-KU(zMrS7*K3rR3T11`#qfqcgCIklB6)fFFf9 z13aic#2*~S|JkMKLO27#lqz2MAVePb9aNz4IF6pyqfyp=?nP%xuq&5?ag1(&a5f5q z=m4DC7Zew7myX4&1j<>8utx9%lrUmtt~gn#H@Dp$=-de%Y)**2l$e>MjI69aSzuvV zh2k{DsPc$X8|Xnz@IXv3R~m$%QOCnmSQI9xYNA@FbfGLflrW8ay$k|u`ThHmP-ACe z?>A2blb6$ndncqn`k@n6# zQ9A?yaA?#JQZ0fyC>$CZ89nHLNQ%tk$#xn`??T+WDXe_CAi_M|~SZa1nR`5~!7>+uH!LZi9zbDI&#!qJApghiWXhmkwQB zsrLy(S%vbv0|Fx8J63XZSCyGKzeE%K+FgLma==v& z6JO8guDNg)95XrmLVYNFab0nXb)f4KBU~SKR;z>2JdgQbShicFdmt|mgBx4PB%;I# zJ$XHTr1(XFJ1cB6ak&fFMfc+6)AvHeABiJ^4=^{7qLtlxbajBEO(1*38uS?(?ui90 zwP4MT(t$Y@Xp;AOJw5`SPO$$k9AvH27p+_8YhDAK`WbdOI4JC?9?3oD+V~J+_72?h zmTkp76kzZrAJu|=h#s83aG`ja5!JLZEw{4#v7!-X9{d=_$MWLFNsxllo>Wx`<$J> zoL~F-I*lVGvQ%bj!~p9t>g^CTP8GTrbRXp+lYvR2p~+N82)8o=Y$~d(L8M1_J35V# zwUhzz7tG(d^B2>GhdmPPk$%jq zE;RvG@i8!h^pAEu*Q#olR`<(NDV@EL24jVzeR9@n}Sn#Oj64cpa3)R*350 z$R$Z8FwhO{kOAuD(;J<{LGD-g<3Z*hq!GmR+nad`<1YWw@UHNnDp)Y(WLx`#mtgvo zkSa=v>p|oq-PbXHWHXZWJvbM|&^N|BT#`LpTpNkzf{gp{AlbJN`^8+d8Pi3hw-dNzutiTN!Ca#l`Ai1stTa*(PC zkmF-kXgyQuQ&v0mWq7TqCA`+5X9aQ z&HVc48G*onyMw2zjjsK{xat7C(jYp`9L=ZD6V-+b!wpo-p)%3|#l>si4p*VHE>Vmw zj@4OVhfAd1CY0ks4jx^^M7@8}vFMB`vBJE|6}f4Q@n7{54tJ(v&RDKEGiI2fH7^L`8s{0bRHw+=0i2sm(n;6pwApF zJ^_@oT5LbXU`$1=tL3W1R%)+^puxk)nqzZCecuAz0$UzFz5q?2z*Sak*e$;Z7CL|% z0tzb}z@fhal!fPIbJb<~C4|9Ch?=Dcj=V{F>eXR5SP}n+T#-f@LrEZ7YKeSKrvFt* z4`id;oJOpOe*rh41t(vsCV}2Qg&s2+3R^sYF1s{@jxtzIqB~Nbu8PVnI>pe-2)vMH z?=CQJwIS@Fs-Sb-VeDk035fzlczS6Tgzawv$bd#!S){bA2%3q?y>}KC4ahVjJX;ft z^Xh=NPs#^&Xtg|_N2IZbsLUX=Jv4{<(k6j*HDHIT_o#y%zz+tyN3OCBM>`C)w?xU{)Z`F7Jufy$E((}&8$9klffOl2to8EJ$D6_-tpSym zaN@koXLA;aZ*Q0*cNGmN#?FWj96-tuJr%|F!O9vL?{gH++NfOw2ZdeGXh|7JD&%Af zEVnORvg9$&LS9kPcr}}`````E0&CouSd)7GsnF|zFV+Wakx4H!21-fA1`;vV@Hk4~ zG3EL!8Y}f2vx(UWQbpK6dRKt@9}{QozBR1 z?8?~kSp8Tm2L4|;1y1{8sPWVw=f>1tQX#2>>??z53exSLe3HKZ#0G=dYm7~nWvH3a z>x1-s+sW)JDm_z8VEvKB(3q$W;GroG$CW=Z)J{M(P>Q56;bhJqgyaEh-+@kXsM63} z5)Ro-B<4b-0s_OLS`SEA8M01gT!PftEb1V@aZrxPn1Dw0H4;{GUs5_g!ZQ}Qp%%on z%E*REUlE-AqLp{ywLL-sPv6=h2}7dHe{HWkT;j{1X2T!eF^R^xYLq>Ac2DrAqtKy) z;b&OQDp+nXH!A}_jAmm6pbaX}XK9{By)pZRN9r-#9f8D@5UEZi4iG5%7_{m{0WoNY z+>Klc>MS$>$e%iON)4zSB5pL!UdojTQzd}J<^F=mc@ynApz2-UP0k4UiYQE6BaO?! zP9TFfN)(|AKnE%>@+e+(qCl0Tj153ZH6^>cskUInZ=%Cq?YTYbScWk4^6J3i9wowx zI2ytNCJuzH0q_%9J!4|A@SfTDQ+at?YRmP5HHk=LWU>DHn;-)lH|}dtMr~kPFAG8j z_6>_9G>H1>rIOGs;F*4Ay;2(WNIpbAIDSxrisBz`vcNzY>CMQu#7du|Z*9e9`aVY1 zcB|*aHZ^*g!2qbcdl5tFGulLHJTSeOM3jH3xPyYV%jr)u>T`a7ngLGK-phCn9I0~O ztRzYS2wERtexuukbH6^Z80XR=D?(F{h3|32SmZ9h8`EgjWKBq;MjtB)0mAdp)nrS& z^Y2@jCjqE*d#xSv@D-bQYccdb8l6jjnb0U1?NxNA45hWdt~raV3gAUe&00p*9n|m3 zIXNvNVP&uGhqk4(*G?U2;Am*n7a1d0mN!}P?A)pS=+UE=+jPSi{P^p^HF{M(njx3< zCku-z77=U0VaPPm04H!{Ko$}qaobD#dSNM0)bF;HIL+;Oj(a4*46YffK(@Ve5mWBxQq3Zc{(P0?dWpAk0VREnxdLV#C`KN;4+#=PZ&zu${6 zt)EY{YmtD!HQ!;U!avB^B2f15p~1ceU6}ZpapU(3xvX)7G4CuI?Ml&}kiO>0USy{g zknSbRF&Ej3)vX2e=O^Z16V22^fk2(+mbpAC=!_uY5$~o=?|*;h^4Y)t>l!j{VNopKhf3KNBY+mHmiSbod^)K{ z3?^Dg)v{ZKRx@7(-@@PPK@{sjjfb3{P`17TwMiu$KRYfu9OWye+3_`_BFxqLZ-5x# z`?!#yMgyT>l+ZD@m&M~AqHCABXsEOxbWi{sx`I^gnvOH_WP~Z;B~mko=edI zs{$4!?G?Q4yW#SIwCoco1DFW@iD43XE!GqVkugz_27~kreJdmn#+z3Mnq%LvnLd^K z#P3gCg-`u&KQg&Ls5S0CKd$?BF<;;BU+I-(YDxa<_k+Rq{nvjWg8bj#Woli3GJ*cE~yK88=Of^ME2!r}Aig>%etTIF5kkM#>doPH!Bv zkHTR;ot-j1pyC1{!jG07&wre1f@3$1)UWI6(5*g`$(MwYOpU z%PyTaX8}lyjK)8lK&doLKS<}5kkCZe)=DP<_&oPmS~#d4I51ED3Fk5_@!sBE7Mb_I zFA2vt&_KB;oV}w(^3Ohf`sC>%Y-DJd-(qdg>ut%x#+KQ3K@A*Jz?YGX>({Td$mm-n zJt)=?L2fIoS%OCaEt`Xgw$2WCRIDyf`~IR{?AoBk zXC4;j(erz)$y_5{)qnjo+Wc>;`2YSkJ)8fJAIs*v8fHw>#PTX^w*@s{2obdpY87V1 zV)BsryTFGwVO`-z7R(=|W;C4Aai~ifN*gc=kCBwOqxPqa5Iz*1Yt{orM_#QCU6MKu zFSt4qrmBqSMN&QFt#js_>!8oWPl(ew^(FXc?|Ndpfy-0TBX~T1FHG))`|l#BBTmH* z#n|Zw$RVHNsOUfgDn(SBVUnwFi564RPe1aI2jCyQC$asilg~XN;SmU3s(bYEe>%R& z0c*_DUdzu9=E4>TP9#)Vz~cuMXb3(1Tmn6ee`Mt%yF7~`mimVYfRhY7V!1!{I{0$x zZMACJeGnE-HwVDo8RMjg#`w2@lHX5i-fTO|x%639ACbnw2!scY3nceK4t)RUiml5w zq2eWA4ns_jFGj!-jp!Oq#(c|WCP=+&LUy2ztwyWJ{26&PhI9I;k;lR z+`CK7;T2Nm$F0Gxdhma#zx6A@Wn_6luz(-mCje|nv4yNBnv6KYA|f1j`n3Gwq@Pf; z0Lm3~vJBX5_DK2*fwRQZjZp^DvEjCn|p(9LrP(qapb)Q~~mcZ^sa`% zL_(uvZ5GXX5UE+G-swlHAzPSpp-%X z=!?1Ijg2R$YXP;421K5uPlZei)>8_4g&kgmAK^#I<=>j?22@i#gLi^59$U8*;8d2G z9>#(C>vVEuL3t0gu<(c`)UhC6(tY!$e~NV+ce?4I$L(?xue7Xldu(Ae%44*ESAa?~ zjwX5d0NCSB&`!s2(Si!CYv4;?j>3is0E&owR%?L%uMK3J2Dl&r1&vqWl3~4a2tpSX zIG;wn2Yz>zBn}B+B6Ttn1CK=bLm2>>6G2kpV~J-!?_jSs^H3|KOn_`f*&5@@RT_gzhz=UI{Fs5BWuh9*UsXF{1WL@7gN z)hU&v3@H*BGHgSp6rn;w$}CeUGD{f}!hPPo>zupp|E_h{x_kZB@0?S6fA{`=zMtWJ zpZ9s57t|q?ICZ}#Vw@>fz!`u2>eb!jc4>7M!;a6_!0I0~m0v^I8OQiA6$%kPXoG0V zw`m#jc`S)O{Wa$%p2(aT@n*UXlEZW8k^u zZ;pY%na?H0ei3!5T8mF-JocKR~xz=$#VT!Z2_};rm&`=b4`&?iC>eZ`$ z?3QiV6o+Bo69zzYiqnou>#%X?ptc+UWd$lL1HeZ0tY3z23U>Z^4@d@KzM7gIqaYr1 z;I9Tv@Cj=02EP#pRKZ}{(^Hy==ZKP-7y*Mud~MN~53b^Ws7Ham2o?;}`AC?4#C3Vc(d zJlJIfU_ruO?|l?vsZ?^4Kq9BLGt1gi{UV0zmBBfjUTxSvt5ACq+xc--aj=9QwJpGb zlK;9t?K$hme4owQ;3B@KWsk`9jD6U7!l?QO6gmJNGI)v}oaTVU0z_!h4Lm)h21H}%t*kon)N{ti;^B>1-OrE#wE~W1<1}M z%HQDkTLwaSKjsxci-b2;OA)X@vl9a(@X@&*kX_-jyX8qSw$w=4p}{g)$~klTbVck$ zRMVrAhzQn%jvxbBBti%wjFbnJj0W=mKIW~@&(fB^DGbn^DV7oiMktHP?byGZfIezw zY1{KLj?6N=g-L;mexhr<@&P}9#0>n>-R z3+%%YG*%^F++OwCwwE0wYi3k`Jx&QhuBDW@A?H&s>)d%U_$RPX!hrRol^_{Gcfd0- zt!eUoJRvh+yR~2df(Fo*Xa%>QeoW*g_Roosi&7^}{s<*cy=bNN2nXaq?%tFn3#kym zR|B(puwr?(ZjF1>G(PA$9!X22;;uJULOeM|pS)>8d=pW-^?&}7SHNhAJBz88Q>Qpl zmo%DaB7ozxZf(;jP!*IZVb=vD+oNH^i>u&7Bc~#M>e!v7%qhf{b&VAsEy7^tFxD4p;xb}8-%+`@ zIT1{~Xs83Y?nS~tno5DU^W}lnK!LP^!yF}J5un+(!JYj5W2dVa+ONjGF#rp-6j8`* zudk>79D$92tjtN_1k%bS8Ra>!0Bb89f<{E8>jy%|ypr8Gfcbhgu{P;o`*+ z*bW!lJ7M^*eN#%r#9xsA{oi}i`S+es32IJ6VICbK5olf)(>=EL5*{Y-QLW}5fMf26 zs4Jo!WA7R-(nEa6`tMi7wfR4z2`%Zy6Cbh~r6_M<9X|EMe2==sMlgT!etLR&ZBu>p z<(O@a5dm{E#qJ=0K_MJwdW#(Du^QZj7A<;e{r$j`ok_cV{ZCilOO~55wQdpD%J9dx zCg$ZGh*6sC-$heK^3RA(`D`uX2VklB2M+xsEn-k_BUCC zR`Kk*62LNjuZ;IT2`qerp2|#@qR*#Hn1G`H?euuys zm0LX(1vipAN(I$QyQ=6mLnb!efII~=V;AVlG!ooLiHuavzLE_P!4bjUQ zFP*am>m%N&-iNXa#0?%Hp|p~wyv!%GtR?M-jMQW1aK0~lX%K1ir9$)amEDV$E{xEs z3|qWFUw!X|Bll|TMeaMv9J+b3Q$;F1pvtRi?h2pENCVD;|5!~Yq!ie2%{=_GaV=6r z6$ORH?qv~67A*>glnA?vEX>g<+51!A!1i+(*r;!VZsL=7V+bjfyMCYwzR1xDXU{<{ zbHKNzYnGQGw#8hJD=`3V?BGx4)8L|~@!6oJ)nmDt`dsCPyPGb%yYsI5RX=C;-qmw1 zPj=_o6O}|`_vQ1^Zn;8*qSvYeeW!UkDieQIld%x2N?5bv`+Rb3MXfu{K;yM#8Ux1~ zsc-nP7Ku`xRK4fdMTCYZ&!v43L=}EpuZE?iW#SY*q+pwEo_Hg93wvV#Cq&-ozuD_e&d-{QP?=J~!3Om}wPdc{Kc?i{F}ki5;807#2q}vh|nowBa`*~h^ z%Ea5ZUt3=HlR_HcvBwq)o_!MEPTPCK#>Sar@2croP}spb6kl`_VgV5%9lfLh1#&Mk;olm&DuJbyG_QOH#S;IGvF|XfSPg^A= zClA1(Wrd|H44tEK%`0^y0XVy$b=~axe6^>yYXAFc%}AY-z3&%qtB73^ajP*@FV!$v zdbR6Q(^U&r#unawSXg`xxwOWRrF-bBA(v5<;s+TC+x&~Zl8_AQ3FaKs;1yV_zFA1; zX@gze2F2^M7*FN>Cv2((X(A3)WD}6vTWTfx!wbEN|J>bg5mvW9dM0H_E+mzj912*C`lSy%`L5D!yN$q zKp2k0nrVm1QxQonsFZPldHaNPpuL99O&X35N2%Nmo*Drh%9#)z@pOoTcjz<#@UkA*RV|)aTP}cQu#UjdenmmQTCecwo zwN-jae8n%$&u5KyRU`x4xEo|8+JzGi7?g3Y`@mC zFt%01b)Pxr()eNmQ%jq8cQr@`gU9|`_VbJoNK;ZYm zdPhzVW(t*ok@u6&6eS^GhH0J(o;tS5(T_b$f`_fFmVM{>bFjkTL*T-+4Z z*xPvJOYi;^4YO#A=!-KoQbYXG75w*=uBoh=5_eFGvBXy^R-Bjj$tFe@_vF?8NCMpR zE{M&RaLQd%U>JDMaf5w!ya&TLt5v+!C-B*(=COCefVMzajERqrf09GL?;D_(O30x{BYcR7X)nV%OD&kJHz}hksE@-V)1C_)ek)^D?IYxQ_}otkdi)m8 zHtTpE6Kzw}{y0i+kbnKg8tbz?a)kxWPnpd!IG3`zbnJN5GuVlrqb@5e8)gt%^Y;5} z{~~5hH>rrv-1;q$diWjuTC!?0d;t347{@ClB-H%0uuum4tS1N0rD3iy)v*9?1TyZO zfS`_`4}^$OkGld&D|Re?X#3rSq44RPfhbol0HLdo`2BTS=XO7ewT^UX32$rGZSS~q zZ<9yOIP zCB+R&FOMsbLpo%i(Z+gE)kYEC0B-e(;xA{P?W^kS=y;X>(RF4ecM0||c0DiT6!R>k zaho~sk!h=m1V zo+57eX5MJ?Mu}_sp$n0@Wa2Tewo|5+NUS)R8Q@2OT}Cz|pw3%|84&LsK$gUoj8*)( zkQ)eP4>4id*dNevQ*8x^!Lr*& zoXF=c9vvNGN!qbzH{AVdwMsyQNeszdq?L&s&~4dwNPMsCG5Z2VvB!r?zwf+(gk#d& zJtZa$odehz55@(I0PdR&Oa46|?^#sV%kuE?Re@UDWGt{tW6P4!u9FhwK!Fob_Yly} z-iD)bj(b??Fvuxulj7H*!XH_x<>KOUDIp&-VS7M>nVOW=#oqMrs3TIL$FA9it)-1v z^6kSvg9dVZbEh(mW(f$OFLcR;VfUMr~e3B5aj18EBk0$Es=^s&B)JHQ+#Jw1irF0OB^ z;3rTC8bp6`@Mvs7*y2|_Dwiaq29Ij<+wdRI($We`JzvD+S+Ti&kYct~I{p~`Kf4V_ zF`qq^yjxaCxH!ETCdV}ak_7CpLd~xs#(ss8mR1bNgBb-@1TGWNA~0~plhi-d;w z6-lEF*Giegw1Qs?9z`eL1o3=9GQoW5uV8kEa(gKbmhdgKB6z-Oy=fNY_LpN5G!jEW zqiAh)k9B7}#GYven(^vYk41yz0ExCLU@fg_>)YgtSCk@1F~>>6iNV;$5N4*}VPkr=Gc* z3DMEll)S&2S~TrdE?%L=NLB4~348QN3R=OvVFQleo*e>OXQ8#WUQVPv{MM&IAlW%d za@&{9s_EJRsNA@C;a{|CUWN&=U9PU>^3tpOsbcnZc)@5-Yo6A#tOKHhs*G!`pRZbh z-84rN_PGl5Oq`va-#C~{Ebr+X+E-PVe(n|Ws#+7WU$sj2t4(W zYv&wZIDU02e4NP2sM=%{+N)9&X~XVDnF6Yvq1l5K#c0{OdGk!o9;mGtkcZ*)>qaU5 zr4~qUmEc*az2`K=ZcMmPSiTX{T@TAQ@YGGy!`qitz|O%2I}&>*F<-F?wfRr7CP#_5 zQ`XQeUFV)(bEo|NGIe87d&uYI7HPlBGl#2PuX{OnKi1^$bDuQp=w$0zzo(;4JTFIF z*HvMai&|(|l2%-eZhU4$YVXvEg@^58w4WSV9zDI+VRYDRTrsY}O2eJkY~Z7-On*&F z$=u8HwSglqPRcSYSOD*!-6AIfOi_Mc-3k7JMdfpVC$lwATZH|y4%Gb2QmrV?Df)R{ zF8yJ*2EZbS0^6YZZcp#XDAgDcyqCA#g)ee}adN7OF3%Wq@UOax4sw;Q(ycpRzb$QJ zf9Vy;b8!u7w)KvkL+b-QZ%($J#`M*i7be&fU(vc^u9>T*=k=e}n+i;oKRsV(Q*iip zO|OMs%%`5}3rS{+7pt3VE2hp!mkzev9fc^Mqo&xX(ax=f=BbYXnOlnWzFDhyxI6_1 zUM7mRtMl)}`WL4YLV&rN65T1~S^^1+hTCp_`rRTFAZlmHXtj(3t|?fvve&bsLWNG( z_S?p&6tK7ebkbh334R|5u7M_z>cQ6L^C?(#HVbwfqfWS9Z1Nj0HJiei|rTrLg* zVD!4QnBGB!0TAJ)n)IhQl{cbSfDM1OmDv7TCtiEHXHIfl4~PUvqw zF{4C{(ED6l0c%F048uGZcaWhIN~EvVEJ|0&AuIusZg%#VIR^)LsUOcbdEPRR6aMPE zQ$L&{o;#T-LqSB<&smmJ_~Tp4y~E;+l1K)^yARs^fZ zw@0O?ivUeO0_?0D&Rz@7#-Yn02{>g1IZ`736i%*gWuAk%Ap@eDRa$?V%S(H9RfP;M z4u4aYyI;hkCfr3#In~nq-u3I*mS!Km8%3}Wbgzu4F!9LvmVN}n!6R>WjQ2^5hoMjb zqi+G3Xt{n^Oz}Sx-H$X6?FDMTJX^|lY*Rw@inB+tezf-_^xHH^B8+6jd#>N$BTY7h zacLi8(Ai8X9|>$RUy!$!wX^@bYu@2Gs$AU?Dl1?t>xOYBN~Y}1I+zua zSPM^o(~Rh>C9~KCpjRaK!(t97tE$sX#_%m27m>{)LVsgbZ2HLLC?t`L1kZ!ORmrRc zc6x4)-vxqS@M-j$9b|%f8m<4G&$C%i^Dal4-UL@kU3mptbA_rUTvK}<-!s~AL^oJZ zS5K15OJe8V`L>9nl;z~)e45P6%&egTWcF%GJ}G}-7fl-2?34h_3KVcb@wQle!P;fB zI$#Lvk2*pGPCoaQ=7NC&4*hM$#dWuSrtHrVLhcWL^Eh(QU2>$))@u6KP!GN`3J(#5 zY!4Sz{Ch;Y{fLz!>d=cH6E8F-jtdC%MP2LJd2ikLc=3MG{lCHdz{ws>5xcRc9!!W3 zhdi3e_f!(Qakb{jpoo-|6v5W-Lr$b)kIUzBJbF57$T&Fx&gm7D@x4D|0jr8bA?@B5n z0sJOd8t>!DUi|lIAK$`S{727*?)NrKyQgYZksztCGwrxPyI#q*V7;W8tw|r=o~^AL zlQucIS4=kkuhKxOY@9 z``*QuA-`R+&CJbJH8rEXy%#{ABu8Wy6s#9bo2+%;8DTlD#J zeb18!QEm$tH?LzT%UtZTO};)?&{g!O{lk#seo{)bu6dW_Hg~NHY>2%dyN)yNhw0#ju;TQ1 zlTV73RgQlCe(T(eWA-`^sW?90dGDwL7JxM!O61Dh z&nQ>HD_5K~5fo&+bta8iD^<(M89iDb)qFh8wp(j$M)l; znKk_@|EcDXQ=IW&MqjY~#b*&ebxtK)siZQc1xCpMUk9dG|2pg`Q)KqFZ)(NX zqG+y~f({@5&|UKF`u%Bc+n>Q;4zZmJ)sxAoqSR`gG*}50pmMLcE#(2*X(}f`#6Nwc z{?9jmnaa#1c622r_w^^ZE-gB>lcAixe`IcDO#fr;2=|6@0p2LzbslFk!VA8pbcA2z z*V%nTJ~d4UF)cBq2$wf63zsH?w$;L5AEkgbA7u4<`H5grkOPs>mjhQcOnjU{Fgso) zrL4!6(`DX}l2)txpzq+E}f*WeE)c-8j_G%X|)*v%Z;a zJ3I4Utr~qlns(^jip`9$5m9MZ_p96JRkzLY;=yRSjCAXrJP95}ZFjFOz~-^*-R}LT zGY9Sfz#*8VBf?*|3{KL@zA#FIcJW-fn0M#;LtKN*BI{}8v{J<5gdzKuLWG1C0 za#&X=UvI`|;r^j}$>8G4#>B)w12eCPdCIYg%;SKXiTTQ%Ifubwxv>6whdVQ8`}4PK z^Ukq8@%O*~KmOXy_EnER_Q6spc>lcI9zW*b#1s*6$xiuPbk^A>M9uHeXw2Z`b<)?S ztF0G}_@?8-|5*K`<`(v;|NS_v3;1bQ_Xpakclg+>N5H^{|Cqqx)f_h{?R{zvr?Uh~juy9L|v)P@O1rtI>?ScC@ z4>)*2xyyQWFTj+WcW7+%;JqqKzVfUjt!^=ewHcMM&%4%rwUJf7INF)KzN20oe;VPv zU$r)cacroD&pGQy$V$QFD?i_F|0Vk8O87?rJ%g(Yr_QN1t$cJzL_wF4@N<=_R+8*! zZ@FQzwwC}P-(4?bzSUeSeD~P2?i=so?u6UL`lXR8WGdEfJa{kKc2YJAtDtL!*uSL{ zn*V*ixlD8X+^DEPH_1hRNuKz4 z+#yV?+zT-rUO)Y+VxFdG?Ul~#^=qN zlO~(7xpL3x`k=mETI85cLd819f`tLD`nQTK6=l3--5K@X;W~Mh^9%m$82HFP%6-9C zCtO_)5t7s)lZ766XJ1wS7!x}fkP&|@N$czEyA@k2*9Ydf#2S}f(-zQ(6PyzF(m*dV zV!fGOyW+jAYR@{KeUkkw#-VFFQo2z0-0qe2<${f3%!(_n-Zl-B`O6I^d1#WXv86s)5Yf%X=f-Ju&mvD$aD5EBAo-&0@4dJ!+mB{z?&y|OI=|NNrCxQX zt9rNS&w;k&^v*AzpRsSa?rfVOz2S)Dh2sd}?`&^|6nDSI?GqsC0}VxCp~ z8L#RvxA8i8QFWDyH>YO2X&orkAF#>}ycH1OaBTmj_xWPx9>c@K3w0R`M$>~Qd(F%` ztVH$jg(hI5md@9TcsOXs|KZe=rhqz*FM}gq=1zashTD0J1ZGfHL-|0@Yei># zj=y`)?@7`urlTH_2Eg<3XOSmYEXP*)=VdaVmeftawL0Q48EWwoQI&OtzJ3ov3IiM} zpUK7yIyJQ2y3?!>x=T7*8fU9o&_@ZKlMl-B8k_%Kf=#lh1o4!W$**Wlk!N-RRTg5g zp`(Ys{tWbDh+6FZdUB)bnQ^(Z!rklbj_;#0X$S9AFS<5A@ zYk`4bSqk36WT_EdaMO-xWe%xAswOl6t67x#veYvbrDMODLOZG_INZW4aCeC^wDXw6|MUW*b`rVoXo+7hh{iJ&jSA#@F z{9Qlrwm=v)L2lgZkSUdq1z|D>b?cw!Id49)T(T6g8EmjKN9HJ%KivaqU?-TyDrg-G zwu!iGkccXBRD5>LYua~idcDur+H!}vsmdHav+UM}p91|O0k>{(GuDf{WQWBij$FQ? z8J90{MeyFy`h%{LJ z-GG)RcZ*w|rt4jhvOgoz9PvT;?Cu8nCROsXdu*y zOimSC%+f@+$I~ZI#59)5H@S0#D{9Co>uJF%iQkoP%j4TEZ?<@6S!!Hc#LOd@<7=^C7CRBL$*EKU1-4SFS$*hoMK+}b!dYew zwXjQUos+u)i5!|tTi-A?-E`8%CN(xjh+DSHJnBbmQj#|(2S;g1&aa>8GZlBk7Q3MR zx2>J8B=?Ka885${<+RH^@Vp@bf{UxgvRF^7S4btT888*v!2Czx5B&(*$lt=u#-rUv zx^#HYk*GvgRuvB!aw(X2#Hw{B%1>pVc)=i;H-W(@M-3N;MFc>UsL;@TKyb*)lj2jX zFZ4y%IZ@O#IAVj+ZzmZqA>UvCDRa|fl8Sq83T|TrP}i$Va3Ch zM@0JI-R`DYP$?ZjWSj4-w8I-oGQw^Zv@%36-ytzRIr3qs4Ln}ZE?y#THH|6u z!M}%SqAp^MCD(yEw}sWN{V=LxQmDcBLs7qqP!f^~L$7g6SmqIPtU0^wfK z+`fpI&?)ER$xrJ~NrgN6)2a(8xP15A|Az4v<{l6mqW!m1FRq_9csI==Si40cXD3WT z6+oPkV1BFDBOf0h8}OCPuyP9`zYP#{*WO)(n{dARK3m}L zNg4VDkCN=kZ19K#M*@oYGRX2r1)U+mZ+-;E)3gozS0E(=O5@xOi4Mpcmtk4>$XJhh z;E>A|N=^!xI+K-g&0L}Xmczy<+%e<}Hm{eTG=bV$_NM&d!zF~PLmEvbRFTfu`QNGa!pi0QrB&e2xv!+^GT8Ro=$t?<9xLY@@-52~2MZXSXH!5X z!&u?uD7GO14cm+sd1C|0UHac36bpjf=u8dk;PJwj_3O(VtJnkP*t$rxKxr=QK;zE6 z6V7itjGthYM<{`0-S3l4dp)0xMl|V;wD$0ozW8X$zW%zaznru3s(3!}p96V08J$BT zQp@hLg3czWEe^w{i*U8|J_Ux>_n(rBAklK*1ziT~qEvXVG3&Isd$dkY2;rPI`C|U) zzB;Etm$UNBEt9hb{td)lHv{RO1J#D&Sr(v#vyp921?C)#($$x9BAeiT#LVvTW7*ht zzeMw+e!>UvArYAGc-}1khHpCrPI5XlkkQoVt!+2nx#QZ}jm(eW|ME5AHI7_9&vKSx z2{tHFPl6=0T?Enk-zqY__so6l9Pitval!!3`NmEB$-HyBnd$)gTYBZL{BNM~pa1)Z z|F3_YNVzAfZ|Z;+y+8GM4X5iSq!sL-?u9j{PL21%D8{61nBIcd7gh~ca&z$mu?)@P zDN=XE9G{fV|2Hcx*|1Xh?`cEt*Prw6>ZSkWZaLHZH;ihWJTNdIb?B-on90mMp_}X9 z_qr{FMRQT-00-w$N$HrDUSQ^^*_E@gNeqm#L<7n@PYUkea{IyyVQ4vu)<#Nu?@O`$*Y<#tz1wMnu4Ga4e=$sF0feKsWt)W*OB z%>rp#e%ta|XzCpHOZhHSCQg_#@j{a>rWsq--oF=M3y~#w=FM8KHuBSj%@^U8P=M%e z46^nq! z-y!Mo-(0?W6@xX}p`NXT?x=vAso{|sxMlo8cw>m>zmJ{mej{N0X`N2s3=U&oiUwg2 zVn@qiSeAlZV_QnNo14^s7vB96))H|sF}#^DvORIyl3Y4SKLrC+9(d4FD*dCd5U(?a5no2<6vC!ad_kpf>-~jQ0-!UHZjtP8pdF^|5&;1I9G{#Q{NFF- zr?U_GkaDmeRRBbTi)H@n`{xrnO<+LMu0Z9c0oW3eWh1(uuV7t4;=e1T9EO!CQC#qj z1BeNTnE@Wvk}3h>2NLOqz%VS&emLThNk=Rpaer`I=6#r?f{sXTb4-{YLrjV*DhX;- zQ&Sask^q#U*zCA>@_{0B*ki57(uy0w8!MNR4FJz10$ctbrIgo?BpO(*=(Wu5ZJt! zqAe-)_<-Dg0c%z*XC(wXn$ZNRl7fja16+3N|)2th=paZKt_z$Xs!%GoLr@A6I!0$dM`!<BGVu+TMNlv6c3!Fai1LmL6VS7jUi!NwMjnqBo)4w7}5 zqq>Qbwh!c@Jd8?Iz!p8E%7SE9!Ta~sSk&a2N#bhPk-AS5oDvh@l=&9udI387tb@8t z4eCSkZ~JO3lJkV79tRywQlW0kNj- zhuKRRJqkhAZUYDp8j_kuwLJpy9FbLcAID$T6>U=mJ1B!AUc}I%qk`V}VN73u?RcN0 z=!u>8Dl+U&7vJ5nf9jl-B_wcsF=;MpfH`d@c!S9XR=98p@iU*H7>XCDMS3aGgbEqm zaqlSM?UVt-cUFOBH}(LeTGnAOHa*qb+Sf1wCe%~C)pw6RTA0=1vU=sw4L(rfg&|op$7FQC7=fpO zuNdF==Ly!<*4`RG>@USL-L2|zUH5G9H=awGpz77lXc^Hq%__%mr&YF=+sIlfX0Lze2E-|Le7i5ZcaNd6wnrNv;f5hUt8T=HQ9(4201G@(T4 zf~2H)@cXu9#riw%876Anblj?&wBjYwC19@ z2F;NG5&(jh6whwCPQ^hld5T50+)e^NvhU{CYMt6Bc?xNyRi9+;=QH<9)*&az+vvUm zk}~-ZFGG`(%0l=Px8d=Dnv zAEfK_6j^{<(gI3~f4n%366ER?93TT8JAIOLRR@&0=apbxKlImikS2mW zO6xb6PAbk-A-6anTMP8ECL2SDTURA+xCHln9poPw z#1hBx#58gs5RzW922k9431RMtr&qa=vS4 zcj9u~4hUTs*^o2@2%UbAg=6AsY-y&W9d%AkZwWB3fCTAkEWX(7`(Iiw>bKMve1IkqhK%ax5QbdIytf)YA7rOWUV=b7 ziQCV=3-8WdZcAGgoBkW})J8`HqSMc=BB?cKQ=@1Bt8Q#;?923TiL;|b8i3?5TB9-G zc5%?q6Va9|+SPs<`8cSep|J_4!)+T}ZXV~K<2Tnhne5jn-CiNK>pbvCxT}`|ixV&^ zT!ixBA>s9Sd&wT4M&#_yfBNHdsX*I0@~$SU2g|3Q*~t*pc-IQ56s0WvbJ-2}dx}y} zGTrBLwi~;66}0xTh!4yWpJG7(lH$?q` zqx4 zl$PpPE9Sm~=OMqB#5@JrAa!w9g$+K2X^E-A7`Z1;)JWFv0!vbJ7?jV~ZY4ZJ-lcaT zfeW@7V)~u9Ah*k(@a9%onG(iR0itJqme`amous+7cc?yQ@R!Zg!m#+|*E;SO<_NKMS0m~{ zNi|2jhvH!(^ATEjU+!f2QhY;54vUFElkM%mA9?d+8Mwg!fyBi z8VR0zB+8bO`*22@S%WU;rgKG|eGF|i?**JoG~Yg2_*#T>$yej`?Ty3|NjFM8yuruU z+t8=sb#OM@c5FBlPLc;JOgD_JSK>}`h5tk;_ItSCQyf*(gobeOftKmgCm+~9fa~q=KI+*ZSRCWaLr=Iz_(!&b7I`mv>bbYPV32xV>zZf{sY_x2CSbpuwGqiX_L zUn4+}y*Y)AUr#np9*ntxk8V3f*Qc~;xi_qFFOCfm30BgvtxR{8Iolhy1jC2T`m(br zt@}%41uT0LNR@E$EVg+QxR{JPZ{OoHohuIPUug^bgoLz1<1McAW;V(5tR=RL9AQ>> z3e}&v1c))rmz_=I4%h^)jh$E6lOw*i9@KcdVamn5(n{N73+QufY|M1u?Ik*NuS#;k zRzSgo^&T}3O|_zG(OtjBPDft3^L=Q0bu9^1x zlUf_j)pP4>eUGO_DVtrqxEGT(-B_pf$FQnyyPE#RgV*LTc9sRrXNjLB^K*2s;`44V zsRt-RiR@Ab?s*~66WG>7nHz`J=T#OSK2n0!a5P3)&0$|yQ^SCZpKoR1DM22FkMf*A z%^;ln88Zm=E_6Ur-P*2=8@~IWfI5X@#2`M6{Ofu{>rGq#mTqDRbmW!HG29 zY{ro}D>gb%D8M#vI%}t4FDfil0&D^k@0;wMARsNl9n70jv;5lG4H~LSYMb4~6x9NC z_WG!b>nRu~OA9hI2W&O~HICRQiq+~{EJMK-UbkOmr(+621OymbNGlLf5Ky=YZN&FeWduZ9>DDqTY8xYy;PLedU(->&R@S~oni+E7XPsaYz1eczP{f2k+YuZQ zdmgq7I1C`+(*&h?C--s;=7#cW&)HzqBAv*uEG%?lk6_+ZNYm#qnp={y9&2ntaDO6f z02m7(nk^0&m_L$2>_0o~7h*k+kGPH}ybP%BgppR$qFL-=_y6)VZm>YVdHczK9dSnX z%UT?|AyDZa5}yC(TFY{Pk#pA~Y)OGPwKE_bQcVI9Q`Oeq3|t=19$FxI08`Zz^CA~Q zr}gEW$T+RJkz;LEA9MZrjek!^Z`b(v$va)5|IAxA`J&{9`L|>jt>cTjs-U@OLgJFx zwylHm(HfgC+RcyCN;KPhAVNd=A2S`vP29c_6ZZ)$yCwFTZNdWXb*l|m7rgzw>R0~t zw?{V=ymd-`u9yFLQp@ue5s7uyBij{y2G}YTNCDu=OwyB+yGd=QJXZ=UW&i%V zO*jq{`Mi#)Y5RKDCzwd+ybCv^Xyoc5&P;Pc%lh5YO6d1QZt|3gU>cI}7sfq{IXHM3 zl^uh@dPo7jRlDFDqo~G-O6R)ey~#ZI?~aY^93|YUYHA(i9|eDy=7CI!q2`4|JRlt^ zz~kyc+?uC4JbnSunEn2ZvcM)*@lf}u>bbwr{r6;)vfGeJRl-u9(yUReky3cR0dRCF zNJr5u28vP+w8o)^b^|DeP_w&Dgw1yF;x{y+-!O`h`5SX)EhUZvx`vbjlQt9#bgrU^ z3a_Y6q}o(Ip(vQyzx91VQBgU`dH_$YTGa_6AamppW58r7>-tRW01p3PfOnJcI-Y!e z{B-muLtIq>86HwBo=uw$d#flaJ_KKayq1Rn+QoxD`Lup5?EH`1*+N)HPvvjc_e(m% z?naP6N_ZQcjvFKn2KBH(w>&-Shyjpk`6;~Br1_VLaL02f2#T6g!4}m@)W2LO01T-D z6iNZ~YJkf>FRWaVZsC6yE?mGORYuL7c(YY#m zT4wHi`&}8ha{$_R;?c&#)x_Qg+cR6mw)-V)(%vzmYWvqx zaZEJ~tyP9G@e44a#cJOh?u#~2Izxz3oI*;Q!{0BhICGBnP2y@S5V;dl77B%*sz7to1=^>|Ew})btXAfX6m27w+ zIcXM^9;wfsX&jCTY7~_32)Z#hL+%K>%dxd-uM_u}v&##P9;TwZum-Ysqf+lL< zbtFi_^`p@!lpKsImv>M*it(94u!n`us2pQ`g`^I?&>D#%hls+NA2A-+ug}P#r2IuT z!~v2`DKH;}`D(6dH>#|v8X6j@KebW(E2_n_MF)Unv+mZT2M+v0{sXXk5sh<2#!Jny z;zlr|UsD}Esji!a?egt9{c#TyPfSUiL*;t;cR#sN2?nF!F11^zNN@t5(5%pTZY!PsA z!87**-w2Dj&@yeakdQjDbCGv@{v1I)G!`j5ZPEho2znd7aDn}oDkK3!>WNIn)y|8S*O9I&eO}h(sFXP+Mi$*hF!8Vm3Aol%2ISF){Gl4P9|Tia!fmX>lQ}k zP{PB_yu2xPJ-P_u51%FnMu(%o$U!q;RGq^I6~^y+&T)I4gC6r3SR02MNqPFENaBGO z#$@&Yx%!+Wh?+DUPaaBbJ7@WLmlEMqr&Srfzg?$fN&+OLT-+{JmOCs-Aec^ zxAcSw6Udh*1-@cI==(}uqWR8*Q~>U>f6j#q3@n^9`+Fc1SQTF-c9Qp8TU(o1k7;s^ z?}G>5l0Ig;j+^yp`T+*6GV+W*!~9M*{&hI92G4gdl;86ZpQQHZakjx|@IvcCtNQWQ zV^1H~I^(?x+1pFlvZ)Iu9A&#ws!$_F-uhT-OLE;JS9lofCf!0u++$1s`CNf9hI@n#O*yLA}A!D(+Wf>0linuo)1F2)tXfG#6mma z_u7uum~@V?80EFB%exI92it}#&Jl+<&b5xzEF>}1l;n`PSTT-mx8ZA;Zz_PBi!!=! zNJb!Gex^2p$N0f04$mjGw$AUx3rQFuX2hO6d2%Ft8|%7_@(!zm&vp& zY_+`AvzG77Wkl{e27Jv<0GM~7%`ATWHUFtu{4Y*|>a+srt7zP8u00w!!s9E)5MIQ@ z##(EhhL#}ir`<+4vl(@R4Ix??tWrOmr` zl{b9^)Dvy%mHrllB6P=WTQ;C3`C_PuYv!z3%>n~!vJRPV~<7bWPk z|B=_=ycEuBPh%0Tz}Yw z!apFOqgVDCwf;o!?#<3f4eP5eUAmN6mVYlse2R9%1p^MCxB4jC@@0y~YH-q_IFY=x2weDxkT}+21^GnEK66d#Y96GACgS|AMg$jvMnhm4U z?$bw{zZRK%nYZyZ9ohI}i~6UE6qZPg{g^A4f7Y(R7d~?& zCubeH&daLWGzV>yKit@lT1Der%r$1OFN8TC!k z?UB>4ocR)ugF+3~KI$W?0|f{4#taJUG66});Q(<=c>){`ZcEWsV>ZR_`_dfV9Id?^JmKB$-jTKq8Nne_}z;GsY@3wG_d|h zq?G_BxLuGbc~}^J72A~^fyJzKqyOB8Ex{gz#bZ^}xd~;5eJ8J#cgOo?>!A`) zCXCxzi65$Go(nk|7n655m_Y zi?F+~V`FP~ik4mCv54zSruhU`$n)Iu0{i(qI5e~+-GLwxJ%AGiV>@!)ahhWvam-9u zhfVfrEWDqF!?Dwv{36qHf~;{gm#_tG=Btk1f6``8no4WYnCNed)PTjyyA+fd({w8N z)RtIoW&L8CX_ID0r2^}w_9RBmsA7t@YgazrXK(*Zepp7Le)O9RXgN+*IHLHEAyLCd zbi2V)NMwc^dy7ZEa;?qx8@z?xB6`N^($TU@dApMCuADI|k(Xbx@ZHv`_|cR6zdANo zh_5bddqd;O#^#MlvNRSUfl(YJMK}k)OMgOulQw{jBe>r$90&NbSgUEHodp%VDWDhCf>lFqIMo}d>u zKutR>p?su74(O3jrI{aAwW0{yKxshSp@GqB=Z5)4p3AlR^K4lsX|Zrk!TkjpFva=%^ePc8VmY{g2Gg@T(ry{EwiN%>^ zau*fjuchh44Fxsi#N7#Q+KA~zvx-ZfdCLU7-K^^5GcPsk)#!9PHJ=I|9<7%XjE#(! z#ypQzswQ>-F~<`T*gT6x)7%ms_`O668I)B)Ooe_4PkfdDp!Oy?AkEOjJte;cvpLHc%xN z%s8(L>=jpYK9|6AxH(B2-Mg}z+fW@V(n1fSQ{umNmjZy%sj7Wq(OGUTh|M#{7w7qt zF}TMgANwG0%2r`F)LNwC^pelLA^hqY^VHx~^UYLE4}P8NxY*B8lp;KgU4G1X;A}~W zSu^ib9^eepj7!07U*F~@53uzElyFFGMS(}B>i2-nBsRAz>tXC~;f&aKZ2H8Iy-yX| z6>z;t(FMsmsrWg8(5ygDcyjvOH&7KUmNI1%yp40la-b?I!t6!za04po1Sc&nw z4Wt5_4YF2*2-}3=(-H&wOiI_{fCzo+oHUy_s6|?s&6%|rO#V6R*LU?#Lh!-j0<5>} z#DX7CUcfec@2$#kw$8cZ^$CxKV@7|^2$WSTnmbkG%H*l%1+<;}1}^Lh=&O2ngllAA zTdj(aTsxA8-X1_lh6mAo_?|KuH?U(T4hv&hgks?EtLHCRtYDf*V%D)u${uO?=4Qs{}ezyK4o zmdxw{Cp?XXds?N-(Y1({J{VbykBtI>=+#O9jS_JUiaI`d`aiU=C`!)5hWfQdgW(sS z7i@d{@6O}($cv5o&K<1$OzWnxOiFaNISFbXkdLKsHDi9MF zIbbA5@3v%1-B|Vz0@638aiEoh3{D&=^XINOd59C>KY+le;FPgAqU(ycpuyHxk#iZ$ zEr0RM1{|TCVPe#J-@oC6dPKv+rjs%%3dbJ)({dtx%{yL?ukNndzUnghXWw@=x9h9c za?(b;;q!#_tm?(rXU*jQ#lSVEqPyQfdruzVsL#ufN#i7Pl*jUVedPkXN)eb<4OJP| z?O!6-`Cq?wtrYuC0yYrgI9C88RKJed^R8w&D@&0>u|%#DR_CDQME}H|&9;u5Fuk#pulLl~*W~GCBI|uyBkK*mstlQgZ9Z z!H+zvJ>Jmc5{b}H-JGnpi6REV17GzXn5WK|HZ7`(ewYM$vBkqLFe5e_ozwwb_8F{U zn|&c~jpwraQH%^h)uLZ#24pNBy;GNB7$u)MczJ5HsmiSd+EP*485=sP_@vbNXI4Ib zd9CA9+_TbB)*N0((+ZnfV3C%-e(1zWo}%9TXx)PFCZx#Wk4c_ILwaRcdppb*O%W|o zgO(xzShf+^Zsv>7qA`+*90=ftBkcaQZI&DR*IKTv{Y9S(IvUoibuS35h_|^RlIp4G z9=^fMe_q@>i-5LtM$sXQ^D%xy`ND;E7(q>B$S}qAmq~&>^SIvF@UcWz{=bz_#%{{lt)%E>epYLZm z&*MCf<5bU-=;D&BUcTR}dq1rW4-K728l|cDp-GF+HfjX|FbFb>tITu-D@v@)AW;RO zlsJuD3wZ`S<9`xg8evBV2LnU%K61Y+qKHdIR)0=Mz<%wkG5d8lp>GSW1FAM%A&pvv z%^teWNnckru=2*3ernIPtnhgHnFHjTv0uX<`v3gXg+h`kjhq>EVud_MB3v6Z0}cx4 zCFL_(4TU zVm|9XA?48)qF{PA-x06QT?1jv!Mca8Zyr6Gy}vYx)pM`B&{;_{;Rd~G2c@d` z(t?>ZE@g2XZEYA~kEyexIZvc_s&oU7TivgWj7D0)@jUJ|E8_Q#G;7*4l>_eiQ4i_B z!cim`8LIk^Hd3OO*N4twX$_1FV6aJh=kZCQL+T6?i=_lFxf+Cfh^l7xzPNTR<4}~& zJu@eBPg6+kY!MC!OBCjcVs#EyS~_5a(!o`n!gR7Nf~0*3yAq8+{>ik{aW1?Nsd}{@ zI1IIJZ)+ITip~Il&c#xcrPqL9MSMxwveQ52Cy_V?0|Lky+PgP6`6PjJGJ>adj5_k3 zn>Vt=!BqMN>d;PE!ts))c&kVch)=Tyr|5QSp-kZd+v(Fx$Rn6N-RqcKb0G#0G!n<> zLRyt8OXm*K9vd?Y8YS%o7TMt=Zyvt{FX_7CSvLYuxnL7=M=^a689&=#9V>#r@GW_~ zH*8GO!`iO}sq?ox6lFh17#kYZ-j=^oDLx2V&6Q?j5GRBM<;!SA!178fPpfMMNd_@H znq~K|em`*FFU5Tu3yaT7uRBJ1Tkq2`zyxg-PU1F-Z9`RHj}k zF1Kr|QfdqFkE+8O`8zK?U_Jgnu*ER9&!ON@%i#pny+XC>j89a$jD$rK?dGv^<(Y*x zHf`It?{)sr<;C^yDhFNSk6zcIUqw3?8T)2iW4147qe%K0L-z7PH|yUVcpVIrKM#Bi z6^WpiP9@?@4I%RLs^9D1Gf<=c1257h_|0M31G4q>*4EBwxvl;k32To`kvO#dazZ1M z$hlWs`zQW;(`s#}D+jgtKmYvm_M$%h2*q)mNRV5syiZby1t#w0(xnmUlu(E89)i^s z3Wpl1vMGpa#)(O-gYpG5__=P_8V_IfYV)&7V9V-#jgAVBD9Bge?MZ%A+?T^3Q*ZWb zU?oWBsZaN;USwT%T8giCc2G1V<5=jC?nerZ=}avoVe9pLX#Q+dQ?W%jY~XoKzxwkm zCXDaV157tD4rEzWJWUZC@q?!FNvmuE*}WXG1{1v*lk!f%(hQ03MH_FclKi3p`PC6{ z1oNZeNPE=k6&EXbkXP?hUn41Vd%b&tG(0RR031`$hCYMp`6;m&g5Y~v8oO*d!DT{w zpI06_Ubi)AG`V7ApFa2GI^Y)_)Q`Qmlbo!h$2|}9qJ=C-90HXH@FE5MEWoR+o*6I; zSx}kmF|&ez_vcZ>6L_DMDetjTmfsxN?6}gvIfO{hv--E&9K; z13cS`rG*Q+Gij@3l`F;(nRV-O{uyPwwZ3fc^3XWK?)K`(tiIuOy;IaS8wz={LVpGp zbH?_d7=I`F0(svrmll)s5psrpDs5tgGZ^Ob`)K6gLQVyfb-cL-%f5*miy4sU-Lqs5 zI9fl&=WrB1&uaGb&sF;xna}|v6SusbJ~N{(trrSwhBerYSTjamdiA$j{6}kwR$}Fb zQK?4t4ih7zKwJ$gSLCf>#}WE#^&^?_583B=weR=GAGcPxa~ye0-gx>dC)bgKU8O_o zCtH8wd6FXcBg}=b^GK5*}h*^t=aGyFPeVaZy5(|;1C;zLA5D^LILr8c^vfm(-hf?`PeJ(3N|z2 zma!_VN{hC!&7Yy{cQu>Q^w-zu+&M*%q;ex3D7E9Fy$igzi^Ve=r`4x9M8-md4k-UTmU`Wc zcn1b|*uPu(bBL8x@|?`WLPJw?YrYIM=xO&{)8bMfkGoKO_-H{cZn|pfcLxYf6lsWV zgv?N|y3<)6aOyQHSUlxZfXbyt8gCH~i0){)+E}In*+D^?6U#y5hl0zXYVI>&zyVeo zl3Kvj&vY3pq>qOg{Ojn!>INPbl$4|D$|CD6l#;BB1|$vwA5tNEd!Ys;kDQZ6)Q$u8 z3V&}JVm=8Jd^#IMBD$ceG>d~%OYd;598*Vh(~FjMA<90C;A?7+SLiyZMHchTS?N+elSB|>`73Kof^{r;4*kPn2ZO&4Qd%5f@zuJw1f z3oky2HAo7sgkQuQd0K$JC2Vx9E*;d)0if7Hn4NAf40xphpS#xJ!AJC8P<}!mBUy}{-34II5Ai~@czWS(emQgpkv<6@0bDl3Ug#-6 z;dU%J!I{I}l|CFmZCI`L>gwHh7d_%Qk(Sf8k~U=@9lmC|h+9Z3?J}i?a&%CAIC7FF zPj4noyaZk>bEnve%TO4k)!MJR9n{oF`9uNadZqf@;kxRc{f1k2>8;A@?bPYrr)0tl zql&ew+a`{a&P?387+;xutF4gMSihOAs5F#0rbtDK0wPaS;VT;rivtr&8Ukf z4At9o=pdf)^x|MJd*g`SE1_mQmnTAx~}Kdr<*e?$wQ zR?6mBRSN$6#nuubv2=`Q0hrj=N-2~dNO{HeBD4LfsXz}T6Cz;xI?5EQM&SSSAmQQ=ybnF-=3Lg@QS%?sMD#yTA zw|INsvy0C9y7!At=GAph@n6CsiJ)yEI%m2~M{I+Htu$zCjZ4+nRj}e8FN+`*ApV{o z@g?Q%-Bp#B!uC$!+Bti1c7##;A}E@cVUZvA+fpVrk8_KL^ZnFrWa*zxG(u+@tYKq% z`$;cyI}|@a+f#bAWt#l*7%KLB0iy|HX`so2y`5q}<6V{>#sE=cz`& zAO!fD#L+*(yaH+Dx|6w(%|}=b$LK%6-*Cu+8=L!NudRH_*9mkTR%afewi^Ni724Eg z^nWvrg>)YGs3*djqI^K>E3Z@Fi;KFF!`ZnowX6TIRikM(XiA49W_zkYBXin9dM=m;JX|@G!e?9ZJw~rjHl|-U`;PSg__}yI#(=k%%8B>E zx^96RcKd`>JnfB37k0D{_j;xT4#zqYKRlDj63*G|${GtPx?AKIU+Bwlto=Qb|WqD*Wc9C|YzOk*(K=iif;@ z)iriY6g5WbpsK1a>r^M%6uc|v$lsfJqhQRDv*rV;bx@-l(;#cqvf^uAUS3mb9w^=% zeX^k_cevGn+Fn%hS5KokrrCO{Rkzw|M9}B*i(PI&<+lnyt;p#om>^zj>LNQ8RSQP- zpMG;+U04!ruEW?xeYwvmTI_LD?9Pc1%1LMG_I1&8J*!5+ZoEB7Av6#?!Lv?>?B4Lr z+sM6Od0^M>-8cW~ZP)atp9blTjzciEHtsq00|!Q$23QTalH=gKS?%MZJj_%x!YG@R z7K|D7f>jGc<@!og6g5;NLU)$7by^o>{vFIZT;0&E;Dh?MJ)&`j|xezqUdo9%bH<4G0L;X_{+xc5OI$hPzhqX&qZSoibPb|q7gKFnKhM4X zQ)M-tKR?jyJJ>*s*>o@*8vhb>oWKlfAf}%%MMZey?SIyl{=UF-6FI~E%R+>waDn97S zrh24>2NdE9nzJ%dRVUW%IO{{yN=b?o|KTC{nc7thVoB_Rl%ct+)u%NNU#`sXi|;tTX|rZ@BERG7dGT3^-uf@$e{L(j7!ZHiGWS|M zgT2GYC~9Sn44>vJ>pcEXCDl;Yil)76E_c;4BVX)j)~s1N8KAw+gO$58?SulAaeQ2} z1NLAd(p*$wCBH^e*rKOAdlkbU_E9zG`&x$)!*M3Pm%5!A}d z>Xz~VQ_&vCtaON)*PeZ`bNW|P6YD8R?x_JNUkT6Z=D%0tC4_mJ_EcKLQ%2s%LA^LS z_S&>n?5!SCWgK`p)>l>3T7kH}xqskF_>6-Culp|BAZ$ENVNC@P=l_0p=${;FYU;;k z(q=}^U((?%JWFK>2%ZF*(e#vU8%i-Pa-Q2)Qxin>gN@)nyw)~TP8UPf&j?F}xP*7b zQs;e*lgaDQK#S^{n0JTItO4|z$XHxLUa*Veij7(=y`L^Wi=}B4g`>KUg5$&=3{}NJ zO89obgyn=eYU&}QRt@VUWp@!Z(XcF1^@Fm7Gbi7HawdP}pq;gie*E!2mV^5BvB4CE zXcpl~5OZgx@J8w;V`NeJzJAdUMl?S@Iw|;fw^NZ3ZVY7@cbgfQ1!=fBd{Ffz7i#YCL?0rcSaaXdX z>zbs5(pY@lgrN^h6G{F=ekTSDpnN0U9`Y+fd8Em4Z(rYR;>eL| zOa9_dLRbcg^zLwaCCnLWu3PW9haQft)>UJlRzJna;Xg5SP>_{y%fgf zl}iOt?(9R_=%8*H9k#CRpSM_&WbiuVD^YY@U0-#TeAb$^Yf61a{MOpG8*;TYSt2s= zEa0S4=7=v0W|7Q ze~0g)rPwxb5{g|n&9zO}`x1NFaTO>}pGMvAwnuHLDgTm+>pCbj;pFbUhy<3o^CroR z%+}Mk@=?jM&Nyp-urr_-f0?)3S^njH!CR`f&5P#c2q^v31&E73+Prlq#UAE-d zt>rUUPWG12?m;{Kvj;*in1Os z$qsvep9kV}-du`6vsOS3bAPsAei7Bm^0fYM3T`*%^5GP5Wse2H|beAR4 zcs>-r`UB+@>%aG(0-$sMPj7m=!Osh$GHF#LhV}w3Xeu~q%(QMD%tHXFfF)uUR4dq~xzCSOm{v`>J3;j>~{Ap#e> z(p6tSEFevoLe#OR`ybuA7hZhkFbk9}6AmXZv^fv`oOyLwH+PUu&}YaB$AG?Nzm@`? zS&e2c(1cq_bawIU)bZ{sQN6~L6V`m~y)6TwS4=qs&gmox!N-Gw>@!0i@3mS)T(9&6 zxO%lJDZXRmRKFoRU)Gg~z1)11z<$C6sz}kO9fWEIGG*-Q>bkQ6WF`xw;sTw|r)c=H zW=za1rPr*;R#AM)8;R#4V0clsraR(nH2m$hze%#8tI1X#zi{kfeesNIzD}w|K~RWz z8C*S;#0Y9EQr}nRaqS*r>{f)?kP+E&+_g0}=eUiSa%utwf9$4ToDK%}Qk7X2cj3Zp z`XAMXi6Wm2LZ_JQ_%uxe%z>+%E(cQ-6Jz3?O692}u-BDGc-|Pe32fEO2V+=c(mPB@ zvMXxwPZTn$eOCC#r$?`~19kyUP#lP_I!Q#8wyHRe)BJL{u=d$=eV3g8ua-W(z;A2J zQ*f7{t56`UyBRdkG9&t!@LiA68Yc5ng<~REL<+=!7WsZrec3_Pt1g8xw3&Z)j(8~x zotWvmJZM9=TnM+=*06C3@www0`@9vD2Ix@aGPg6OvCipLT^L`{b%$BRfcuDX1ypEn z@w(f%apRQ8fgHjVmc_XaiSJ}F5fPd7vjvSOxxL!fvrXH!CW@%~FywarW~t^R_%gf# zNEX#r$Jd6y&`uFAelYU|&iw-Ho?bX5-MrZAVGukh9Hu&%a>%pTnc12aB#*+tmlG#O z0fbnCUrKQRR*HZ4`c3Vj+sVhSLLEsmr>9X#fyAvW7zZ>0a#5893l_*7%?7Q3(a<|3x+W(asAsw5*n3NeuC#VR@>R z2xOGAuD~CLPpj;MBw;o)MwahWiULya)a9QUvVWxy@c7uQ`qgjoyEtN58?5qRM#CO_ zUW%#iM~^}H!Wz#{8rrJ1A83ft*3ZqGe_m&;Jpw>la2#|GQk#YEBA$$t=V@kfM(Amr z=7*A(NR#*>Lri5GCU>PZ6s^U&Q!j2`U0+sAm{Fg8{>0Hl7AO@dwLuFvi+oH}ZxSA` z9$eUP*+Hj1dGdtrjiH>1QaOQp8M3}{w4KLyhEI@2Fm1pm%9g7ZHzKGQ^MEMT;36es8FEiR%^Ezx)HmfG&hVm-`UH z#J+uf=-0Lfs@LSDF8}B7gbwYMX-07uWvJ;j{>JhlB(psBTC4S*F*R2=r1*L|boebY zD)&la!dRJtMin1APLn^>zl;h{1^ka!ai_Ydwf;wj{)u(@OZ|U`I@OKTzrW$qqAri* zzrCis%ej(W*mURLJV$1M(xB&me*C4e6i{7&pgDTo$4^+6%6AiQ4-hPhWNZw4$p8Gj z`^*1d8N%X4iZd z)WaZLIP?+B1hKgh4V;*B@H+(LJGYxnAzYmcQT=5fS;Z~q*15p(N0m?mk&`v}p>Zf1 zPi1;Q%?W5n_m{st@AME>y_A~ad$!M>tSwCEG#+_5cw%oXDw2FVn{g;NY}haZ;wl7* z$aB35hz^j8;@iQJBa-=*8c{_8ck36GT(sh#JY63 zin|yiAr?(Ck^;bL6LpcM+j*{H=0RRXUqTwW*h zCTiQp~cbj6OYjj29UT2x--)#+TAS2x@TuQ2aB` zVI~V#99bxa^$GY5WL1hTFl#kbeZHojHVJF4@b~kxpHuo2{isAupXn4C20D`U{SCeM zuxrd_5If$=?FI~4SCp0e$eRr+i|I@h=TI2aM8lvIMT;3B%Kn1~l@^%fE&5ZJ?f8F& z^H~oVeB=Q(b82~Shpa2X;=zYilr5;eRql5x?rEhS6~m*B{@y^v(EY}L)@?!rIa@K6 zp){&kLW=SYIDp=jy}y^9p1Cme^^t7)MlJ~5&TzEoG)#`uBJnOJ-@sFEW`zBZqCzD% zl>-eKg#OfdPWX}xyiiMK;%Hl2OnqKlR7C)KUW0F$3G$5*gOsSfV(-=U=#bGc%vn14 zkg_rih;?|7jd#0#bBrPiqO9XKWr9mJlDa4Yt*b{e*26;)N6s-?i`W;Q#>c`hfvN6#*|IffG&!%ddl0cC z*i?5hNRa~`W8rdq(=5>7w^*Yj?`b~@q|Z@2L% zavyiz$i*>tY&)l%>e+EK|NjN?>GzTpxr-QZzAzecEy)1^$Y+l?Li^X=K%hL?L)StD-I;8eo|R zF}gqWr&J~CX3&Y&zdGt6tS;nK$)ttZLYFp}5Sp%!BM=!?VG&7A!WL_#z!1rBr(cJf zd1Nh8(8g!+?9)or{}SKB1iO&s^n*&Pzu%csM^-M(wA&|3S9X`s@j z%^9Ty8~0UQ;@J7!Bd4+K#Z}8I_W1H@qwexl5iT)m(l?Ht)p^dMca^Iwqu zP^7LCd=5G-nzCZueWKANtADjoWJe7hpVIMVut!DsyfGt;e*{w?jHvm?HxA8(`U6ic!e?e* zl7P@JZp5imr!Ra*Hv7SR3eK>UcNKBtIiVo%{484Y%&gxASWRVY0%z9wZ*fJ#xDhVa zj;h7addx2yy6n-|Uw-+;z`f+lTIb*s-RCRb`1i^znc?xvnQtBU!Xuq_aNsDQfOOaZ z$`2+OggjAu%-^wHfe3ci%0LPU%K2; z;vB-hsnm1Qq2dO@G?hL<#^i>XX&Vq0rGoM+i_((vfw`+|`q0FcDWpSh{1H0tK@sSW^CQ8^eaSp)&mXO3S5V=WXp zW~5V=W+zidI9uGk33j9$Liy7O=8)}@rh#A$OjV9az!bS6dAXH6_My9ymy|s-2fG;b z+zUcI!Ieilz;W!%t z2yaQHj{CnqclgGHPOREYtBU9;e;&d>j=1N2vs$(D$|bA@jFaL4pDIx0 z4bk1UMo2&5YYJ1Zm)axVK55la4akIjAedPfAJt67@XUW^tV*kWgdE~Q0LMJ_hh1BwJeMdPqTr1 zbGKAc+4y4`-m6`^C*qkJm!)|ruVH-nM<+-xfBX1|DQvWh_gXAI192}PEwi%~!>~&yRa1J??S^7N-8 z_G?DQnZI1{r@@~iyK0V(uN>DzH9mGlLUu#1+nbe+W^xNE^AABqu!~}anFBz^U_V=R zZaU>xc(EtYwwtmm%^Ev)?9S41*Vl=@V0*U|Pw*_u zOl{S%qr%rVQ^Y&w!&e>u;+VC5ga)van(vw`IWGFA^TVbk6+2t^`u_IHhLhG$9~HNE zS#thKv5WQ;n?xs*;UlbHm{dIfu%Wun)Li-P5(bmW1VZMk*T`JyR|Wi37ZnSAu6JkhR6G7sUxg)erwmRopH*6XC*BjKd##e7vQbi{y+f|6o#<4iDE?eqJWzQpzmH z7tAu`Xnr{&)BV>c)@&fn71umsn)UeMdvy8~-ydzI18wW3y} z_6(~awlMb_+uvpcvc3VbcC%%M{jJwBUoWRe>`>vvwR4CPvaKng<)D7$MH zdx0ozkFa^Y+}#>@vXay?ic(0H-3u7SVjn1;m^HXjw}0R8?9vns_b*SDdM6FMwBd+< zt2^qyj$T~xBRP`#!vSeu-nHiJUfKA4)2&8zrthtO=W~U=C0#wixPl}6*uMo#<{&sc zaKXl-9+k`34-a3|=Ptaw?-%yk`t|Et5%<%gB%-W}yUmnSPO$HE)_a@}T`-T*OQW#7 z@F(jevqtBN5_0W6{FtN<7iHibLEI@LHe?XcIdD!E1FQr>;1xy zWtV9??jJDVysrO4r$~QYr|~ZrxHfy#D85+DZ}gk>E4CEZl)U=(Ni!p0fOS&0%zp>; zG1fQYH$>`^{-~4S+){F9 z2I~ZkbvG3)*3fb!z@ze%2WoS(c`>UGH1aHM@eAY(u)6HE8=$tZf!Rgh_VuV)5`X`V zDTcTHZ%>~J7^;nUC16_D@=xcJ3Z3;7RT~aP#1_CC-00nSz}1n~p&BV>B~?|qQ+$(J z8>i47N9Exw#e)k*Hs_zHJ+~P=%O(EI<}F)39;uu;rfRs|`6pA?w>}r^!a=sIV7S|N z$L{;8s|M-Zj1T(S(l;qc+=dPhUi^3FOpjNqFDw1;>0BcLJuJHgF3MtY*VCNY(y=`u zn})cEnbSWDflR%OV64b2zS1N*-ln!{+NXeKuN9rftE#$Q@$W{_T2)O|)$lJErPSXq z>Wz<^T`}Gw)SyS-TQ~QaIraB0xS*l-DmN{_AoxybFX}^c_PxywI5+TqiuFq3^scql z&X-57j;%?5xx8hwmfw=vq|TVUc_1BEhnHTRg<$?@=FHQg(-FaxG&kCR^r(Z2^1%$0 zEkyiE0V+>j6lXZ$ME37ra>Sf`_vLd+;{;_McfUD}pPft-pE=_0ow-I*V;A+^ z&a~<4K|ez@wz6k4Xjyl>;q5wlM^gSrw@8c7(D$7JjXbBCayt=U)KZq^$b&HOoNBUv zKPA{9i%XbOPOgi3_3vN4t|lnHs_MrdW1i*YT?Y>56_N_3hUQ8z_ zLB_RhQ@ex($&BKb}% z#r=|xYnd|V4nHe-t6LuA{dG;ogQP_<0av>2JLEYbYJ%HZ5~s?^)vVhR*`A-)uB=CY-l%=Wz2V z0>>g)nzOUC!{9}K(Uv7HOL<8{!iF;QzA~tZzew17wNZPbW2gnpz7MvHV7}0epnCjxyT${w`arR?3L{ z7-fko&k={7f#GH`%@!_NghTJ~t1oaZNpmas^cHN$%KqK1CMvdtb;-uYu|S02b|p?0 zJO+ zCC(-*y5lgk#^e>O|CyY!lTIl=_brL`%jhK;3GQj*ep?q&f@phb&{)e(!(9o=Km@J) z25|WFs=wm|NdNZQJs?DE*1nAZCmgw7Wv3Xlk*y!e#~GGDGF}_eq2vZ5+9YvZSy`Fl z$X!3->Drh4-8b^XcS)c+DkDd)E+0PKAJ8!?X-9`3C}EFIXkW|0##q3am+h^6f0EC8 z@b=@{3$!kZD(6ghiy+SyrJa>xd~y?)Xx9?+sA!_)O81e(=F=`^$~ozEJCex<0W0F= zLGcPYp{>IPtG)DLC*YeD#X*qdP)tH3@#-P<##TQw_CobAo41|3nq8{(E*HWDCPRLR|f+JsHJm)r8X6f)xAn;XnHKPj=*#ZWaDmNx(hx7(887 zY`=cG_nR1jhyY*BhuJs;qf745h-2sX1NTiz0x0tkF*jah8KmB_`zcaP?{b<_-L@|Q zECkG-WVz5p%;T-><%lQVsJaL!e!b3LIbk6bC9QA+yx)5KaZ24U`K{J7Xd}}m%lGQC zuX~RkYFYGDs=h{}rIRl_Yu%&D$qC`Rs6AXoUxhv+o_~Lv{le8Tlm=%(#LU_D?%<~$ zbDNO-)%$3k1tV>r6?OH~7wpsv=EzS$RchL9d$G^GAVTvboYrW z|E1gbuSdFp;|QxGyOM9>cxn7JsXdcBL|hc^4?$tz3ws&;x{1~ApZ)t6t1tI@_AeJ; z4%=W5o`F#iF}=&Fh3{2z+M4Q!EAQ1Tp4kQRiuee@grHy~*vFBGlj=^{`F60~25Dv` z=Z#{6K|nr9#|QIxstb!^%D%L~;3ltjtvrNV8%h@L+O=!G@t&u38Jb-dKSs7M6Xi?| z7HUO8RkaE^eR?vGfL13hT9!Roeo-y?0Cr1cx ze6e4-Oof8x%$&=%dr|u>pmtC=Mu>Z&_G-yM9?wi%UM~oQe>0GgP#Ofs+qo=XAN}CsKD{rrS4%adoLY7q6 zq@A2pt-gN!8lZM_q=qlqh6n;gur263#P1D}2H@o!u35dmi-RTLo+%vHsEhP+Ru)lM zOq@+SG?7gcrrdFexu5?rl%d5QE?dMsuxb*cp@M273@{%GnX^^##xj$ca_7HHnleRe z#NlHsaM1T2Jx*U{Vkf$tc`FowRwE>FkaD=-i7$r{+rX6+z2Z{Km?z71p8oh!DJ~cA zCHh)vJnfk7_LO#a)gKaDS|v%t3UbBK{@J@v7{F;DAqvYT0NVU}UH6TCh(4Fh8LFqq zw4;*XT@LtgXkR0)YuM`w{55Hhlv(s5R$J@&swDMT#8`?8FFfh_y$w|457L+H^^wIC zH{!m&+AbAQ!?#UTx;(DSUFU?aDSg3Ioabv!MLYe>3v{0KQ_)3ykTJMB1!B@<`A#@9 z(tRNVp=tGyr2vEibwjQBwqiPT@E2k_!|wJ`0U>$wuXQ-Uc0j26XY|oV%T|FH%61M- z3hqyvEIDCd*FyM)R-V-^0uaKE@$g@d&f5IU{6D2vLj1$N)$2pNg&L%!&=5_zr3|GC zq4dxPb*kRgLd7e!?Y|T2%7+`xR23rB0Xp2|ussd)qkyH)E1$Z{#SB0EMeUKjAj0Pu zu!0o#W&5tLL6RMupY8-#b2MsKV=$MtWa|YdmO|U7)zM#(*DCEeH75&4i|E8&CkYCw zGXerpH8z<1lZv73vARuu4iYsXV2bgF;vmP8u!IH<+V4m?=K$o+PObl%p)W_$9stJI zt1n9sioyZnA6dq{kc}_>WYn6CM7Rt}<)?^)QFm|zxd8M4AxTk6JYc6ytM0uNJWCL`_;+Z_ z4ad|c(2ay9ndt4!9=ePc0Hd5XkD-);5XW)Y5*Ql|Y8$oTd#GJQ+Ka>5Ea;{gQg1>I z1#p&9&@-16x}aM8vgipCE@m8Bnhm>yZ-OD2!7z^SF}4v1@#%$`fId=Q3d?69?fEyV zfb1&5COJK9V8NV*ebH;sptPHd3Rdg+t0CG*$>|_g5PN@RJOhtOSohz|*`~qVe42Rf z!m5D}mo7SmC>4!S92#aZ9Sn11A8tC?dikC7+yn2^?xyb#j*2sgdL15>U2-QoZ-VK; zqe1J8FTC&gWL)+ayTwRp9#F+Kt#nr7eq%@5o?;1?gGI0HR>Rvi4=#B}2v$8DN9g&bTdG%S1!1Vz-2WkA3scJc*yCI9+8eA~O0%`cw)n%=Jpn zqY=Dqr@Fz;1}YmLR{Hnc7<}luU5k);9bGkI^ct(|y?Oh#i01T@i1JSXJc`TjPp3|x zE!x@Hz>4^G)Xu{lkkdo}a~|F$A@;F{btj?lru#WA`3h9@h(!^Kwy%gC;f!7jo=1?h z2P4#1+fP8Og+!uwIOnujdstjYE4dt`bD8T{}ZOieLU zNrQW2zoC?}_!ECwUiz0UG^^hZjZY*02=_4-12MTq2!gi>5?Hc&5_{(7X z14$GJIK%_4eYr%MdL%f!WMyph@A+qX+c#)Boj`AUyZ*-1YbhhT`=n4;#fdYLU|MKX zVk)HPQhWkb;ciLf+)Z-`s|0xxf)D_pU=E|Wa2u-DcCfb@H3T!r_?2hnR zNN_S)&NnGHiW9A=G_SCAmbI{XbBESZv)3NfRaZsLw$%OHo>%?|fr!!kAhtAGESkN9vW5j>&W5lO7btMejKME<;Jp-gK zXNA%YXO!s#x$5ltL~b-oGmY4>t-8AU8J(&p4^rv$1z~0_g(`ro(>k}=E5n~sS8V6-4rSmGajeW z)Z$*5vTt8>$TYJ#;s|tek|; z3NBHCkTZjH&@|qo8jfwl!+k;8iJSkHmZ9RWl8?kLl3reowPiGGcGk7xXau82xRUS$ zQYro|S@sVRy85t{hU~O0ziz+JTWyEQlXQX=yFy$XiDMsb9=lY5~TYieGlQz(^A| zOfjKlHmg|}3$BZ~EyDi6`SSYt|UZ;`E^~xTHWA?6EA9v zc1(muL4GKlMHi02>184)pdK$VgK*>sVMTJwN-uX>%|*0(2;#TEowvkt%hM+3KNIF8 zRg#WAAIo71su+2`R2HL~n(S{8Gx@%HaFk+YY)WP9y_d!dR-G);eRX(jufZE@9?vH` zI}Qifj-yZbSKUdEFl@l(QA}Fc0ro*a$CM>G z=KjQz@7^lkSC5I*RP(p5j7{6UAl7q{S#{0PDYt%Vbp7s<^YDhb>?Gw{Htcqh{(6aS zcoIm95#z&$73m?qm{p&m6cA;@kSVSXSL4Puu2juZmJ@I3Nd9V=KUS*ehW!_J?sHLZw9#EX z=cmO=#^A=sgayqNVztI-IDW{x?p;nz?V!Z3fvf5ot8i(RRs%try~}y?;e98*Fqf9k zLEEcLD-HA8D5E?t@4RmlqW0x1d1yW}ZRXGCw^o0SrtrX)+uQztiC+2Vu#VH_h7CG( zw_*T(ADg@Lsb00;p5E%xwd?g0-J=ie+qY;=MW(WqRHZUtOK3U1MPZjKlayQQ&n;_H zd{==eqU;F{cdwk~{XggR}!d7Z63EwtW^g%xRO2*HicQE{9F+ zSNCmRDO*I!w=qlrxBaHk=H@%s(g8t!nHHRKsdN5YE^2xZ#Y|%C{WpVqPbwkmBle3b zpZ`$a)v7*6?5C;uu%Nv%0Wb_@-e`p%*uVb}V?##WTp>BgAF^E^sn6|PNeI7p%2#Ze z&E>ny`DSN3Z1wBE81ksVz=Sh+2J}>h_1e?xaG`cruqNB!1GPfCtH3IGo>XjygfCsR zh-do+b1PM4kyWz#`e&;$|EvfQI_>rMUorYuekGw6r}o8j0sxn|OetIo?Qr;vZ~oVP zCF^AO!h>by1Hb?~Wt+5wcukU>#7YhqX(jD+BV#nttmsV=2VHXwkm0NTcM#y9h?V8b zgVchiO%F*wF_ypfs+BkdKSOUDN_mTz*M6v2;8DIjNZBFdgk+LCX9@T-C+PUSld4yI z!t!RHEV3^M=r>%Uu=#OuWo^y6)X$xg_a4tI-7|aKxYTDqs+@U2YOez*1o&b)Zve(7 zNZ!K%`2CJ3xAu5CSr}P+R!3)7qA<`#WF4q`gJi;peR*gnEh@dxJPz+;(#y0SwMSVM zlYc)e`KLPtWVXe-4h1`>YmYejW_r%&D+8jnLO7}RoUqjGSstGfb$(HahNbc6kJ~q8 zbno+EPk95CuQTCZwbQh~-eCMXbthV;*uz;tFf?e87$6yWB4IHCwq!zF_35DJ94d^u zn>WX{-s^wA$k~piroU$Chv@sV!i%G>57h?#rZ9~hV1_W~IHM^5hd>=D1jP|r)byhx zmJOT0`6dw@b(=8aCOH};!hvyDh$G7^f}u7VFY*E=Yj??AuHQ~Oxw+}Hf834jW8NrY zJtAbM@DiH^i6@oD=jGJ>i_nXtGn)PUl9#O3<8A`q1GP%e*=4|xR!LC(Pr;azUKvu~ z`@eBK6Q>r0}gbAW)sQd(HB zV8g49*Ne8^SWS?*ziRIYNNaf?5l|JA9#sm*Qt8>}1{N$Z{Ft}#NyUdh z1|2_6&em^Y>#Eb=uZ^EDq3?)(+ShWIlzrK7%NkzdMd!JLeLd`X4SXaY-@j zl8vx6)HTlNo5qh}_2GJj+k?Zx=Nogt()AE}G9l%*PM;)C18{Wz-o5!w@6c-B+4`J8 zn%e4tQatt%_m#VG-+E;ym79(#6+W~z(Npu zA+VcBurht58>g%_>0}Ode5h_$uYm2K9Ys{AzCXKCd@YLLQd@iN%$z2}se|{M_^aCK z^_%o(AC1!5U$DgY@4p9^&*^t1MtAvn*d9^vND&1)KnMi7*F{>wP59{WiSmJ6A z8D2z=yYgeNI-AiJb+!ZG643^Z~s@S3(h2ub|Yn;!A36?65V@ymxi({=>sl=|%fSRQb(Qk4pLNblZC=W-hup4r>gpgMb8aJXinWG56n` zF01$}|3;0C1R}&R+3I&aByjCI#+!)PQYb!PF4dJI^!%r@p5(Ys6A7`4q$^`$57E1z z%f8JSGb~{~rvo7di(L{X0L8&Oe6~|hPxEE87>o}V;oGKb6qCchQ3d(HClJ= z@9in>mXTMFTab1%n5WgF$J_93J!mj$m>u?h;$~>idY-<-Zi{s|1a_Ca0 z4RB5AR=FAou25uifulCD_4X7s!tL5xY@9Mc5|OKRWhoblbBP3XA+@!l5CXxAD0gR$ zhx!G2E=_r}TDl>MvWFup!YBVX3e8#5hUT1rLPR@96GqM^Y(8(F{e4n$ZuR>$YHX9j z*H)5hzsrUxpeN+wcwB`8MS|~M`FW;na_Z_Up7d-;|22oZv3x*N2LKh3`fA1&9#~bZ0i(*eUXrVzshPP_|O3;ZzUl%r9+d_SD-OUZ^PQ(4@@1;~bI=A!myy zV&GU8i+`Cgsg?CW(P_5Z_V?eXzoaKbugXhkAVGh#cKtrgIvpDpIg0Q~W!DLEJzG{x zEKuGL7du87_;nEJF(pfXCuhkb8ul&xGBKPXw66K|8)2w|mg~#TBsZ^3W>rykAWVHE zP7@Rv!n#RX!^_Z+kf-DE+jq`RL|3 zxc_V=p2#-`BYa{TAonM)onu7$LRvz&Y_5LN96^Jmk-CG4fD?Wnwd%Fl3pld?`*!P= zSnAaCk3UYK;t}f{=10cG74vl9vk}2Um6?rC8vChuiqI$^;Nfo|6u`v*K%8OOG>wFu z94=uv)jeoVkj+eR1{3EXz`gJN&jU3G@PY}wuN!ck@YL=<94TQOFE2w;*Fpk0CP_;z z?LKT=js!e7qC1O8lOH{ow=|pkG}Q=2peXhPpN%W{d&iCpuLeJ8&reXnZ^w+J76?se zMaO~U0}Lt1+A>T~Bz+aC2+u(;WgTag^hhEr$;3=e{0j|w{Cf|1^C?7;-Q=vz->Gzx zKq)cz9~{3eORtvsK!9_cD{rmxTRdU9^qFRhKkcM7hNPeTK|^+PJ)%6w2V&eWEiIXT zMndTvnT}~tZ*mY?Q0|6(7$lS*rn;H1ND(;jpQ0skIXoPgf+;UnTfrRF-*k0laCkM^ z3aC*ej9+1&!2|P)b!8)qb}P3dW2`++r%0796A!*fU5QDJs+#shFpr3GzcNwUQ{Iq9 zSJ3tZt<8oG70$$MRC3W;IFz(M5T_lZ)K8GiDB&TwURmrnC1VOfk3eSBSjMuSNkR#eaZdhsWT6^s^BM?X!Pe4Z zzOiy_R8-EGqO%pBe{v#PlpBhW2ZYC>AZO()v@!T{N~=%+1fGqOe@n5lQaQF&U7zn5 zCy))HrGism=h{-DIw5X=M*ns$x!JXww{8`QFQ`z55jop|&&l+)cXq^DPzntqB$w|* za^3KV4AP&>`5~kcVK#Dmqk5yjuUD&;hZs~(0)!MdA9~yf)r#H)$Vp)p^%^n4f(>8n zA< zQu*m|RugF^i>bzTH61O`pkk_1S!|V`zvtFoo2jE!CGd-I!|0|f&2@w(k+PmacD~;~ zrtoxFtDHgs6mp1=P-nhBM~eszKR zG2QE*6^xWJYFCM}|9#0PHSQ+fqzFC-NCS0gZvW18%EHZ!u*LwR0WX^*#}6iDE9%%b z^}pLt^ZA2YnDm_zF>LIszx#p)J+O!!bxD{NOOn-i#>%c{IEXC!&o74V7TcsV9_W7# z?+FUt@FtFgZLL4$7lPYVOHuHi2Wi9!7=$y^Msxp zte7^DZ=8BbnTh8$*`!f*vksUrln zE3%T6?{BISl0G-&`*Vkw1#w`vu2)<_x?i!-6p4vI`t0H(1M*w{`s>t*0GxG~^H_N` zbhK~E^U#R7Kd!!0tq`ejgCDczRC5s@}5K-4hJx%r%>1F=@Qhp0cdsBw^T@LVRJm0_n+#gLRG*z2- zZo0W>LRGA)>=lFJ&MqpSn_Z)K)^}l0V!z3aR16DaDL6#<@P^bpojcy%5X?tOV=i`M zf+y`&uWsrk6IpBH?I3k!^uZr=YsABp8U<&OqtjU0mymer}&>x_BjR$wmPefzTWo0g;dAVcgyaXzkK#94#lLpWce$weN%L zjNMeU)g-B*01_d}>(pMGoyUxUs3Z+q$%f+}ey3|h<;g=YCqPP+2Ou7d5JYb{(#GB^ zFD+!=>F!QGhj9HGu9(=@H>v-D`$zJvEF5AkZt&z=$~Woq_%jb1YscA?HmIT1mhg93l>$Q;@SXYHyCi^f6;VG;So;mf0Ms zb5ZYYAD}<$q*YA+!HfGhiU$-Iml~2nU^xEG9fR}pk7<%bmsP=#MMTR-iFKvvCJ9s; z_U+zL4M&02yOuPbB#B~fL6svB=S&BONI+e`O=w*?@+#HA5G zFTy#b5)-k{*PC=MMBA?2sg_cQ{mUC$Dk-m=Vj1r>W>zIk4nS4q|DMcU`}y7bW{EN? zYMrlSHn39=Fob4?+_tk}G;}n+!z)mLBq({$XaJ?VqMST-&W_{9k5A|*9xPt5f9=>I z@(X7;n8osD&RH=Z7&l?U`naW(6^p5e00S*u_;1vsYB^CydpUSSXKDPI#7hBHIU;RN zNct%d-dhEiX!_C{Qv^wJC9OjpEiE*O9s^{QNoKPO_bvl5i<+s)EhLB>S`mkl^rIgjG zpOpXMKi_qTsxjM!OR4bJpq%%Rok?D)shj7i2L_A5V1SL-QBU{Tq*&gsHCH8tlY~@;1tH0?i7T_D^s-n95u61HHBToqBuaz8Q!MmuB zfcGp`RO6mIlg;M_sF@jHwo0SNP_24}q$B84X=+~DFD0$CCN}L+bI-Nz+n3qstQOLqM>|1^ncl2SvPBST2KLEyQp$WB6|cYCnZI) z5sR<-tsUe1$@wHFaNWmpk{^op!ashy0GVH?>b}^jo=7}umhvz zYL?Wlk&M4zcSQNHh_+jIT@_eD7>|13aN`~Co<`p^%Ja4^n8E1y2UFUV%(E}%)sv>icF(6%ifhHQM0%i-@6D5SYwsR+3Yv(2hZ)|%yyIgMOf^|Z-L^siPk>#4Fe9zqw zm*98!uz3^`aTS%m%=G7H-YXs~;6L&vuw&qmFT5TUcKCyIVVSwLr~@MUV~$twi`_NX z-(=ENZyq~l43*X99n~l#u`^nS>E6G8zpfH_nY`LwXQ_*T|8qi=LB+A$9ra*gjpD`k<`XW7o~JHg$(x9B%4l zx)jjByPR_&b3OT=ouVvy>*wn0vx37H$2@7%PQx`zCnUYMZ_>Uu(G_QOeOudx^F$ZS zDTNz0X%gSFl^t87wD|%3ds5uXC5sAjU5IMiH7#}J-9HYr&x!%@As~!5b-Gqr9HyTH z{uUxvCPwuxhoV-0<-D|C)kl~wWGm|Gz_uwU&C7$h)TJs5Mos@<*~Y$)RY0U!;Ihx{ zGUTanWw09fM4r_(wPs{Q7Gd9r#LAINbnp?syu%3A!q$bAad@j`0lb)(>TuI4V*P6m zb5=hI5|`gDSwY9B(@f@&TzqG!)=gx?(9BJf_&EpM@nhGsH5&u%L4g|nk#xT)Q*s;U$W^{tz_0~^_Co3TX)Pxt3^gJor>9k3f1fBO7 zbFmR2q|5}41BFZ|_(}*uXm)+`BL2E*Tf&e-`c)ssgxO?F0TlQ**sFsJKgiS;5G|b> zjmrYxS!ap;l2{OB4+31lb{GBF5R1OLx^smw^P!r!^Gc zvez+xRkTL{;wv@Y-nk<_-RY*xUJYB#1^H(M%?(>m?W{k%>oVJ1Lt)@58~auCwt*HzJJ7JUQhztY1!BP3u-Z z6CWY*W@Ay}FDz#@`qDN4tUO>eIHpjt)BiYNah$n;isj)RIiHR#hX4r6N;#WUHg0}a zk_E5IPWuZinMdTDnUDvmw$wV;!utA*9oab9E8<>UfsPHbye?TVRJLwgpi%R4i?->1 z&HEv-Wg3Z3A&6fPd|SJHGVN;G4pvp&qbv&od5Jw#Co_H%&Gwn;OV1+QnM@;StBCif zfVZXnn3M&;-4^eB-+?0=TC%6tY*!!i1MG zH{pD&g{C`#XSdqw+N2l$Nl9y?YV$plr+yjNefP9?Q(7%tv3%5u2*<>(#i{9mA-$fq z8M$zoVs^Qc`96)})Z_i%7}*WK*lxdu$>A;+AOAXKW0&1sc28V%?%{({-9I?>qpS4bPE#5(tW7+~PI+J_1G z?)l}`wD=jjXi;~7Ih6?$CUm$`6+jGULqyuEPoKd>-wq70z73asGd+zsu73c<-g9}( z@4qWLmXCJY;d9|({L(&6+CI0i3~-woVLB%0muo+apKiYUs;JO)^!+>yw3?a`yL zG=6W@p~E&dUORgXAUBd2bi=;->CB|DV;2p-by6+-@tz${r!Kd8vV6jjnDYTI{Nql{ z-W2~pcloy)D#e*D*B{?$SD5uMrBC_);p|Poxo*3zVO^C<(V&n*bEXU-WGqvZl8{UZ zNl4}?A~KYrgh*u0Oh{x*GM6Z08I#BmlF0b3^WSyf$Me45_Z`Q3e2(ksxw>xrf5Un1 zbMLj*UfcJ{etRKc3P1=d3#|H|S#%xkupvXzz>g%BkCe>~a|Jhu=)ExCzOXPl#TJQ$ zua82m@w;u#Kxdho6vW$J=xVPkH1m>=F9!l~bs}@SDqbr;`qyASf2p&;sx#x3?`TAH zKG&xsGucXq)~xX{t)AJ+z%X1gRk_8bL?>O<$9Ks=K^MciGPHM7)`sutq~M(-*;#`fB%&1 zsCcAB?i_OlL)nws9IcWPh3kDaZJtffB^@@zeUiI6LVaoy+Ezn|pmM&MH^!`h@Qugp zv@57yf2^qs#ew@#9Ku+e`@UUx><6HZd@%D2b~u}iO5z{l5oKPn;moI!8^YM%hI#9) z&a)EkVdHD)-^GYMA zO;-_|u<i-$w*Rb$>l{LrC6JC0P>(H}K;l<4T_+FxATf#xzV zM7Ymi#evqBqbzSMurl0Ul=cHu|7!>y`g--_3_<1+Q7g-4~2iCMXX*Y_j^Te-MaNQR{kEiylb6`Z_-C75JA78 z;>$a}HP*~)ocD+{b{YIpSK1#^x7@{*Surl=t$p`&TE*o0&Y)X0nPpCD>{}t@FGtdX zc6zg4bpK$5Re_P{9T>PAOXpT*cnt`EBifI+H7Xte(aJ{aNRtqVw@RE>DkOR5_d34f z%o#E!kr~8I6$-RxfWsmsZfNlJpqHx&W@Cu0+qS;=9X!=61`f+He0na7dEDLUbC`=Pk~9)MATXP9uLDLSnn517qm zVnws5U7n_n&Q20NAXg5aqTd{}AYa_LlYj5$3*2RXe(T|9v^0A?>a-6)vJ2@?eAh_DJ5#AEcfALE|67onQ+ zhQw;r)~}#eH?ZSYO!|0f@=Il-$?g2n?TEAlwwmB)e)8l=I3Tvtg`X!0W2Fl!#{YtCf+x zr4Hh`srAq%JjBhlKakXi9Fh;h!eb?^s#v9xmA!oxq*(5xi96uTqr}gEP)#HqrgXd*%0@GBXmmSccscN^9fx@Lo zai=XF`dPS$S;5N+ zX8|07=zRkNz0=at%sPVtqfbX>|ri*TP{^};u11% zSNZic9ldamL!-%dPiSesMQzqzV6_)2HD8FZVzGR|)IYO3ne)>2`xYYEu7XWJA0B3| z8DeEGTH@&aaZfuUM{xOg7uovam=ZjC=^+Fg<(gJj{0&be%rtJ2iy&Wd5hpS<{Hl~C z>WIcGZW7&Gk3(h@4T=Q0FXXH`8r3k$OnK1$D`^wjV8^)15Fi@eP8OESDFWv0eC6$k zHyavqkzbW-%F3=RQyikCM>g6T z${)WbcY1<#r%8+{tGMH?S!1bPyQn~N2W4oWq+VqxY|-hikrw)Pa-vTrAt`Bn6-i0Y zX?+}l$IupkNHF4|PI#e3SrFt8pw{G265ZVbP8)*dS7$%oV`RXXbIL=5+ zN#es?>Agq8cM*G34;ivA4-B|GXr5_6-Y@X)edYSGFpEn_^nLlVXU^~ISxrq}s1Uvf zV0Px8NAnlV1eqzj4-v|t!|XR$2fnI1=6{z07DEy-jS+-dzFn|QJ`{a?Pc_nTR$aHY zkb%*vrXbl#XRlqskQXBfFp?hGz;-pWHm_Va7NU}Z1SO|!6eYVp$uToD>h*&0Vr#Sn znQ4)H1tA?m;=P-LV;z2yotyi)of&ysMoG{Curo{HoT_~(BO@c%k6KPhRG11WLengK zh~CznA>a2!q*40J=Fej>02Vby-|!h|7jlFuIXXGj>Iv}isR-Vj`JvlkMvl%4XocVa zwtN@&f&6|2#=xR#KLl?2E{c?RTxRmQBszHI_&~0;21~*lPB*zTF0(_C{EQR%7QpgR^|_6ih1c9dv+lDoJ^~029-=5!l>k!|m|4 zj}N&z5zAhx9v^z#Nf2p!IhLrpu4+9EjU@z2!PZ!l#|29Pg9QK7D0KOgV}f*~D}8}n z{Jw_rR$8VwoW`?=rm}6Yx+@2|p~TX1iaCH9#gMZh9z`76Q9yQmu2-u`~in3!G9O|Pru)^81n~CveKL8@QE`B18Nedg!;JJQc9yz+9vTO1x9y0wigWUIEw0vFlBVuF!7$JEreg4$WLW=%!e3wt{| zITU&KLqhfy7^7Apr%b>wHa50kXMx-8EWVg} z^ITIm?i2Uq2Z`j6R#A@Hmb~5+-K!9D7!~=lCl<)g_6Y4sbp@W!51v#9>2+%{;YheE zHiQDTXhe`0?Jn5?C@=UBFXjGrg0%21Dk>V9xr41S)RM*strO47sn@}j}kdG)lwadHp9EDo~)hxTc<7 zicXo<+dDU`o%dq(u=bbt$uHWHlCbID?Wx${e#zm{BSUnW9VlTVmlhYni}d#N>C@C1 zU8s7{iM1Y|RU4%VP<|7}@fPB$*MRhSgFH*F?W!O%k}Nhdo!02!foRAH|7rp5afZ@B zOBSX>$-ADC6NXA3&Ns7Y6SAA6m8uvMYw znL^Z2Jxlw;E>F(5M)u$AHGW_x52lbi3^(k|MV{rS+>j{>8*cqF^dF9Gr z(vo(HTEybi^RLnmBz_`VFAEK;`su~1mvZMen>E+huUAUE#`9JT&9YjvMU6(q96UnlMYw%m32@D@bIg=OBMh0;F? z7cOi^!h1g=;x3jaz@rP#eX!a30L#8Y(z9H%Tb87DwA=6Ug(8rfbRw4|YeET^k=MRi zgZRHYUORPagZDe{bg1wu0GaKNetiGFI}(jcXao87oDy_}8UbWwLy=TF zzAk{w6N4lE_6J3U|CE(oR6cQnujpy>hE?R`OYo)wh^N(TtHhp0{Cr0OEp{vq!U#avt6H~V8$fNCMadNbqY2i1w4)jCkv`; zjG4@SJn@^$PTb4WbKsku8s}uxhFNA3T+X4yWB@&I*s%oQ0pW5zTVdI&KTsF?U zx1q&%0TRh1Vz~<@2Yx8=PDP4rMij5W+Nb>#WC-ao^)$qJva)%8N{O#=D5)f!X1Op` z`0{1n#pSuMbkR!K39W_@^O=?ed5)jzGGVZ;-;%0M$^m^B82u1*=;gKSb#LrVl9f`_ z4Dhna{RPZTY~H!kAGWnf43FD(VPWl`Z!!^#vpV_X{;MuV68E=sJNDCh;sEEP8hjsJ z4L0JL)0DC26BvB5JNbJR6^UUiQ9y66ez_3DDkn~#W{~h$PlZrtR5lWbU*Ky>jlxU^ z_9rNzbH2I4jJ2`U^~MF8VR|Me-%3A5?P59-!aJIR=tI>ww_$im04A?rLNmT|n+pV? zC(e-J=wkcIOcIwl*xC6^qEM#-+G<2i9Xy<@#tG#vJ+g=byOD>zh2&tpUNZeqU&qv> z@`216>$X6De_0%3$IM2WQ#_IL>XNU92-~8E}UC!C8`&%S}oc_-IjGx z0RqUcg$Q!JFyY}px(sMxe;fFJ;fblKU>(Lyo7@3%#6ck)Hv+!XAFjkZKJB3#c6+eb zWKB&up+fb;xmWk#T#DKr9v(Uz6%TfP6H2Or7e&>3KC)yq3>;R{z8Y6p2jhH3aIV0Z z9(N1jh+Mm2!yBZU{AkupD*bhEF;#D3^I_uG;Io}GMU9h`oN+7H13!9odmVl6*RKh} z7WKMYzIL>CFL4TsbkndXl^)RIn9b#-=mRrnNXioVg^zOoDIn`K%|QVtH(H zJl5x@;S&=J{4A##0}{K!cq>l9e7AVWjD!y98{5>p-a)+>(giBwJb8unY3f$!I! zryBD`14Ba-YKIUM@6wFuxMVe&WRK?){5$SSJ-|RNW;Q;3D#R(}x+q{qqP8GB_WoH) zO?6x7XNy}&3qS&S9Y1s#u(1qNs5mOPfNu$FpXJE7t2+7*o3XGXknz{|QsN=NYqq%-&yoXUY7c!XO zDL+~kwZoS+;{Y^Z?V>n%(HjA7%(!*aVWuap!UnqlMz zhdW;iSoD+z0JZGJ;}l5CB8fftF7fVg65%M+2MUrH-BoWoi=F7n?E>jC8m_Z_*m>;L zR;=8(&+7B@^YM^#c{@y|Cn)dD6$27fw28u5*;Xj5hFU4s}TJF;NvL$rXqxrTK#Aw{A4nXKV zvH=9HqsuOM`SQ-U(D~v&2O-;8TU8*l647HjnPVR}Neni>cA|s%gp$%0T>;bPL49x&I7=tg1unF8Ft*^d6JQzO@r9(2V>H#9;X>V7I=pG2JmMWEV}vxCrB! z1G45ZtXXd`g*%>j5>_&{lCcN3iqjS<(*mKOD2PRFY?Yx>|3K1H6QgX`I*|Dly)N`KAUXCeyIZo{l zJ#Uh<8i}=tnAm#BaX{$C)BC^SE&W&0;QQ6Y?u;$13YXNxVdH_8WZ%r~n4zQil8a+24SVQoHZCY?|Ai(fzdbMPa;8eK z?t`Oq$IPF-+NtUk6&bn85LTinLE^eKVassAbzRWWy5pvwFOyxA3d&u!pEI;Bp%~=d zLmdGav;@WpGwjWuj zM>fVll(&Otk7+VF_2c9Th<)`j!@&5!MN4EGai30_yMNpXu=b%2Ju9n)25riWwyJ_E z!Q{@q8w7jF$jI1qk#Y-j?Jab)AZ>Enc~-2NouBus8t*CNed*`Pf%mnKnens1OTZIx z@82~vJQP=|&@^y3`Wq-;D}mnB#P9?CfRa6|qE4?t`C{7*7TmXLq$O<)wpjd>q~frJ zSjtQ|<&!9X90wJ8Y}CT#a5PW_0>?lLUowfzc{gm#eitHAc<>7g3pb5@b8&U;8y>!k zC|EKHe7#<>k+h97A<+m<&m$|$9`!%UZj{DbSbjFcp@Rtt2&3*4x=fiv&qZSlVUx%j zX0muGUo~pt)*eqj0C_8KN6Kvw6agsBBOB|>Px5@MO3ayPNsmd$DmuQF{=zAQ%!qL` z5w^5Bt#~tWpN^SY&H!_e9}HmzppBKjBPu@?w(@>eJA_P)>}m1#_T*d#EAharK!CEt zza#oMD*^ahWr&U@fL|ebPfjOQAk3`l_uknzfl6Y170<;|ZnO6ghHUmni^LAjP$dee zsdnSUmY;?WC{2-%w4@74+O*=IdRBc^yLJ!)i+Jblq304biP7e@p%b zbX7twQS}lUZ#*WkHje`i)EEbshI<=sS&u~UfhdwtC@wgedN9I{o4y-i>owrA=_+w? z@l9K{7*L*LYE*(fKYqzdqF-&8fse|G%tzu*Ipu$D>y$Xdz;=6_8Sq0B`@dz`bpwSe zjY8+?)NMxzX}jkJo_nhNDEDQY`S6mgS3L;$5qR<@e~{=qB2SvHjZaVC(BnE2b++Vt zeYWGILHR6l{qyXh3nOHWJ_Qa;hvw{kg~k|pO-&|vzaceV+no}(!_AnCvagLeX^$Qy z-)z+L1WFvRTX!hH1}uw6Nb8{2yOn54mN%fIwN+3Qo?pQ0Hf|w22?&UNOyi&OxBz_U zTS{KPe*G7k-uOykDgiX6GMr&K=HvHgXxtTd{&nJdCkQ`OdcqvSWb=~oXLqX@4{6;7 zb#o^ZMgzEpRnN6DhK}O*WrxVoFR8(AdbME`W@{8|NQ2@#i-0^(6<}FNF4Yp2eF~z*}lM_QUV3{y)hAGMc zLWsCYkVLy+YnB`dh!G}n<6j!t+>0aj8IA2@q6khm+to zeje@8UZCOi0Vfhp7-QxQ8u?aI0itUCDv7ofuuGgGk#qY*1M>(M5Enr-AHa>a>Ixvc z^X$Gtfa&=YRC0noSz;qJ3Bl1P>Zl{r3s$jkIQua0Nzi(aWgGMWDxp_ErGS_$7~A$$NMX& z2n2^|l0C_#kT_0a7Vj4*kEPKyE!*>6o#;b=g7~M(kXJ7B`TwZ=X$!ZLEXvn(%^GcC zm5++Lqf6hDqGfyDeAYU3>Mh$veLs}u7bhUh4_8kE59J78;2rZO0P5iaSLg_M1Yl!b zCWbpy1KCi{TuBAt3=9s%-_{Wf<<~xfpFoBfC$_@{LrbW$;MK;7DGB~?7x!z8{d5R0 z7bB0(D==&D)b|E!53obz=+W10ZH%PIgHhBb1_p1ybdwSyz}=&?^Gvt>=q~ZY*7_a* z@^}q;#STC;aJiNLD!D^70kQ`1AmsXq7tHV*K^m`r(DdLF9nA(r)FS&RdgorDt(69W zCfDX=VW9z9<--qOrU7DOH1y-DQsNfWKgR(V|E+-pA@U`xD$ti;iJ2YOi*FJ8(&8mh zj>pka+GK~nQj>!;`pOv$*WpJ;sp&o5i={hp`Oi(pK%^DJiGd;GY-oPIaOvW2?T(*- z^A<12RiA38ywmX^bR@+@r{W7u$7z!2y)+n0N&?wf~$#=id#e8gFmXXqs2^_N}b7 z^w_eg# zrM9JI8)^+{s0iTubnSQ8Gt3cxjVkFfOEHN8AF9Ddky0No^)8-hc+~sK%GJ;eS=!l! z#)@6SVygs0Wmc&>bzFO&wx`4fxsiBK%GerTFt9j_`_KO_V#@ns2Sipa7}yL^1)=)g zNv57T1ZZVc!RNpm8A~553aYUg&t~aKa5*TErTao{FEul(q>C?l+6l15h@;iKEAT98 zt!rH#XR)dHT<2^_{DG>+jg++U2NOO&zv>AB8Tz*i3p>Se1fWEVg|VftpI-&?@v~}b zMrwh`Bn;p9ZeDmsK1O4px7Qu%$tB=pj!?rWH-P@%2=M;5x)_IcPQ^4he)Z17&f$`7p`WdxEbtXj6Tkx zhJJq4)$r={>4`MJSD%|79=%0FRw6HHJ*>v)Hh`^jqz#bsVf2f zRg|bKR)pM{ho=fsZFl(Y;aNO{$Ch@!J_Fb}aL>1I-)^rQmrGG2qd|$(2K&@##Gd@@ zhAns$c-EJ&ZOKl9YS10nst%_jaNKO5w69Csj)_n<>v89bou4dE~Wyldg z)S7-|O$f}p(dvR_LaCGcM@RjE9mFB%Pt45t01&2%0c?Rvv;d+9sOG)VF-r4I1bGBe zTOwJh|3ndaP;!|-T{=M^_OXEUL{Q&mX!H9$e!K%3tg9nO$R*dDMon!15g?PW#m?ti zhhRHMPRVMEbCQyh6Tg4I7MHUCG>>HuMIaT62Zu;KaE^WJP;15x#H0Y^jB&687%xOjHAFG_zWF_o zrBc3583MzUTAJNU4zQ6UZ_zH|0p&B%v;AB7pJ+tdaINdLKrF~cBJ6>2fq54Vf=Tks zB+!a0KmJ*QHY28JGWH0E$YS45~?p&g#DsUKo(p?>$ zx0eCQAQ^RD?g-({J7y8M(X57KlACE6=O1l=yrK1f^)AjwNRf+7Oco7{XWy@*qw_u< zD-A8PSK$^$vcLa!GNJ2@BUYDL->YV)Bgxzg06MEllIg|t0XO9o~@;5 z5P@EuXzF`=dnc-=(2F#I0Rr?$0O?(R;8m?I+t6&9#}1tluEO&Bhy8?>MWyVek+$t^ z70J)(5{}w{bGTHpx9YI=Vv$IuX3C zjXR}o>Rfk0;lI;_98=^g$Hrcu5p?x!1mz|n5Qrjhsev5+;-RN%oP^6j|HDr7bcLfM zw0kEqnb(MFtIQmoonOCyzY*#ICLzo6-UgS?a#N zw;_=E?kdjCUQ-vf_QveQZe%yB`w0JC zw#`7@Hrw%T7UXf3$N|_X1^ecvU{IKd;%UO)#>TDYsrIsb29=7Z(>m8211G z3*F5E^T|j_=k!bpHJLrY;W57Qnw#-XeLCk`SzbaFj%plWQx6Ync4N)*UyYVdDj= zA5gc3ilj){hHFqoCkvMvR?~UfM^IKl&QmZjNUFCXOc0?jq+5;XR>2K#gDOWJP{3In z=*?;8HRp~=K@X~C)75wY)bR!7=-P~4@ue<<%9f7IM; zuMDC;pQ*Ds0I&!%nM1*ughi>Jo}9dvur^rx0d?!BAaHGmrhB+8D@#}s186}y+-?0U z?6ev0mOvC=iC=O|PmdM7r^&p1da=@km&M+?9Eq{;oT5RAO49EqH8S?(n!v~?E`dC&cSdF?0+uGKpAvqAAXSR| zQmqIYjY}XUku&TkEGP7^1fqtK3LnQs=$4Sq5OCkqdwVLXRR;XE36Bl~9>SYFC6JsS zNsEFF@r;$BPtl?8XzKCcN0|;zzr&20n)+@PG9IoQ%Kv@&ba?qEl$Eyy%#3z?Odx2{ zHh-dhJur~I7378^qY83W5H^?p3IbDE00}&UGL5`dkXuJ^$Qjj&TJcF-|Bn_x{}okk z&(uF<*T1tN3V{B|wFxSKDaWv@xQIwQws6tS#X<`H$k6dFo*=wdDY|?A^VWwtE;A~e z#!HhC1T|_C{1ZnFD+15Q9b)LxQxxSA6%*?x{57DJUsXw`9=+yuC1K)(nz8W#QX)95 zdYs+uG{^#&zUE;Tup6X?)yNO|p+)TY`QhVj?+dA{S73PXyEKA-0IyZO-N)b;2D??+5VNH#!|BZGeKHSz^?=g zjiZhy#Q6mq4dBMFQ8_drnEHLqdWSFr{S8nr35gX{4nI1}(J6Tk06@7oRtnlza5hn6 zb1hc)qq={E#_B5=v(*jN(i_R53qMW#ar_YK|GK}z>Hi!r9lT)Q_n=8!&|#C&nv>#MN8uK)YSA0fjw4#Hsyf}wC!G@4Av5qF$;6(?jG4<$s&Jz`IY#Se&c9G}iWWr6Sb6({{U-r*z0ITuB7}&d3`>~%@LS9N zD%zb#ZBP6zJ_7@~3KTMjwBnDDcBA=O+QrLhUE9XhD&DFeWtmCm^Aqo+zMh}UWCx(#?@z82zv?k~>C%h0Z0fEsZng$QTmnIA7 z{6u||++jzaPt8))|5RPTL)@V86UG9h>%3I8)&;0SoU2x?StB)#lvMfPPlag)G5tYRq1DisxcIlYe| z17LC|-5Aiq_4+*r!|`24c-_`C^3_@^LZkp+{&i((putTVyIAh%Yjfw^UW?Nt3(``z@Dlxu4cc}3Wech z>63c4)^^*a53=$D5cC@Y!@ zM74j~!ybh1VR*QSb+=OJMOK=Z=+OBW;$PA&yGgR72P5d^^dO3Mw8xd4Wi&xJ;eCnz z+|tb~#>rd%3M!N`KNmaY?#>8WK?Iy_;;?GbEV4g@|K0(o4^48-y{E|sG;hT zN9s-@ig`~d3+zGeznv%DLbH87jo;toU*zR!wJG{R|7&c+F2)p=`2^>KdpNTikL#*l z8aa~AlO?@S@Ned-P1I>HVCG;3PkWSE*uq@(2cY9Vq&Uuo*tV!4siU`>-3p_s3B7Lr*RQw1Wiv(Qg69QM{|2?e>Nc2M(hwkG++R2t z{Go*P@kCXEvMAuR38))E8xmAC1R9xzEsU(gEh1aGxiG1)@coS279GGjvLhFM+U;_% zNL1x;_V+5C{(V?5HtS5(=_|sE+B@9zC@XiRtLss*l-@5!j2EM}%cix&sx1DpP<~qa zEpEzAa*MlLk&(M6T!ny3g7=?TjhDPe9VWEC*O*~;-`9CM4WrWjJPbR9q z?)dZlP$YrA>?N-Zk11%R$jGXFBtwhiCW#XE=+RFJo#?S==h$4f5)PG+8dgQcE)ttL z+nC+Fyc>a7Q;*F_zkU;FJ@M<;8&s@xXypi=!bzbIKy;S)K@mZ^WfyW8ek2#=0GqmR zXj;b{`|$}~JWy;tD<6US83?AC8m)HIOsN?31~dV)LA&$RL44;`Lm!**yQ8)ns9jIr zD~lzIkn_t9Ul%8%_z&cSR+<(T7E0#jUKwbTe)!N8k)JGVg@5BH{x9!0m?tq;;^|DdBBo8&Sd8Zzc@ z1tWFp*QsWJmuS^}mCy+!dQ(6aA|_G*!Z9*~QW5^!6w@J={m|+SZM?v&bcmm}r85Fu}1^l&m$2ADEX%R=NxH&-Bw7KSMCx+5I(1Cx!#^9-wEKc{) z!)tAk69A|NDeo~$%>}GhXCHl#J+e~|;Y;`-T9PnF{6GHlj#h=7H_4u|Jj&Da)@St@ zuLT(c>xOg7i$hl1zquwZA6WPDk5f_az)fY9o-+$YG&vhlZv&@r2fTa<{8!uvbW%;p zXZQLu3(=ssMsGbmrg-n2i-h&(W=J=;=zfHy1o+I=rKP3R(?xJgs_j2O)k~(Uu(MI_ zMu(!|cx>bI2eL8QetaJQ7(vmpX5BwKO`b`CUO>rNg&cdDBy7JVfAsb3j%W+n`w#8@ zBaQk)S493k+_;F*u5C%r{v?eYNn6&`_0F=_x_+w%4He`5IP$uth-K-Z1A-Kuh1=M_+Fgt^VIs&_bVq z#K`u8+c+?A2)GQqQf1rl1nLqxLjmQ6DD~ajW+0Z{l$(af}OCnQ&!FA7qnm~YTmt*L$wPfnLC*7c=W!^Vusj;;rj3uf7#TR2`|2!Pf zE7b|&Du-$A)|q$xQ~SyyFfv&XM>o>GEg0tx@hP?sxS0)}4R(+POCLY((IJ!=_#8+Ehp@BusnIjdNg|mP;;I&MPKLwalcoo?J%Uxi?~nzZUYt9f<#zY-+2j^mWm6Mww861I|-iin9} zI%)vtznlSZIpB{x&xK}u9w6iZ3g9@$9W?tX(X>B!52yP>CI@Slb<={JE3DPKks_F}LUAkE&u ztikxZqwcMHAb?Io@NYR^Q=!)0vwQanoR!Z`P{87xGYGtKlh|t8qin!oQI=UigLVsu z3E6(6=|V-+7s8MMiXZuhiU9jeQ`6JiSh^W@Nb-fY59R|^snxqjswDE2UVY5DHa80e z!wJBk=tUwa;ppf5jU-`%B1iEL7V*EL(eTK4g8h6!%4&i!rQ8(EEcx4gX72WvHU~*> zu;pJx&hDGW`u{3&EKl!-S@z}tKi!1`R)_`|x%sd=9HMdJgXPy;0;GKC(L;lkB8VP1 zEX#o-Pgl7u{kgIM(|kr*xqxhu*2>=>fXZ~3l9)`sf~GsB>1fGRm`iAeCA@I6sSy4l z>=q7I=BPA09u)FNpkKUZe-Rx!Z-A4DzNMV~&Wd9O1eR@D|5n`G3$jO4Gbwd^zg^ zcnGMJ*H%GS0}=MVhjA*P#c0DLKC$OMfwqxV9TsJgJ) z2pWr$#0zb5zhJBgO4==ba(Y@01q5h)Tf#Ww^Pr)=_tmL}vU;ibU`*dM3+=`;j970H z0ve2~M^o%J-9ez!KO3(n0x^P3$T?f2E343<_crz1W3)%wl4_3Uh@*Zg=)e`whIv@Y zP+$6=!YdP68MNB2L%q_nV`^f8Z(isxgMiO{QGJVg@9baoC!{^cjvxOA9dy8H@XviD zPXPb8bqlw;VO$Sd|8=$VDFw5=5qwZoI4gUeY}|f$6`31(gMSv1)wS!_SHKZqpBWjF z^dRqz(f=;^nbSqtvYM#lMBJ8&&GQgpNDFbm=ge_z_Ql(XG&#!%EfIdTja~ypIvi z*dF!!yLKt-Y<7@aC0Ci~%R^J(zMkiWT+p_yt8VG8>dR-aJ;c7Nz1&@Y_b&bWdX;PU zt@QE6KV zP9X0e<`ZuP-iJ8;Abqi}cqYW-ICkV!E^2TSv>?i{3hhxutx4vKk^x(beH-1_C*Qf` zf6joGf-(yhCfawSuHK+l?_*$;=CaAQ%i*((<^aenO<#mMofIQM}9FZ7r3X#PvBzNQB~vrxm$mI`q<)w z#7t*Ah=uu*-z52mDRjb{sW7|ooi=SR$U&R9nB96~Q7zgiZ#;lPuQAb+_yN&?=PR0&01@b5t zSkz_l4g*0!ueIU&TVRTUs-fOAuWrnq3x@M335exaXn6RLRR%s@Vs0qD6N8Ilc0#8b zUERamWs!g9YVp*=8BC@zZGRSf=MHX+lkMO8Ge&KG^yWeVv2`tLNk@=G4m_UkT)7?N z_~1dLKYKJ(8GwUbo36um2#6*{-eVpPh$2jwS-hO3&CL*Pv8nUs{8%A8wUri2Pqr;$ zZtYXp@(uw4;IZ$ZxiR=ivS2{-HhR@_Jh00!E!nP3G88xz}T| z4;dy$!pwpyFQmc52_C2AqH2~1K0b<|(ogOS*RU#43f#R1JD@ zFo3pb@g>9~nR9L{j>n;9&EO{o^;R1sM?x;M6RKryP)&ln3x`jhsdV8*9H3VrULeyz zM(s~O7mz`Y`WzgTa-;}^3TJO-xWdNW1O$}n=NB0lN0iEbH1k2&*yXmoh$-urGuu$A zmB7T9EK9ZzE2yY+c(}OgMcl!iOPMlDM{au+#^TRY&5Mz%QQ zq~vEVJxbR|BXdV#M|c4_h2I;<#VQ0*BiWm76z9&x~`K z`edKP@TEFa+D?vI*vb(uA2}Eq6y+TCzTz6LyDE*3mKK_z7NnIf-Nr2!!F?q`9YJiI znI)WUrQKE#%iKBxT-7aNEa`5|4nZxFshe3ln3;!XBIFB)Q`7z-7V0st*UuG=VZR~6 zQ$>&IKizL9cEDsAEO83N@pAwtD3^!d0xQrfIAJ!}V)?t%@FqK$SYkk~sI}3Z7t1ua z;b((-`wTI1gJUr3kO<6Te|Rb@M5R^Uo1_kG`ozOO&(Ja;_C zko*R!P0x`oFb=JyazDv^(sM5sQ~3r?)Gf*ljM@#4k*$*5z(8y0k6;|`M;k>c^ zO?=)&ZcK3zNy#Lp-U>*TNuiG3r65h@>d3K$Ty?3a=4_YBq!rkOogGrQ;hON}zKem4 zEelD}DvC{J;wD=$LF9d=sQwb2&p?tQ=={rsjAJ$Z^!)pHR4yzg@v$5Wpw&__t@~3{RF~&m+v)c;A2SyRd2VF5 z=8DL9Kb|-9?J`zR(l|fFE2AA=$V09s<_npJO$M0|T9u4qP2TE}8G8xq6ONg@O`QlH z5||~6J~o?Jfolt~fGC}jhfD*=HwB{Q4BxBbQsTDi{N>I;GIVoJVj~q*o!RgEw zD=y5Blnnmzxx=RS`;!#gaHL` zyljuf;$NNNN&(`XS4Pr|n2I)ez?K_Iqy3-i&{=t$qyy;RH#^SB!O5uv#mxuo0zqPL zZ*1%wxr|Y7WTq+xOGR@0!EaQ_2L1g18Kd(*k6A6C!R;(COcGYys&F7l-zT}j Ac z@_$fe7PlVS`0gJZXsKu8y)hx+DUPv}lS`2|zx+oF5XO^={}yAoV%zH{GK0@20=m3g zFpS;HzNVqJc5-gKC#N9%!d%(L6;%5f)o5ukpDCnG6nno3rVi?95C04r9^AJN$b&0R zf&kD&5)F$OLXwFrE+T|X1l;xxJ(bVFnq!iw4lxqhZH97H1&=Tl841bb$lwv;aEy6m zd{wc*jK3Cd*&Oa~&X!oiyUe{$swcxiQp|MW^@A^|-l;YtTwA|Adz8bf(&35;bdn|S zKW~23&CE)*s;p~GgXzqz+*|PXU%Thn$3}u2VXjJheM#*njVkf+zH&3%!}uMnd5W2Gm#>($a=`(76GqPGVDE7UGxYw zRbA1ti=#^L;I;MbbD~av3dbMGerz@CV%Hd#bSO!^?c*3to&eQanpWvG>?w%dVJ4?{ zJ>GuvV}c?*+#TyiiXo$op!nWyBPtdWchNiks@d4vgM>viZ5+Cg^Tu!`FV(IIJ;!$i zW0CdoU2D!w{}E1F$pZUVsuc!#T1NR7Xy#)ZOi@a@$CqYesWAlEHNoyt;SiD zibVNQNL3M#8C~e8K9cD(qme)~zvIw3!oQ8&a{%rcGsH5Gk*qmdH;%c{cmhcv4MtEh zso~gO$+C`0<@U!bx&N?~+a|qNFU=w@t!2(8vf2S5#}NJ@$6WxMm~ zq?7Nwi%m6McWJJYGdlyc0BHEIRRj9kFw^xgav{(o31tiUk&|bj%OFD%GbW9;sM#g^67C`D64AhQc3fjCob@L8^h!hOaJhA1}XzD&y}Nx{H1*EiEzv)@pe2n5aJZVD=&5PW2>`Udpr? zs&e%IoWqfMsO1LQTVqlFj-WbH#jDu{iIF0POF*wNC3+I$oJcYZBBk!T?ZY7nv=v$wU!j#Mx!~yYWSBO$2&b2JS%mF?2SULX#mbg3d=oKep^WKQ0XJN^J222CS#)mo7FOj&7*e8BuOz8uFsE|jGuBvk4 z7lvFxsyBJmXYWCBjUo8WCIDxvCx0#+yK0d+XhV#Fl!-yS`%hwezCYqzygV)a2gla` zXCNEU#c@>9F!@`Q{9?`|nx;k~uL*t-(hYh=JP_z|JEcfte~%D1Xyt4pP&eU6+*}& z8H9L1n2dO)@=(OD!+w6yYE1{fPFE1k0j5TOEl z>S|E}W>YSpE)8jj)6Q}7Ocj-~E|%S7t;Q@ug}=8WegpkAXt}&F>WF|$5>tA5^2?d< z%RTquIBMvhMW5p|?2pKqfs*?wjy={vB%js&ypxo-f-R2dYu?_NurIL zHZl9RlvTNwn)GI%H9~E47AELPC?zm6>e1hi3YBPFp=9_WK`}z&#tU>|-HpmMYvUod z?PLri_SmUY2gfkWM!3^b=FW?jD1j@1qrYPc7f?HUzKN2mHO&ss(a>}(z!24OH~Vjc zTw-FML-Kfy2Oj5~zHIY-`MthTo|fO@tB#N3KgeCXV0t(ienN}cI@ncQ)(syLPugKg zktu(WARZRojc=<9jwy^Mrrl6NUPYTN>mckD(@6%8Dn4M-hEe+>Qt#ur zo1uo4Yv?Gjibr2!9(rvtBjCm@tKX-k5;Js9%a!FDLPc-8hrTnQ(v;O^!PE z`UixB@frWr8|QvUL)&?59-+&1A$tZ%H3DG*8i}5=I(^+tyZx{%sySg%4yvNAA5#q; ztH-kN$Lwwz7{sBuGZjm^%XOx!5Ceu|WL&k&Q?VZ)Ew zOC1L*aju{wwNd>@Uj)%D{<3)-n_@u0b2)9x(Aoi|icjV%v^9|Pd?2RoqX0dsvDLWf z=|emJkJvhXw=kCII!4H51HXz_p1G&TVRqtD0JbF@pUwh&z<@~N0HFxnMGYnXMK&X@ z05mP~?;82X*hXZhq*THMONVVmUB+{?h0mVx$&4^Ah_Ub6CyUOHnjuX22b{;8&J*(VZIp#!j`=mQ3FH)$hfqMI{~bd z^KeSif(A0ORr2rC`t1zw70&5TO-d`QEBHKjM9qgme7Cv=3jJpE+Kn4j)6>(}qjUyc zh?56~(|=E%aqyg>VPWT=GJ~0H#j4IjeIk|kGb;9s%gO=Y`Tvo;)(ZjRdA`BsBV>NK(CeQ|9@;PZ+{} zz2~Al*YM0;{aT)F7BxSUV$4nMC*b@r!NMgV83d-Z7b>FPZ9qd8abO@`K7|Vma~ERjgK~J_h>(E0wP{C8y~Y#;I! z6UX7gq;Nk4IwGhoV<27xkQGFrMJyF|&bzr}K9I_DbdzB7*7rx^Vj@DGenpFGpIv<~ zGNy|2dKG(m;k=z6={BU+Ig|WIS+$YxPm`8 zLgph16t28K5}(X|`0$5>|7LL!$d7g@q80+g_W=zvaafIO1WzJb+F`R2=#If}f6N8^ z+D$u2H8ZF#H%vY~jcIjY+gIvQyYL8SuE-9!c)A{J{U>>_5Y@KC>@u zm}sIIBN}5z&{(2~iVZ9%iY4}f2#82A5|m;^0R;pSBPJHG5$u9WZ#G0hib2JOpi%@x z#X=Q90Vz_RbKhqE^B&KK_rr4^GsjFKa{tP8?Q8F~*IFCK8tYY1G^OunYPiiv354dA ziLLfh^{0ES zfHIZ7K02>?=-FGVmXIwWJ#C{Vk8OWVd1VN_ePb4tbRVLtiGx|BwBX(4GE1D}GnxWF zoKzAN>nGE(WJ*Ja4%Km~2_dGy)A^df;8QO5Hq^>*;A6NRL`43Nz6qU? z%Lta}hWEbW#h`BH5z3gyyQ?oXL=Ki8;VbX$^OEi7e?rbxaHn9_!Ph#wXG`GZAC=c7 zDt?Y%*YLH`j1&PfpfM=$N~M*@`1Vo;ww1xI_CMP#6c{q^g4HhCbzdG9e^u|Bu0UJ7 zLqj&ide z_!LmLr|q!~k+9n=s^$-xC80#{7ZIqRRn~sxf7zk>gwB?aXHG2g zE3|K}nLjHa=TqMWzG+Po-Z;|a3gPAb<}EM3p4MLkd10W;AEKm|5$zx^5v&y%CLS2IjFQyc zxxg`wKD5m8q04flAYJKjAInPJvt7ncS?V&&B6&>B=lkuRWXDC#7!kR3__SX-9k;b_ zqomohOBYTO?w$_B<+bIGXcRD%LJ}0bi zRMN9-gMz$FE$f8GVf&Sp{m}L97dQxTC`>jotanMiqm%xW+W!W|1&bi@0qc>-KFg< z6^l(zZ=F8F#k_Zkx{|)_wn=ssKy~MUpgcR+ym_!N&w0>@mF2~6Ci<>@+<15P3JW@zBk&_N!vQ@aYz-HEL95$>L95aq^llvtw<%e!nbS;7wmuVyvgw0fBi*ZSwNS; z(^7S!2cG^koV;*od?PT|d1$kYCYh%W%F#K6(=`;92MMdTMLaC4pExmw!CzTYYMiMdH|u zF1x!KuIP$#U43MF(u(=3*Q~K8E0#4$^-;@=X`|Qzr{i`xQ589?FFu|g1sf}T4jSTSy-g_e`wpRWB{4Xrc_yW!FS`XJQGz5}f^i0aU^0QiaEvs0ynEc`QwBL^%rljtN6+y6gW{}Km|B;J@1$`v7Ri5$g+ix9g zAq_K};tBnS-doZ-9y|;JsOT4UH`TAm*ckfaSf8kbPo@IEXPoRK#UoXQ6c0#jvPvGE zb<8qac6Zfx_FHPqbH6_@`mT`#*HAJ$E+_nDf#|FkA)9JhNEP?i_x!VCGa zdu?@v&*@1`K5`c$w6wG`y0i%+_~)TeN}b5B_ifSPssC6nCA169ux-`OF2JBlPHH(8 ze)Hy@^b3tj)J6{jXtk4y?`xq3lm#jP`S#hRU+;B)YjfEVa z4{X-sq!9swHVDgrP#}e4XhETLs%4BQ`Rd0bTH*c9_O83~-JQJH=88SsRFs`+aL>Mp zgMVDEWY~$ZhZe;!S$!0F*4Htx0_2RPzYF~gxP1#Wf*l6i#$n3>|8WH(R(-_pdU8$} zuJ&zN@CV!d{~b_@l7?jAY!X4$pia(!I64EoqS?3)e@StdJDu`}mi!-X`qD$wZ$2p+ zEnH#d$i#DSO?2=9FlFwSZYhJl;8GH>YjUD9WkVdu(}7l|Mh*i%;Y4{v;vYbRtDyYC z4McjJnLX2FVSi;%+DApxddub+Ah67)^#~#Dpv1{wmgB0tzpMBW^(5fdoX)F-_0`n$ z&+H+xcW|!4i&v(mfeD*Q?-}xJ1jGT3WHk z@IO0CDq0^X{qEnNob{O!Myq>O>ew-3Y8ae*HbDO664;0l)2rRo#9AYE_glP?S>P<&(@?}3Qt;3!N(v%tHA%vKy ztFJl;(uk8&4BNV&0a^Z!M+`#^eui4{al#su@sOId6n(mv{np3k+s{bBhG`2}vES7q zk`J?YPvJ(*Gbhgq{Z89l7^v(x7aP6=Za&saTUO7fZW!~L8MP3{SAz*<}ijInP z&y{W@c_F|4zhU0${?bMGon&t}3F733M|B+SLhW4a+_w_wA$`p=T6_?2Qf!C>;=1!8 z_PI;=%t_KcNcOO?QEz+pSf5XoFQUOjma}=}cyOdIJoP8OO>bKrW3CwkGwqgl5>{*| zBu*^umm%5OZ~IT2c((~BtRg68?xA)Tn{IW#W4}1ub$1+_V}ziZe(;xWkqyi<2)P^hB}(hg{}BE#OQE* z>AS0J);SsX+I!Mv+K4)L%KqRzE6trb&G57xuiSqN&us_r>~?~v={1Ky+1P>yWpBD> z=2CQYjnyUN|?|ak*4DztJ_7yh*v=6f-JMO^1gBDQ4(K(}uF=7ekdZIAA4~M^amyE}QolfKwX<3gn0$D*2Q{ z0ulmP-YstA8`XQWl7>#5YANfL`X_+V1ii9v>UVF${$5vEn6Ec@x0iynR~=obwogJ!V=OGmiCQ-D;6R zMp`7~1)uDT4kiGWpFO;`Fw>Z@7u9T)WHS<6>z0ISz-b-yq0ILv4K_?17B;PI^4pdV z4hDM1dp~&NG`~DnHOFJB?wKxa-CTd@sr3B`;GgnM&vITn^1RD7O(y)41k{FJ8APVF z3_xHR*L>i$@N*%aZI6=HedUDcmp^cd!Vx+IJ*O{ISclOh5_=lU(jhp|#BT-}A)0Fgcg|wp@o9mW;Ej7P5 zlmnwW^nKv_tFOIRrJizqKXHm5yL*&L;07CHU0I~;QDhhza9?Q}X7a4wY|&|sqf4-z zoXb>V3rbOA&Nl0q7MBKwC^1NElt2W8bt8Uip3$VyqnFs{9J}TAm6U_yCzB0Nua0t)ivi1EQ!UuIBR1-8iE)Rw>Eg@gREf7_7 z^@tvOq)mYXkqN0o7H5AgvC-Eil5nwUmcU=kZ@16O%sk(+uw(d!*!;KZ8~@&FY#j7V z^Ytms=Fju<9a~nF`Yiui$xxN9dS7Q-m~c}n9@7WX_Idq+&PJ$x55SvZtApb4By=%r z3qgQ>4%bpvMyc1x7!vURF$xyB_Gs+W%9tyYjZeLs&h%H~DW(FEou3mIcSy3w{?;@v z+tfn*5R_EgCL_66Ti%e;Z$=}hnC@`NgmI8ksJ>+phN5x5w9fkbT(D(}H_1)N8#rKc zymp&(3brN(t3i&kva%6vRq5xcwi1WunP2*GL+7w{xfgdT(xJAJGm;U?4BSR)&OpGI zK3BZcRzJaLRID#Jfs5+S4r=N@Zk#b%i6y{`T7)g1&6Kp86=ZC#tjWLJNIUC#Vx8Lf z?bfmRBV7j+!15lSbG7L73A12}{PQo)H+l|%VQxeiyzrWm^h0RCw1ZTW;edVJCK5l! zowl>kxSafO);G=duYIg7Bskm(->9q%!&KIGOKr4ADW-R0wnR>CD(rj=TPL7b%D|51 z_Kh{Ad2x>6_zSOihnre#87p+OmI8xQ(z71r@2Xp{X~tNJW~$4@Sme-2GGDdhiyU` z*zve6k^GYl&s~t2?rLi5N=(1eZFqC2Zy%MW3p)kRl283oYGXLuxZ05~dgCCj}chs@o!=(Trz+r2e+ zKXuiqo&PA+tYOBSKWBWJ@3e9AwE|d1)44BwYM#D--HEnh%>Y z#X`m?!q96S5G)~^l0hkbxKu5Z18<9z;k6LO1#{)um|geoB@kH+K)acaH8LnV!^Sl6!F|m{M=NjXFB*AhBt(_Y-Bw z)cN>N7FkH@2ezm1p^e?$-9yW~cI^tM^zU0d85Vb7Si^ClB%o~QTYUaLYsd3~#=03Z z1klF}s|=Qcz%MN|!Bc%ddwEh$xT<4 zHxpluTLQ;q8V#ZQ4RgFT2scUnb>bAn@o`-G2hE&z(2# z;{^9K?HqVip5t9R2iw)&ZW|O~eQ7!Hzf-O~TN8vmDB`r+ptQqZFe<&Oi}@AOtcLvf zYSVKzwjsuz%4#}>R65JxrLadTKIjT_0cX!;KAWlHBJmi(``=f+l05Eu-|_wDilAkQ zF85R)WT2&m>AwN}ozt`z2QlrvWWp3U(fd+AfJq;d3$t`{oyUJQ6rBwI(!G7$xIL7K zdueI4I?i;xOlemQ8cGD?1RCb_-e{S*$kBWzJv#-3ogDHJbLK;+N_$R%7FTw3&8bHa zJg%?4oV!+tpE=w3rB&uT*V!->B!gNYf^X)md+@o>@5vDUY6w_8Ct1K!?fOLC10TJ+ zJWu>+w#Bu!e4byMn3-wl^O{B&ZMBe`I66^faP47ZM~UDB0=Y5x@1Rn+w0UswgoAnb z@Zlfc3T&y`Y4+Vjsfy~)P1n}Ky~%`LViwulyz7o8qXK^UND8}^2Ve{J3;OAS4!4dk?XEEI)y@5 zgER2`>^rnhtylNHa%xbTOT&t{Z;x*_8}o8;Y>jP5xJqy5)`>T}42W;`hF$`9%2}B2AJXg2VEL}^H!<$85vVq(m+Eyq^Q=a zCbPcNmuSN~8;WpZWMchv@Nq-VwHIX!S}wuAIRlYtv++VK~|5>0gG^c++D#^KsRbJybEw3JUa zez1;CXiiVG%kmEkow#<~9tHPR-UtUm3@p})=LstST8Dr5(CMcS#Zz0CQxMZDjBhf& zqz-RW2-?c#a-1b~2=ns#t!?`ho(VIWkkUm- zqmSSHKr~*TC%TI2}JOym~yv0#D=ctBxDqo4kpc2>mlrJUN!Sm#;()7tWX7gG)T zt=k|6V6OlOvUy1!Nm6#;BXfJCHbYBAMnUso==kwDBenOKTG21vdCG=5!gKWRWryxj zFOF2u{yiO1fbz*=8&T?CrUDYxo5QtxiR-L53TjiQwk&DeuA@GO8)j{nhNQ;KFb+2{U+Z^=vXWDvGUQjS!sk0yl6sq^g^oV%pMCNL*$ z&pDl^)ca3qc+)jWYwVoIJUT7cPiwi)`AAlTSJwg?TLW|Vk+uA7&-o}ep{;H|jA`&Dj6Bj@>N5N!wLUJ@Z*Iz4shnVnxEFY#WC5fZ(k-W z*vSCXDOp!v?H-2n>tG~=a}no^to^(pu5>Wre7&!R<*lR;XmJi!s_vsqiN>0Q7d*ve7S^>TnqO6HDq4uxFtS)b!*7kHK;*wPxR(U zILAsFI%P^r-9(lb5`;_GWrYavt*vcDig79m>59@|7M*87$UoG7%b+46%8RDNR*6{< zSnL#Ei)O_hq(uiSy=Uv4{ReV?$&2N=apsnZ7x|XM15QraZc5+uF|O|6No0MZD?#)j z$df`yq`=3eNKo%T!{OXx#OgRij7a8(@wscG0LZiz#d_($oCd2=}-?H}7^0yl& zG<6A|P2s-;}>$mLz31gCs_3F|8rDv zdAcI{zc}(Zqv|*bokT`f6E+qy5V0GMC~@|oGdGdk0m*G zi+Th}RjdgF2W3rk#}=1kSwl<95QrQYlX~V~`QM^blS4%k1}51^*U$IBfx;(oG+vDe zC)!NaJAJ9`jXQ-KyXC6u|M1O*3}lj^cJ%{||Ds0iW193b>GO=~(+$Dvld{HqcIlmH z@mutx!j1KA2^}1cxFt~L2MF7WK?P+`YA+V|5W>GE`YPDVN$_8h}(YvqZBm+}r9W!@Hk^ zkG0lPl$EI&vdP;gKNK8H z5+)LOdrtK@n34-$#9g>9#2`#VTNeZUECJfcX&~+i_Of6O(N*be6B!D$PN%<$G5fbC z5V<$&=B>IA0?r#({cw^T)MbEw!jl0+s{J8Hd;*zH@UFURx!!rK3ys&WFC4OM{+XBi zE3%);_{l?7HZ8)eI#vb%8&E!R&(nbZC^v)4eGe_WYV73ncR&Mnh#ZQIpHG`>`URAm zU*B(D5`#U;>8PBB>Yeu1);uq&1SyO9pSbd3{4*_7YwcBhvtE$aAtB?8WA|&9@{VF z!K~h*peqK%Fz47+8NKR{fQ2`NpNMmP5Nw1nNcumyq!UEsut^ysuZvHJYDeATLZK#7 zIGrOC^|NsYpBM5b>u#o|4g(7T-L(5l zWj4Q1-(4~cqFJ?0df~xOs_;S}EiK zPZ>*H-=jxE$v)9ql~6#CLLX+^_Ac4Vk5sjt(MRQ+W$ca>S2qU8uVHrt-K<1Gl9S22 zOGzZeL(dVD+_p>G-R4%bK}WMfmducriciVaOtR!HH6=?pchiyqT9ro4pX+_>eD2yt z9%dFKkgh*;FWNYvhH)MxxJ6&exkkm%Sn1JIzjNl1V z_nx7i69FeDj3I}uVZ75il$oja1&gON%mjS6^dC!k;%?Sk;erXV20Bp!6DD>(EU$S( z_9<)!3iwRCljM+|a@we;4dDx&h_u)t*$CI%_TJ&440~Dompu;1%SGEt&)2pj`yaWP z#Tal)lOwuXK>Qd+G5<01)+N(O(~H0U1--7)@%`BJ$yU<`$gRv2MJ^Ax)}yt~BW(Gl zAlaro&QfxLEW*d(0|%BA$qb1Q-n5{3s4Vo!bNe0SbW1+Hz}{y6AQ=5Dsi8mp6nHaL z->mGl&(v%|ZAtM&ugYzoBbSOIyX>|9$~%O-0#@>p?4bwm-n&;$Ht{$jZig7g&>XD6 zd$b(r(g5C1$9dA1)x(}8n7^1hQ921?k#8^{om5OZ4AH5lwlfG+I2&_Axufsjv3^8~ z2r?ByuRw@6GJ7W_M|ab!KSUvhqsd{8T1`KAFx((;w}RXF9QM?{&isI44%i{=}=c|F#Za;dUwAF{Q8tr{{xH`$9W`Vtis-?x$)_G=aRKImPbcAHytka@w?R^ z87xa=UR$vUs$ zH7{#u1kE$Y|3kQZ?U!DIhLBTA5)oH&X3qkV==p1gkDk5g>JK~<&Pb6Ki=GEhI5)LW zQ;u}ZEJ0=^*)3zb3j^A;`oILC66s{bqJ6usF#K@sL+7z#jwH@10{!z29M`Xc=sL$Oe4o zJ$J!^Odd}rGOMmXoQ&oPilYv}&mWK~<$?fRw5b=&V^``sH*Dv8!Ja|RLJAv!zy{4_ zOCpC7BN(#P2&(T=VgW8688FSMM*?8|GxBu8$*~hAn2@wEaBi8K+jWkUKo(CpzXpu% z8b}0Lr(KZ`3I$KoqJ#4_moPAthU$|>Y6H7>o9yZFB>a*D_WNs$Sl* zbig=aZx1|VV6INyhSR(;dY8gSb~2?NWt~xgnh?G89b>`*ZuAb%3gfX#>PU7LlV5@O zl>cDAfs2O4i-!UhV=S4;UBuWt8W3D7<`KYngM-74AVqy~{yBKn7qQ!5i~!O#v~K&Q zbu7NTzQ9yk>h$M2rECHQ$Yx(HoJU~NAHRINn*ZPnrjZ@K{Z@bFN`HJ5ZC3Lwp0<5G znl|~xkQ?IV^W>&h_d_y*>&5mQ>t?~HFxFEz?&vSY#V7y#6vqBIRz5E{r}bVAWEvia z3VS(E6$B+LI=fPVq15k?wa(mGX{8y~OOIGd9|LLyKb? z+D3eJ(X_R0%ALaf_tw3&SP^~oX3)C$#V+ew;)4AB^=N{QQ5}on7)OzCj9Ckr@Vx!3 z7^xGD(=~%pj~wBN`L7R9h?7J5BLVZ5?$9E8i~@3|wtVO;wlRZ)9oDzD4EWChe)bC& zpxK2Q&OCcVe8o7@%Lg}SN|3u<;BcW`-TK0q29bNKsy3Bdfri4pBjlEBO>ErP{M5cW zM;owfOhhcn1nrW+fuUDHw4}F!8c;J;@Ro`tsXUYroi9d3Draai!cutzndC%vzpXF7 z`f2cBAwvuvGRcz6Ac{2Kua?-`{JLN3sL@@N{0BIs|E=-*=JM#Yem@ul?ce{{vfrdP z`tGOdvM=STSsd@+&)Xea?ixf~LSVs(TZ{{oKL9r5@7G15HV7+UeB ziA93v04IUzp9Rp^rkzfAlw|2gktg0uPj}WC{Ns;$!j+H{Fj{ak&(=+`d#2I)jHNO9S?k;7YKB!gnkyVJQjZkE;1TELT=%G`>5Y>ow#3a&$lLDV!yko1(-fe zaCTx(CBM<)-#UJAu+me0L^SdB_1*TX<|UPmgTyH!C}N;u`MmUjcdMLKk6T8EjuA)u z8KHwC(mWoS%d>r{t2&YYQGBY7@mx||unUz%a`|%RdDNP=20!oy;{H;!nB~VjbFSLk zOhC!R4^>hodDWs1`C==zKJ4h{tzUjy^4XS*QDzHY{d0X>(k(mRtdIGwYg8=?b{A0g ze%5+DQst}6jsgur#4^i9YaPO}czSbY_gI{-Qe0R^3K_Tl_%9oP;Mcw>seDCw%L>g8 zc}>DOR#tAVy?{E5hnT~5dS^H3omzBS=j6>%*FVlnae;`%3bQgecCP_B`Z|*&ym*8F z?z!gVJ2O1stYR z-^n2yG{?J!{0^Tu=GVJFq>SbU#)y{rRBc}SsiiTU-9I{ZOdb*bx&N2vNi8Y!bHzwy z!fJ_`gcxW>)D90eF8HtP>wmY%VI4;D&^vo-{mZsu1Tr{qQzhgO>5ms4!CQeDl+P53 zEXS_17s*#>-z2@IZ|jNVHbyw5S!Xk=&7GH3(kc4)O zaO3m}e*Ut3X29C7*CESSdf6QXsSAQ7ZOrNXtSHk2byawhph)|xw1w$GGZ78%;GA4N zK@%ihTCIv2vrN+)GrKRJtp%iD?>_zMMJuHQTe=L0OAF@JPL;a)CqJ_@;34-aoNca903v9D!~hDXKCLsTm2E(uOli}R>F+0ETeFY#o+qybxYi6a+Q zeZraQp4g&j)M2||*r=nVWOwXb(2~X(Cq69E&+791O5d!;B-e5^Z%dU934sq*=fqBW zmK5vR`sE0eD_MDr#9RtxJ1lcSfQD^Z$U!5_OGe=uZavA3s!y5}A2xcV_)3!lrCC8* zdO6=&+3xJ5_E&22n&_}Boipc7v`>XoJjw0#D;7=`7j#}U1mqO$s@#Y<^_NewA;|B% zg$s=UU~{soejPi5#0RcZsHdlrPa4UTQr(weEc*JKYhnlnd(b_=Cd!PJUGBG)C+h{P<-c2g}(L z(_wC%A$#9@QZj3|KmQkf7UOcYudlADlztSU@1G2pteSnG#lR;1?6jO1A?5$O+RSfx zM+!cS@HIxkA_m#+=Q9#>wf&K)FngQVm^8 z9-Bz>L|h>$JnQJEaNo}@@{2V7x01CjXe5)J2eb2SiDfKcn&4SD-yjJNCL4ZRTudlg zz>(77KmQS39c;F4$RFurQe`$YO75cfQ-&g+lZ&gGMAsUfx}d3!-S`(<|Kn==C0ffL zD|xEy`oG64|E&M|e}7m0*-rI;7so&9?dw`nu9Qgl!A=s2O&Dn$2hiR1vG@5;;YRiT z{cq%S`TzO-A&1Il&XCzf;%*3Q>1WJJ6u_!9N4a9J98By|8pWn$zUH-=;1HjFHIpy? z_fvM=G(Y1!QkaB>qT|vG$9V3&ulD+@h3)v>p(O0$&?@p#IL?oUNq_FYAALWQ?P|$~ zV7rQz5vUx)q~)+K>P*L`Y=F`xkp=0kVZ$#ivRbcx6asJ;d7(tYyreAgHDw0 z@Bl+hfB>-=q@qf9_`jci#RG}WhbwD$b1MI`3i~pLe`rAP3WdrReYWY|>Pxm5g-Qx1 zY&%kh&pI5kicjWNR2a;@!{V)Uh&&`ZVcGEUwvdJJ!awUg-^N`;59Eh4UEB*YR$j{0 za(FW*0q8%``&A~iAb$##Qjlds+J0_gdZ+l~$VsrI5;BDL|Q!X-%K*{D;&S z-to2DY*!_3+C!?)e#`&J`r z<^O)4-a^JE2T^}$Fs&hH34c*PrNMm04Dym$dwVSjwHLq_Xhx*Ll;Xz3c>y>1*jdk= zKVQK_XJBdv%dsnyl~@@@_U8N!`Bcru0o#z1m(J`vMF^^D>z8fxqFQFVE1zVp=d(f6(EK*{JaT1J&=%rEQ)xnDq|-b&1%@%-NEN)0FU5%P^f2y?!dsUV3+9he~{s zPyItq;ToJRj9mLtxiV8>o?2U}QCr`RS5`*MVMNMQcm$+g7^d__#thBcNjWWn4h)z* z9j{sk6Ui2hRQJ3`|J__oxhQKbLcvl$2q{=T#%fMP^aA2FgxW*5iaA);B({aA)qpCdYd3T}bGfrIU`rV#; z|N0ohyr6R^=6Jv~v=qc23kl|s=zc%(Ri4MvfnXR*yw0Q_X#k|0^#&?+>nRPzz7~F} zC5xGOHc`Ks~x3giWp&IQ&T7;=s4wmi=~pJ@;V2 znr&rcj;Eb?eXOZ_aUa3h4zluJIz1516Gc|n$J|Zw>H42%q=0T(ncx-^L6)A1*$4Yj zQ7C)QUAQnX;H#kWCqpgnrky?PG%6=&iQD^w=X%w~O@7V>_BS|oD`#rujzrcmo1$UV zk^)>nba@vII7rFSlLezWrIEb=!hTm-m%URJr{}nCq@t9lopG zQZWc(++NG=k%_m2A`}t3Huv$lLB3d0*r#B<6~{=;hn$WvsI;3w zH6hpJ;KXBOVj_=5)Xv~yBID3Zs4)-=53-Uv$6uqr{Z2X4(Y&kM#ZMoVdlzeK4btk6 zv#zb(`&OSXYh2$E?<=obQn)V`WL$uX%Cm}9-%D+D@ZKJ8?{N|F_Ssc2bU*f~PJEoH zZMABZ^vSkvSp*RZxkp(--Seen0#8QsKtZ(haWoR*DJYQTL3w-y5F6v*Jwp$feC%Hm zLr4W>hB8eG)%L>TC~i6vP)OAAss&u9)PBApJ=Up+Web*hjAjJD{nDJ88W(_;$4ILU z_4V}w%R%8H(X-DJ>e8D7vw^o(_!LRy%*XB$HYcFOD%ofj-@3dM7qfzb+E`NW3qAicb6)UR-kb zBuu~d?bD7pp0GpDnjQm;0l(T~C(I9et4@4X{;iP#nK*EYE!B75)2>1QeRm<%uBp}O z-`}=yBYRvWd*76)pbUBiMND#JI%)5|Y5KfRf>hV8MkgK_+a0u9`+l<`K7Q+q(y$gB z&5j^$vBHY|C3G#RWKz^7C~la%OgevxQ%XODpw=h*(xpq?>5AaEMuhB|WNT9ogU>A6 zM|I+ve+yD)RIw>8D2o=%Gtj2)=Xu!5$TbpKMG=yzVb|zlF zQb25BDxKeEH~MiHgI{3sXT_r?9*{?bWzzHV*-ON28ah%`RXxqQ67jMFRTlyRy##UM zlv1~2$HTW)9Y`tMpSF4_;~Ow&-vZzNU&?(JNplTE8bg~%eAdfGdNk}=pVa&*tYs^= z6w+3@Te3TJ6sh*cd#qg=$LFv~y&54CkZzCD!pi^2d5c4pHhAd>{2Fa#IFIclT&KjU=$&hEyI8{%vr?2B5wSUG+kVMXo#@uNfVW{$`OY(X!DGxYo8!8*sS@+`_rha1on9x|SafrH~SgRunK|D*3iY zGDo691;nsEbh;*7g>S8R2BTv^p}x)vT0YEl`}xSd7xDI_C@JfnpHK7#-!s^PSp zZu{ZYE$#QUd}T`oO=S__bWFw1W}0+%z>N#+0)#!|ZA{ z@+|B5#rHxafy-8Q87|&AIwsG{oiX_H%o~BuJI8GEzQQ9^DUI)Rqk*(rn_skwqcdjB z=bnrftb@WmSo~#AbP7@XJ9=tJ?TdcZc}+d`y!}0CpQ=;*^@iF3WeAr2;s;2-i z=r%Bem=Ih`A#aPPh05fu=kMNC@-J$1nD6C%TC*mv$vC|BceQH;1tBZUe+qmaKXJ>g z#vOUCcU&jUZfDZ=SLF$#g=R~}zh!w66{GHz zZ2X8`Uc5r}Nh4|N+7U#MSf;uo0dMEBb6|})EKjFn25PWy zfh0>F--8Fx76N_NiQG^SXGDZv24c#pO0ILU$i9=)WkJp*tJfNq`KT#64-Rc;6Vb!m z(YD~T+E;e($CoYo;|mzq=+Ro)+S{A7Ybh4y!jY2HuKXHzb5;@zulV2QYR*LE*W-5b`C%rNQO{4xn;Gh~y$qgB ztd0zDWvx{=|NQQub9>J`yW2ZXb~l=8vch@I-PQj@?OJ~Ar+X7NwLE;HW;%X<@4BTo zXZ}(0sr=BEpB>D6i?=o$h_ZY3qhWsC$pZz2RV#Ih7o8YtTvYmxWxo}XJPxwow|{o>bKG!ZbO8gq#iiQG^fO%< z0l0hwnXrq!d|4}{5!I=5iea{F$<3%@i!jqDS@s;~zN=JjG!|+Z#a$W|Om!ItX}UJK zZRZkxP%*^=p}0zneQ%|$rY1K2r+PaF+Ln)4zD@6tMedg8n}=DJMkgz^K7FYh=6?QE zzZbceYm3~@&wkRgrSeXLOaI?YwPRQJ8`(Lto%ZJyjzef%O#!n8xflwAyP{s0KVjif z2DEI%35Vu1uuBYf;buG2YZzen2oT5-Nh%1h#5plm^nLjCDf;i0&u&zf#jL}1j_rFb zZ)o8O(xRtq_fDkn~QIoq&5TR{~3mMac{}_Bjg{2))Nis9?c`HZN z%jppAs~S~AsEZ?+bd)DXuEA$WB(x%IW@CxrLfNCUyJTtr6NcclGA+SO(WFUhZWFcX zb=ZbOq%)qoKg4^ro7>^L@1D?A4Tg*~Z0gjc={X2WrO|S1?3zV8a}a3%cK>9Durn-k zk^ZF?RR__N3r@#e;Mubu*E4D<$2!d}hW>f=ipra*eNNw%+)(!RYoHI$JbR9BuUgpI zN8pf9e@}_u1Zh_RO4f%$+6kj?kTcpH>>@(oWgc9j_kg($N6sfqBqEy^_jA2H;lPn2 zA?$ZNBwf}iFCI6RDZlp2-*DgjJfG-)V#?|L`&T;rU?rTp`=+q^6E1#Zj^XGp1qD&G z1eB6u@d-_d8~>u(cp2x$FS;Nw3IYOurexPA=~+PG3F=o2ZD)&z6R&Z*T52GgACRiR zSsvdvyM773a5%R45G`UDEg>(N*eYW~03`w$PWVl`cC^113IB?@AW)ZOqKr@9)R%U{ zbmodmCpEhvk}`+82)laqsck{ld$FC0>Q$lhwvt-;b@{iRmc2Kb+b?uYc8x#A%xBB0 z@yl@x^z}B32zh>XszK4w>GXo+qLu7MCauTM5Ks)IpgGn_PXHJT%O~^{UMwI}(XzCT z#9dffj;1gv_74(GyZGNrW$ggn%K>~)owE)2pt)8?Mhfo}oMlFgv;M}ct^K#vZQU!+ zgoS5|H?Eb%3J5cqi)37LgrA?^FnWmaC9E#xb}XNz9HON8>xDVS;l<9!CZ*cNn2l;3 z>5~u}G(MR8l~2s^7vr_&B)Q#9M4%xC%`)dB`gKzoIprhvdxFEe-^L3IV*3=}A23tJ zgcB%;ZyOkD83j{c`qxARD3%prTJYj7;D>FV-G`hz>(BKlv#v#ODBiYLEV#P`7k-5T z-t*mIqor3}Dz|#aE6l9rLN?wiD_1(T>Vk;~BWQEYQ;fH{R6`u5sgywq)g-z&vd)uJ zPD3`J6<`#8v`{=&m`yY&fyO5@)Wd6PqrBZF2!d_2ugI8%c0Z2_J>iOM-jg!v(PS}| zJV*hVz|-@6dzlP#3HcXUs@IGByk#`Yq!sMGhQh!W=tW8>TYKly$3M#?4a`ZKE?%r# z+v~qvfCGgmz*B3rME%j@GYm+zC#W_49{D=f%u@-|MdtSsu> zvE!TCn$0LT9?@7c&lXi4C)?2@A+H1}GTA`0{Qu;9nd4%j*gF3<6$HK_>F#F>Fxb82 zpQ~e_TGmo3mO;NUpqY|dT(^_R@g(N~s!K^CA^xcJEv{Pe{>u1H-+fm-Q!5zGm032g z7Cc5HEAu0`wV0rB7oZ75->82!=gdsFR^UTZ?c(}4A zq`?7Qr;(CEWZ`tv4S@4QYTS5+2B^SA(;tS@1;$3c5!t4j9d->8Mp^g1a)o5|b9it| zSP&>E1~q>SoJm`YtrbMdSpsEq^XH#`267Ws3apuBA-w|_kbM4q+DIoHQ`VS7uazEC zNWQ4^ar1zUA1;J{HBUFgGHMrK(Qwe-rL`eh~DfA;{>=2zyuj-yjsoD5NQt`$K*RLQ*4%tpw{>BMKjg>sQxOEX)Ph>V(td(8a5~&L}RtoJ} z0sQ-Whc874u?8^_=^g$Yma{`g(-kN@&=mxyF`waA(r~nU4(=s>NT^O9Lo>I&`rS?P z=NQUp(Y1SR&RaW<3vr%PRr5@wdQ`nTZx0?kIIcOjdC9t_qYqxaTSRZ*p?%pe*H0Ox zR)!R#uB&cYLC5E+{k?SaEsuT{-!%yF_eT>(q$>)!Izi<^*UZ`dwx8qfRlFf9#l5?D z|Nrn&|0|(Sl$EdUe>A!ibp<+xEBrOXw+#d+e?JSCxgt=88U5bj**`nKQ+Pt39rA4Z zrq^km8+8*t2@UCUWm3{~tNZuwD<{3HYM=Dt#y{(0KR2hpng7sf*id!#m)eo-+-K|F zudP(yFe6MuL!<1v`B@A|nBZERGBc|u+P3mbVKk%!>Lq7V;jV;^jr8%G`3r6$pM+8%}HZ)_2>+9{T^|AmVPohVYp7Lg9g#b;i~4M^4pnTm-FS)J#%erJQvHF2aYr3o1QchueMa!^5#T4wYRV)4d(YLl+q%lW(qCbk_C@Sc;WqUL~2 znOQTLohXb6arOiJ@q5i7A?S{r;T(pIsL$Oa!K4=fo#b?1X11j8az0yU*M2(l&E({)13w%D z@qYPnMj=9w-VcwTJZTcCa;>;e+kBUw9{@YHSvSFpyh<~JTg`;2h5+nw1jPg%&&gZ>C5XEDz zvGpRFEkpP1nU~-9n?2@%2&;0g61b9Wij=*?ZM07joBnr7lO!?%Zf(QGWEb9fDaMh7?Y8}R54^Zxq!rPzao|_xWZ13 zeN8gB1rlbsRjN1BJ1?*eJqnbgLPF+1Ffky2%JQXc)B7Rv&?t7s3@Dfze8&U_2QMpy z(IX%K_a`^JoXsIq!}=aZ@L*eJ(|X#jc6XR!4fg2T)oSZHat8BkOuj0wEI*?m=*LBQ zyE+%b$^A!J;#zsiqh*_r5kQ@$qYP*Buis~?KF&zJBAy}bWJEqZw9 zQekTfv0GLdV=B9U|NW19ZVjM2DTIE4m6*GUBuJbaS#e&~nqM4)eILHVZso<)e{;K8 zPXlf&9?l=#_Zyib& zG^)xKO14OFWaW`L8UeOTV?IY*YqD6VlHUq)R$iVp6Q<)M@;KfC_kZ~G>B@`GfgXhv zATDM*i!X!1!&DXWI2ER7)-_XES4&CgT>@3MlGc@9{6zlzsH3!(`OJ8i@p4TI{^0^K zQ(8iA@u5wu>9cqLIf~Piaw{ttWuWWlc(!OqSRRhY_wzvV-hU8C{{&o&3leJ>npTDz zf3!#}=rH+2{Sss9n7=O8ma$U8yaD-NKIC|BVgEr=N;^3zXH9QJh?vA&IBqrx3tvX=M)F z926W}&h0sxe%HCPgv*Kpj_#EJ*j{TsSx`H8=2d;ei+s!g}aX*~=L> z#^CgLd$V>*^{35CbHng|B?R#6JYIspT1!Es4fOSETTS-v+lPho zW>a#)r7StNL3qN$%H9=DKh6bbbDosSHCJ2=_yw7QCNC2Z^&^gqWhJV0wr> zkcyc6N1r{32&uv6eqKzDMfe`gxH|*OXG&V43mB8u?vS(OzQp6^*yAaY&_yM+`gWnr{_tz zc9ynNC`|)NCBWRk$GY|EMZjn&Z-0y(E0ci|>tB5b%lMkX@_5=*eb!&aqtyt&4#i}| zztTOXe8|AuY*BJWMkPZ7DW$smbSFEOS*~8SB9j#{i$!rPjE5Rh{c90*Ffgb0ivTrR z1Zbu)a-_4VB^e=Es>RzA#bjJ5>)dIU-nJ8)ub0aFjO=h;H?P7x`kS0^>ofNQW^Pfn>UC01;{HEX9jIIKf@T#H%oIJ>OOdaoaql6R_%`_{FG&CICi%wzK&mPIVY`at$KCvVr^4_3yq7XCh{?I8^&G~B6 z`3qyDCF~c&zxPY)WOTsSHxT~G6YB)pVL*KAb{3Ddb5|z?CYYIrx;-p9BIQFPtx@y0 zFKELkCEr1MVV(_By8PmAabcvJg{~j40KIaO(PkTSzgO+rb!p&Q_&xoT?H*Nkb}~-b zAGfJywP)6u53yI4-TyjW)wY9@-JruiqY_LSNEZw`Tvc#9x_-Bc=+XLy?6qYE)#UC%nxm#U7;;!D2*B`o|Rt1bQ(dbA}5n+p=X#Ot$3x@RO8N7aSQCV9@Wu?VC44 z_<=@fgeSB8Fs!5$88&g^wJ}S6YW_Iw9dvq<&hpEBd-PcSw4i1YfD;|qWGY9H#l>-O$2%Y=e6Unvz=$9s8!F@^x|XexXO<>(SG`Jgw~ z=)%e1C-LwgKs)HH#+@ZjTux+mf|r-^*7t&-(lam1kBw%|qTK{1ab}=75uTOY1#KHv ztaHgioJ~h+Xgn4KB!QVFh`pj8t4Q|7Fw~B*X=0)6c=sniLznkVLr%43B$#5t0BUfY zU=v{xxv!>2qu9P|5*-!*M)dgT=lxHU5aT%hG%w2BJi zGFkoIyIpUb0BoQza}FZ_7n_yWVikssAM?V@#G%W}||I`zfd z2{8Fsgv)I6k^QIx{E2dRQ8|ZK9A;Gt<9Xp^#NXzJv{7F%^y|gjBW!yaZ{_lYUf?X!9y=J1;VN)9iw%`$;hvxOw0L{uZAQ*QT(5 zUj*MOj$uUik>?LKE<%)swmOWHstiinMx7#IOOOzdPnOI}Q{(lDn3qFuv}zp;DZ}`H z{`gFa9goQGC#;8O0Tn7Xleyq>#B-z>F>|R+8~5BRcZt&fa_o7YV!=pBd#|EVJUa{x z4SlO$Y)nxWcR_)VF2BdB;GgeCirQV=9;DSuDS(srJ$?x{&w& z^LkAW&KSdG9Qxwt%n~nw^hsV1S?LsYw7BE9ZUE{!)2dCe@Vd0D!RK|VX>wod9r9!X; z_5*j*r{y98GOkvXi(fGhLSyoEhx}neTH09m)m+o_D}TepAj{6<#&c*OGN?;Z?!pPs z%wV!CIE|&#wsexiiK^c7qFqT{LwRAoiSO&|r^@^dfD>V6I6UKwV#4+VyU1F2a^ajw zS;x5Xn;VHW3xZO}1Ob648E@k}U&|vF#9F@Fyt^UL;TeSsM`7n~`{mhIOsULC zaUP3on=~=qcYU(h(OLVM7k!-b-P}B^9cHUw=i$9!4#TO@*J^Arn`tCuGoF;plhf7N zz`g*mt$8pu-G*q|_xO0!ICz)qlU?YJ8$z{j%@8M3Avhryd0iWW((J!;OE^Zd;qoy| zQvZpMx#u-mb0(GWp7J5!?;@2gyWFEom;R-GRwHDppEU2^PW~Ttk*M8R{{L|H=HXQC z-y865p3pprhLcJvC6tJC8bs!~Oi5&j%p&15XhtHWP{}+*nT1jb88T*0GHydi8It#2 zTjxE$-*x@|dEb3q->(jPc=q#rp7mMlUiW>kLF6+8< zs6csjafVuB)~5h6#U_`F>f-TOTz9hd!LlRo2r!6_5B@R0I(wyf9xCZ?Lbw}fRsrT% z^$1LFe1uT2n?1tiraaBvfPk%(!PHuv?f<)__VkuFfk8<3bO7U! z{TWg!jn=f!O%ipMM>6K0b2*)50~>>>F;#;>TefWfS?lDjs(k!qwhjwYjgSLl^Hqlj zw{#cmn83pA#Y_de8n`G7Owm^3c>(8V{F=q#C{ zv(RM!!b69Y_Uq4BxHbAqdK@ob(TwTyG^^Oxjyfo<<>lvpUl#gv(O;K27frn^>9lds z^|QkAb%J*<2b^z{Cl`t-gW^B;1b+|?Ec)QwXQS)d(Cm-nfwi)!e0!q9_d0N+grFQi zKhtMRi!aQ1V(Dg}(jSQ1dRJFhzYp^UMeYQ}F77lu?@1Xm=0N5y!9bX^+m0_fTmQSM zW>*ZUQGxCh>^%$WHdj@{$I@?G^z`)XFm4O!m>MFtx3@Q`C&)GjU0dSc;+Gf;uw>!F zN7ywfmIH*RNj7KBbf2v&m{ji;g2fZs0Vj?Jl1wfmW7 zVHNrfr*3g@&Zq|lVD~v^3XqyKRrck@80@PAf0(U9!$=YRqV;vk)F$fshlbP;uhQE1 zZhJR2!3F_Rk~DKUoqoa5u`x{F34NfVmenL2=bZKH*RT4~(SgCS@jO|yGh>-ckHt48 zL}ZruDa;Ww7#oF*`DEtIFkqJ7ytsfw!M2oCY}ZNR4iCX(*m{ryItG)}Y){BLjF!dRs#! zu!vByyRB#;Qx^~+?wM^1-r^znZP4cIfdkT0r%h`Rb(PkODlb)ZsxB+Ftkkx!Fy_7f zk)0jguvRnUZ-N*kCDVJ>I5piW5+`7j_Q;s>Kyk_Rp8hv?^znTq51qK7zy&Q}=QG{1 zRh$Yo_7DC>4UpDm_hY}x;lqd1+DPf_0Oq_JK*7xPfMyM1Jc87agwY(yzjg;8n<950 zl2GJY;Ve}K!)j2ugn1^b5ZeF0X`T||G8`V0ni>aT!?FeZK@zYbqLAK1bbKddd|E(< z%i+9#B5HdYT?QbnJ5_{)M8>=ujh;I;=x`Pf__R*TO8gKQ7^oHJNENj>G=Vg^1-HA; zc@LBUD5WET$fC;50h1xK$Yo=#EgxOl8hO>J8JB%zVKa%{C}wRn(Me- zJ2iwbCN!CvlV*Ru?>yWpzfDIcYn5`Q(*8%QJnymM;%)&9@U3(jN_O=tgm?$A=YA9I zCz-cr6-%5s6{v@AJ-AB3`CNd*cM@b#I}|nMFZ=NGCZMdPEABj=!IBw?1Gw%p6}Uf{kpnZgQ{8BZ)kVz zd8(J}vIcYz3bx@HGC*ofz(}VpDWGat?O2K7&;EX^QQg=VXLhysjm1^^-d^3S8_yG@ zSssJzpQ)>7-Jtzr#mFe1N$-G!-Ugk!&U;nz^8^chi?(Wyj1Ei}G~BJCj&GI|=>Mgz z57;7%LCP$~kzDFlmwEvJeb&ol;*#FHaf7SsAvZa0F#3J~x5kX%M-?qs;eJl$k|2ce z{%q&~R0X16e{3Oig3Gm zXc$}kL-cMxFpp^L{Etc{H8@ zyOe4NGyrmyg#};WKE`dn%|`GN51_EPH+f`z4;8GLsnM`+aBwiq&Auuog}a;bit5Z| zZUwKJN~9X%<2yT7xJNDOj^~e!A9r90#!~NYwl~K3X;jG;yyK1y70sGw zp;Aq2D|-LlQZpNN`G3C2StQaBwK#}cfQCcDC$>EnAK?6l<}=OBOmZ4BC6Fc{z$2xp z5&Tjb&;WHT=xDH;VOgvZS}jdvt8Zb(Bt~k|M@ERxJsQ8=jeLpJgKv<#T(Bj zL^tZZP&hw7*l%I@G@jtph$oQ~=f!8t7>+d4GT>x8`PU_I^XzVT%(j*QT?g0YJ@y#X zrq#F!daA(BU4@e>kF;+04qpS*CRUn#z)jNH8qg!mb#h#_0k8Rd3=5hQnx=9qj3X=s zvD`xPaWpm$9i+tNsE|Xk0`_o?p{Oy#7(xD~JyV~mfVd6KJu`UX*XhW36BKOJ8uIH7 zIpKpFAOiJ~z30{UfQ1pdiI8NubH#?orXg|BdPU}gvp`f65gB&yG&D+2+3(&I7_@lV zm-yvtOw2wx#k*!|_3_t^*JZDdo?-Hv*}$%~hQ8Q`oF!87AohLi^heRX$}7|sX*!LY zxM~2Us=Ia3IQ0wkU*b?(?-M2wlmrC>yu=!t{izp+cJ9m#e8+H;k^(eb>=I1i-kX$9 zt2Y3UMvcVCz?InCNuNNsyDIvWP*iy3jv}>UgTVpop&|H|gB>@r3ho1P^~*45bQv=T z$wL-!*6tlOl?YoDyu(`x%1dd+2TqX~7q+Otoh2ktC<(;fo$CbhE?i&xmOAv#oH4@$ z25Gdfp#Rb1K{kW6$-=$z)djuq_@$zb8bZ$BCeny!3h5gk56_$1`SsCQM%bjl3sAZ~ zgzrpb2mxyR@q*wV1s*Ff=uSeN(I%mOH<9hojo!7s`10lr>pg1lg(A9TF?)7A(U7zk zot7WgObkmA0}(0l%%|zK*fBrbI=BN-!BnE-hCyQ(tEmQ-Xs!Ux&$hu#e4TGw@mUD> zubcg$n}GjmMaaQo@_a*yUjZ&#w?_a*BsDq@%EcSMj(CrglQr@Ce7Kx|AAut@ED>uZ zRUkkBz$A60@W#HH3i9&1L_nJ4jh+-)$Uw3iN%nPD<(}g+BeZ3$zFy{`bN>7HZ;reN zun9rDDFc^_O=jpksT@!Mwc0*-GXFwP8pdHz3kqu_d)z*}gt(ZQ3dko>U*rlvCzie6 zMCL3w`9bEV@e_@yWVwi;@h_+9O$nhonm3K`HS z>P7XVe%oCB3moP$^4A9}b+tvNT$Z&>JqIEE>JSYKLQ`bs)6FlDg}|-(Q?oxH(@SNl z5>$M^0IR!K)^ZOLb4nwKaF5oLRHY~jzOI(%EfGH zc>>t^r7B5aaxz55{&qran7Ltd29&%d`VBQr3B18*5)z>eL%l6U$^DCv7I^Ax!|_fl zTe*G5j?!`*q2x+9Wl*?96#i+;Qqb>F5f(x+ZHCzlPge(nd<)`AS8|<2IS`0w(sq93 z1&oO_uM&_JF#=ZYI>TFOM`{mDXO$8DL0Kbca3tAM9@pOoLq#CDKBgA9IOqJ(Q4))B z=qP;^!edAhs;hJdtpq#xhzx7!(8I=j&1m&)MFE0R2;2h&+!EUPH8x60tM;Iy{Dh!3 z2&;x@jvvGSaxgYcH8RD)^ipvst)6DJ0i!ELX1!J##Scs6MaUo;^iet)$x*72j{z~G z)cKV>6h$70rfLucf#B&2xDwUBF;F7v*B2xicA{kr^Iu=(+v6agsfVR)lJ!??+e-_K z1Art46L6@>D>m?EcQR;^f9^V5{(NoJ-jN1X7k}hZ+qJ{Ln27{bxvF)$FUgz-O zYC-qzA=1!H5h?XSCnqP533fhmoCc(!(q={~J#<#n*7+I`L#i%$?r$1ih5Rbz16)}c zKgEz23DNC-j1$#1rpjx|g39$>i2w9qvPRCR>V};$hF=KX zFT@!kC%v32+4r7LAZn~%E&!8pkTeWZ=_Dl0+(Zm=I zhrh02CN%&bxP)7r;467vbB35O4NgdQ*kz}kOS$-W^xV1JYd%h8^d^EL45EBxxd7ht z#7-Q7my3z%FhZ{?4VDbrTT^b;P4=Z|(uafk;#bmxO&-*rbVFKQD~Pv-GA_uYc^PI7 z1$ij03k6df3)!AY)I5}}QVxTJKLMrEIEhJys%Y_B9NP_FKJaktnLu%^3e(+Iszxsg z`9A2&{AqbEB0GFN<5>#`99zqWfg~Rw)-ZH#k8t6!$M&VPTtv)Jbo8fj>Q5t^QTkL7 zhXiF2i)M)iN|Fy zq(h*8fBryxN}CSE(I^kd<;uJHtLU*9rByPS(Z~%jW;E zc-%Sf$2n1VebYl%B2I_b26;>gnT{AxilIliHL*`e6Bi&#EjoPw zd-G<6Pv{pI7}yU>v|~B~IrUim(`{*A@fHosO3c>wiwgiEkFHd`#Y^;Bx{a^O^rT(= zQW1A7)Sg>3{L9I}y6U`e$z*)+_{AI2fgB1_>gMN)SucY~XO=0EcGRTC?kc8pwYVLP_U%>mij z!*T)8K15kV5>sy=@lUO#M2{>;f!`C;m`y7M+#Mn!V?t$j+5ArD3m5E&iUdM5=ux!y zuw?iVCjicTdG;G!M}*LBH2nIWHKtk_T=G`cMme9Xb)I@lvR|}OSoKr^Mef-p=933m z=upk+;F?%muLy)jeiADAG@*&bRRtyk;jb%vh`ev4j5+f>7!^x1WZ(cAz>jj6sE9DC z(MI*U*yQQi~_qeOtKLo6g zt~6D=pNPc8BX<;ci!shKWHu^jWp7VFtWb%sOUpfGQw%L8%rG5`m`hNPK`&q>(iRyW zV?vRrI1k+nJpsfnn`_U|i0mywCL`aH; zh71iFZ;5P!U@$D;iQZb2{gKd8kO45_WF>sxNJB%2BFg3M`}X}5ztEUyz7_9YUs9v< z6(-R%ycwkwyNs$RTHIu9k}Ck*OpsUZEr=zjQrd3kZ3gTZ0b&5Wc}=d9W|h#Qv)SXx zkn10d69yG>$S?cXTZ<=Gc_5dO!M@I4{R`h|2&pw!6)`LgF5(k&Y-#d+E0Q$4E)uPZ zD9~Ltc!0f@eH#c4ASoFkphVY_xFWfuhFa={V} zIYQYH7)6--a1W8tVl@-~#wFTNRT8`}9!Rz}7P<bgeu!QpQHJ5&p_6&;W3LEQ zxzw}F44=lxx%u_$SCN?ArWNl)u%R(_1kQE*`X&i`h4VK$qFlJ3zSbW{+m{m-*ZWN# zASdbTZoD!PP5nYjs5V6Tlbj$0vM^9k#0P@c|H&O5{60eoCn=l2NK-&Xr*34_*4LI? za|W%da##wo=4Jr-h6pw)*J!5n=wR?f45Yi^OkDgH5wimJdGiE$$?4`pm~s!xCg@x= zj21nibFvvW>>-avFxv@8&pD+b2HI()NA|ga{7vjfRIES+kM?*gcoR1QYXBNvH~(r2 z(p7@6NkyA|zW!vwujKQ($JjtY2XW3IAReFFTZy-X33{Ey!&M*f(I@7Mv0RsQb4p4S zaHpr2TOn^rq)8o-5PG_)YSe)m^5x4H!VxXC!3hN4#XvFYMkgSLAP-BqUR-_Tlu_E% z_re48f$)M`dnB!j^-+k$SM5%VNn+Cp82}o8z~%SIX$2{KteYPk;X|=MJoG>d>SqO9 zU{O-!A@2pOU4?8m1iR)IB+#A1ls5xNoXHcNO5OI(+0`+~5NUse%(^*Q82BSiNNB(| zX`zLW)egjJ5R0KqX7ZY^;^btr1^0^v{*p2qEwwM5A~=X|JBh9jRuwiI@T-WA4F*Is z;%de=;;mo>19B0BsYIe`HBDv4{cNojR`9x8Oz0QLbn3(ihs?QsU@)OCoykuVT}V-N zv>j_Jj&Q-NLkN_dEZ+>HmiA7@QXPmtX$IvV=rza#2h7;+05HK6r;a)=$D;ZtiBPJ5 zB3M0C+$v9NTVDkroh6ZfeCEInm^dhhnJtG!XHHIzS@GxFka4_#CEkH5j7NE*Z3pr?vsIArPF($aWSs z0@xEt*^FNf^!F>F>qahHAW1`~$BRn<3n>1kRxGeoJ=on>0Cd}?lm6n(C{|TCFh^df zzdoO$Yi%zilzI&p71;}s`#Z1=Q9d2c8k`b}MMOqB6y3l>;vXEkI)4rNMKA3tTd+oG z8YPISYQQqEQ-O6)hFu`UfjwmMlhsOtzZ4=uLzylfV?BIAINSH)=ir_j+ zwl=qPGK~C?zGE|q0#Z*5cR+!%g0u?ajv<>N^Ay+=WSl7m(1TjM0|YNZ7mo(6#A*x! zwC$TZZ#tfB3FbSsP3)QEx{aB)Y%IaCV929KTm;yokB2oTPn87K&uH;GiIRwq&mZk` zA}KQaPGo~DLcR#7c+Rm#)nvlwLJ8iW4NefQ0r=vFNANV3O?lnNQbiebR;lYncRc>t ziISllCF5Rhst=ZG@0Xb%Km2H#*0SLRuU+s;KMl%w^kkV*tgjO0+;>MnE(*PmpVGVdZ$dDWF&) zJ)ogX)*`*gcQBeWi40M|l9NUUNgY5PdfBRqiXmUVoJ3E+b6n#N#Fr|tMu?i&+iydY z8A%#KHc%;ha_%6UGErq$E>_t42+=ToU2|W+HXLzdoN`|&nrR_GBb10NK+T*3Rcy0o zmjZc@lUnWg#tYp9hN1w@Bgrb!5~Lm=l+{B>Hcipr;@4V_Rv}V>ax@l+8#pqe)|G+; zkzx4=8!f6cH4<=w64PbbjX`sy;J)PTt9!`8^oXqNciZV$-{ee%c8qPlGZ7Gp5dh3q zeBk|h{-*I9S_p=M>-GI4w7Rkm3nH^P=FDGrGl!~iyE-Sw8NGpZm3$4Gyoo}YU~rY< zBLJrKp)23E;K}0OOAl~LIHw}kNiZ!^iUFcHh4rQpk(&;VatB#0^7QRupbw zNHkX^w$V0$zEdX<26fPi)|nx!g;>vn_y%Q^Onp{0W}82IMh!1-mpxgpo0{|_Bpw{3 zCb7Y|)9x`4Xk5m|mNeoRUA}dU;%U^u*SbH=B?-n=G#w24Sb=c%nw?s@uzvjKx9^~X zxn+n$GRL{oe9QMZ^gf_T&>c(3X0LFa8T7MayIUWE*69=Xe-3h02(P$@!X zcX0x|3uqt_8M16qqoZn8n_7`%eygfScF=Z7ZbihhP^Q*FN72LA`Lqul0Ej>aog`2J zGV2~wgNjicu0zCZT?+W%{e2u7Jx=UG0}!aK3QT>%pM*@OZk?3F2P*BoHyq{ixQ>Dr z>$kP9&sA+3yqD4NWl_eleFNz1M3D{}w9<7OB9V^fuK68;yI12zCc~|4Y}hw&s5zUX zBj@8h_n4Hic3JMD<4t##=|7s%RVDGxD~VY#`(y5fKt7>QVp_8@1=Ut!J0^}a%`yFs zvTEhPEDb;#L&Rc1O&F#0#J#SXqB1=M3qiUcs@78wyyQ2E=o(7~ECx)iSan>!kInuF zFS@%MY*ivzwmnb?QRF7R90pWx@Hh_@<@e6;;Cqg{#jxVsw)9BYsvmWgwW|At9W~pm zjW2oWmfhiBo6O@ZH>Z?79lWA3r_^Tt+caBwsi43#wF%i@P1mQ{8ANqF$*w>1X|(YJ zihsaoWi$qrMrMC`d$V|Z>S1E@L8d_t)-=nP$<4;U}}zU)@buH`d_#K zLp}gXVl+)Kuq>W6BW92Fn`d_OVU2@~WJU7o$xmmfE}@t8_ z7WQutKgCHSqZ{t-Ftnl)2s?Tu z=#Apu|FGh^{~@H4*!#)xmZCT)m&BF>e-1Sm%1mNdz~Kqf3mxpvu!A^t{d79+V@BLJ zFc@{qhaiPRuuukK13refPt+HT5-MfJC|3EtmW&MkU7>>fA8=ANRn7E>r&z=5lNLXG719$RtPmLv8*;=c54`5NJq+Rcxdt=8T70^ z-z|V@wPJ%AUJ^2ZPWREscQnrmfC*uifs0=SK0q@LA=#cucI1Us#7%0L`45;deBdcS z?!nPc$30wG)MI8^{W`;TqoBgBz_IGU{*fsc5>HK>orqhxG^)?2vG@0t4Qlh|DJnAZ z22_{mek}Du_DKwTQlcUaVn1dB$qwK_A9Byi$&n<}10;9uF$CcHXuv6tMBrEt=@-b~ z%yi&u{(bm_(4Y$9V*`w9e?YBupM2z}4?N&b8GuF@y!K5Tg}(pG1z0d`(W}5SjhQtT z+mMex&D*~llLGWFVAmt+cdmd@;XH=lV1EK{nA5X$W>;oT{5CVzTXWO&Fz54Ke9Jt0 z$}w(l105M)Z&mDrL-2OXcp1=4_D~3+)R>^FISSwZ2z-Z>I4Y`BFIJjX;*MAf@z)W- zTwfwrVoQw##!mO{DZ$6S1g0&04Svr{3GEI43#<{Q?MrOu`6QpTZJYwl^Jk=bDXS9V4xnv@}*~&nR*(CZq&F5t zd3n@_#Bl%=<6wGlT7I~<9DXr5vFz;IUw-#S;$OeZmD+09z;poFX`rbWbneR>u+CD= zDS61@#h0NO9JrL?+;1bvARhQa*n1*pw}3KKso%h@H#L`wu#1c&R0wH?n^FP8?THbq zz4D3{Ma1lSm#>$jQMWO%;Z;GJ5>15!(Xbewtr7c4H3~vgfw&Y>ZeS?{>ySu|3T2oJ z0`>b7$B_;~m`N%ibt|iWVMAR^|A4%k*w!Awbg+HsO&mr7mZ-JcNrQ3D6V-7|ECrKo zW=I*S+U+e~2bt`%^Rd{t7>W!1A3u78gC%YKcPL8;LUoqJS96M!(?JAX>u(xW~Z=@5C_!a=oE3ND#6pwvofLq7`h88ubqxu(A@6 zWB2uW@>3iwSKGRD+%r|c(T~RL5qDN+Vb5zCNru?~_u0QlyWkZ9}~!K*)y zV~nsJjg&%`xq+p6fyg8Ov+6gY)9h2Rnc!q#vVlbpvKrRO@F0fV?%gRBEtqfI=}@xk zyvus1QG?=leoo_C6%?P?JTiKvT1Y4c7Vbz^oggkJ=QbUb8r^g+yU9EO;|WaxJ5dXC zg`JSMvLCTc!eU~=pNHh%4_0sK|HBf=>__Nx;~^cC{VH9Ag}7``p9mWkS-N*K5I}u# zFd59vu3ouP6N`9&fzvuey6?_7a>Hwy1p$k@pma}fy{9E3-gx)o#kef#wV=q|sk|ue z^=@p&^arV331~@znNaT&$UskkNg zm^G`DQsS^=5{yZm&8!u)(I&G~cZTG!RSdgYN_54>1I-01&ZftG3D zcD=*~#X>4~nMbiom|0k$47X!6K8Q}oK^(!)8{G4e;t{hYTr6svc4}$JK|JZ3J=#Px zLbj(0M;!^dP0Q3*Ef2UIKNqk65tljdhs*}y*{r;B>6PkTLfXAp6J-6W`qIgcN+{C5 zp)eI^fjX9R{wHrEeMq({F-j%eqrBlSlpuMtD1RB2!!C~GJ7kd=(gv!shQ|^X!FGg$ z*?XpqzodS0Gic7bx1Xhq#|zsrFpu~hG$V0fXo#kB(fqP#>?HDi98`T|s^Q)$pP$#8 zJ>hbx%%>5nMi`}g23d&0lw1wv@U9)y5zIUWw2Ia{$o)EMS^%el9NSh>`(RrB38B+X zt5OG#{u+oePtNp!lO7W-VE&oO1W_-|_J|$Qs<>vKUqd zC~C-)Rn&R-o7#{=qa%Qg5kkDRQodbnceJklXP`Uz1bwN?mvNhCRkS=$OoYRVMwsy4 zr=jhTCh0jkcK=rP_Rf+lDlB~R=oQELlI1e*2Gw?H^eV#|Uv|hjZSeWgl!?PIvsES= zNBDs}MXriF3FpANlM^%-mSF}?79qZbD#1bdD9eqb-VpJTgNX@{J9wpQ0Hj{vU?ScL zPxdnYf`c3O@@nk#8YeG6H%|B$wRS-5+Prpcj()?#JWmnR1>gGnHz(|8K`arxY~~5n zDyMcYU<~5?!_CifL}?*ZZIxJ}D5zPb9vfw{>g zZ#u|2h}wVmHsPM6HXJCwXlrPE5e9Zu4xS^NmmK=J9qLK$O<*<^Y1kB&ELsFdkbSxP ze%`)*UBLF`jg8pX^9!`Rdg!at;Zn z!30~kZa+u|{IY5;y?alF?8M$}rRmU~*6iUClU%L%XWw*Ry{B0gI47Y9yx6Z%36>+L z)p6l@3sMR@Koko*JHOm`Lb#G}sjtn`gHGx1TgHQB;|gG|*a%4`#)gl8Vn zwVnI6M#;F?-tt>0jH9mF;qtRCEn~-BH#f%Bq6W&A>uS;IOwuw#ulc%XAXV*%uDgY_ zO^KhF5_=2~H?&kXPUvnS(-%*PMFe##2uE*# zgGudUU<_T&xT47jwRgR*N?J_jtf|Nv)5UQf6DRLlXHj@wF%l8lFo1F^%>| z=2Ji2GBVsrO%;o_KH1(3rM-1((4TC#>;0V5w?w^9lIj(K zn3RQR_%LBBv0X|TA01K;It25X1nhd^$Isg!I&m=38-4QUBHVu7@)J6ko&n*XeNAUm z+PcSY{&{1UtM1+_9C_Y?2OdepE~HJwgrym(;aW3k)A9o~J0RByc3eQHiEegjk*_@V zF)Yk>OIau}(De6Ld3pbljKrN*VkGO`eaJB-BoXeF9yf08xiNcUF}4i&N+D$2(`>@D zUo63vGGTlbvy>`gpH<&yt*rf5aPl80NhzN?ecB9TttcNy1s_VHYMjm#@}^6t+Ji3$ zE0ie7M6VEQqaod}?1MFd@rj)nQT*drxB&_-bIC+4{QBA&ATO|6oAdgFloDn zhUbp}cQN*!LY)BO_jb&tt3XQ=tMBofQJm1TG`x^sYddyNLMon%i0v$ytcF-D02guZ zlMtY>P;tylqBN#e=M}Zpu;0TPb~a@jm}jZsxmx^dUtizk%CNdc4fzAP2pkwDZcHX0 zIjTP(v~-~Gn=3#vG?eA+GSmH4uC^)FzU;8*86SBNGqe8LXiKt?+<1F&lX&vy+pFi! zvzi#Ie70bpaO@iXHEV9xRU^%8vqIPGllcM~r3{jM1n?lgm?SWqGLlH+hA1u1!c`a_ z;*^Djeigi5znPk~DCOS+-v$|u$SfFgZ+2{}vm4!J6C(sU;B8pU1AnMpN&P`W&wujc z>~Z3hxn29e-c{iAnzImhd4_(%tXSfOpzc8_Gqi>Wi=Fry zgftVe9!e)avVC9-BF?g0z-{YcF%q*66VC1T?X^jv@(LQFD_1;H@{o|SxI8rHl93aG zw3vIBtSg*R_;`6!p~FFA0zuJNlO{sLT=jUABh}fA=h5Gx1{)hXa)Wkl%q@Ydm7k|4 zGx#yu7zBp%2NT7*Z5Kx5pw%YI4XQ*RIc3mr(kYQHO7K!ef+Pv}1XJsi%lm22=hUgG zEeJut-;rTF(}Gw5^9o-J7wMr_1jwo`7K4d%4M+J|slyJz-)rKhBQo9r2n7DZah-JA z$y{C4^8ZhFe6$=z8K>9ZC0?1fgCgGuNG_UL0_d$1c&TL!1MhFcJQWwgWmOmy>|369#r$ytySv3@hX zFb#K$2BINfxiH~D)8_9D0l$n$ucWj=nHmO~t)Y<-+BVPLFtJPsRU_>M@C1CbyR@+3 zz-tU50>J7c0oHrbp(o@20@i-bKn5*Vzm%+*Xs|R5%|Z7seDEpUaso~VeFXm3?O}qB zHn`fVn*lzYP{*!y;_&~mYbi+K=8>F1rd=qcv9G9$qJj^Irf=zqFBEoYBhyecLEuunvBJ8!-PdAP+y4R0t&Pyttz}pYfH;| zXi`CIBEm8#5D0n?bCW=s_zqUnp=CFpmVKSU$hl=~oO&3!lmH4lN`;|*B`rLr%{O-% zDS8Py&~8OJw`2EByPsPa>71zSACW0s>*8xtOMWlb*C(iHo{`|Eo{W zxH}KlWMD1PD7Skf7o44iFbE1xeWe=)S-n-G+>{=R6A0Lk4$Pv73ur)kQ$G!e+j$lZ zKsEv@(Aq@9n?zsfS(?Mkfb0F3L%U8fBvk-0m6A{BeiA9t$3udWzsZT^hgT@SOb={ z`SA|$4=97KV6&cHlUYzaxGtlp1u2nP9-48VHs2G=DESFM3;HNg#i&F841A7-uE~-G zD3Q?tx_?KU1v*~0eh)PIYUE}$mxJTS`%xUt4yq3U95{-)7p9I{IGW?=Q3jC5S%TT zG~pL_x~_BoA#TXx3 z6rbGMp)QO7|Az#l_~NadBJz{%_-hJ0^n|j!I z*sWkLty#7`PXh%0LfCS3_)oro@p%dB>q%~)4zFX(pWn(}(n|RAPx|3j{oj~I`tNhx z{|&(WJQpNA5)=ckLy1qk9nfj$6N%;Ak7x7E_-~e;MasE;A~K}Jt6)2V{iRN-<$lZ@ zqS=F>p;BoKCXSC&5Snl#Cjp=8F6dRO79)t|pn{@Lr-wx~4Db}B6ybpdx(91WIQc1J z$>;Wito-0NOpUt8l?t>sb{PPQZh9l`rs!4&taNF4l7Ydq>i?lX6 zHFY@32@%j80!c873r;4STf2^cufJJPhN3*cY%+`wH#oQLK7s8g4x=wYnH)%jDksGu z_-}FG_68=>vI7q9yBIJNo{R?We;X`jL@hN3-kl^~DL%GiuvkINoLdGoSM0107`%JMJ5PUh!srw4g@mZ(j% zjZ9~#&YWgp67r+y@r&^j?lEt%Zhtm$pMLQz<3RTLGgX7T3##+Rb(SvF|EH@g-Tm*2 z!yPjjdxz1#%bs6^2~^v|AT6ht{cC%nyC1B2 zRU?((>ObVBd!zoQ`^=onXLkK;x_;`#jbXu+K&Xn1p7%dUUr};;q@UC7<(5DTp26(H zMfY8?yM`4}>5`MS#o>L1GAM(8&JvdJT@Z=ME-lIj{!fCieON@h89s9nW;JeX&3S zRr!AxG&X^Ypo&0u@a`Rp5E^3rn2c&!54SD9Xj&CEQZ7~owciB4=G*k&ZJR2KqbGMR zTWyqs>_-rJ6dnINqMQlR#-qffWX1Lj@DcVS)BpEVBEAD-3Z-2fbT{H6l=lN!L5vh$ z3n7|hYb#iI^w7>VP3pqNjga62mg!@l_$*ohTpJLNfEJ#D2@j0;kXgbGYBRh=&;}&> z9QLSK#36+Vk~c(zfR(V9yLmSVkjuC0s-oLTV?rPSZ2VZ4TPmZOF*U3`>e;v zeY}h0P9|I>Nwszmk&V%@WOClFx3-PVa~e5DRsY$SL+Y=s_rmjs8bih6Kee$D@@%CI z!HX9o7pRS-&9CwJ34UQacXFXhp8=bW^sG1-zYg9eN2uh${Ei^9p}Rg0E9qLWTs~X{ zUPl24``#VYpTZnuLi8lPNfk}|7v?am|EP4_7PjxEkc>qq9Gv+t7ofWe&vcvC2pMz| z>|MC6->Ao(zX}f1049;a}q!aR)HO}AufiFU1ToQY3sX!jr6O7KX4BLS(cAVHkGcLV4m^bVJ zi)q|Vly?IAibA`Y#S*k*ZjAOlKLv;4J!SHQE=q$fu$r3M(jhybI|=;RzpS~f-Ym4v zXfRI?L#{lw*Jy=1{D7jU8A>u$gr84sZ0`C*w5?6Ii$>SE)|oap(W^KKJ3rDM?sd{w zkaBeIH_%xTQSgOhW^QvS(%snF+T-G|A`@-Cytuah!vYWRrBVE%DJ(=>USjCXSgu{# z#uQ)ei7Ad{;{|vd)??A6ia>hZlDX8$Gha=Ef|w}w)i8pYO+^|geI>}LLqu@T9)7$1 zh4aXOdi*iCXVH8(rjLsJb(39dkA3R-;Zt)j{pnz~4!>Vnnf9C`cYhrpwUaw~^lrmF z&g{niWxXSR7oN*{3^3})$o+QO0*9=mcSWi4foUZg=OTYQ2ZRN5Q1p_Nk-6=ljeodJt4HU*u4@HqO;ohR z^0YegVmrJqn#Ow_NEH#yz7#ibmFw@pHRz7>OEkMp-zld;x7Fdm%YQ$*uv(C9z2QKf zR%(0U;|pt~hTG?v=M6694g#Fa_?$C2*W2sFs}qU};zO#@E%13yx-2aCs}%bNOCW|? z=(dOjh-DbCs`72bd0=e(y2r0a}&znzF>Cupr)K0yO_}Bg={l_ zI>v;BZJZ*ljPGUZQlGhC?iJ;(5g2|SeY_r@%h-I~^&iAM#++oN5X<%njXeUas|tdZ z>4QZ{7P!`;fO*z?P@woa5aq=L(!P zy{4Is`37Hnc$_qJ?9|?jVwEon=V84ugTWy*8P(<_1DU%v1Ul>6&C=iD2DCUqS6TW0 zcpj$ctxO0C4qg+^^ASDUTbgIheWuO1 znU^q^+)B2>KDJ?<--kRy9N^jnXNh29?-M|~lWqM+EBw;ya?Eu~tQfZTP}f+#NzZG! zuHxO{__FcOd7-bVoKNIR5T&~?RP#{)r6>A-ZZ4pWEq_(Pk!4Nr+8#wZO%m2$-~TyO zO~C&iB41`hS0wgP39s_{`sbRSLG)k9#J8po19be?$#H)JkLxPbk_o+tPgD2Pww8Wu zfd5>3=+6eAi5inS%Fl-2PIlzgi5(u-Yb{VoEo8E;=4UOMdkLm}a0jItN7nt>xjxe- zoLkk!WDdc3>#cxXovMb085|AunFjA}VN8ZS*J6C5wa2dfy^gr-VI~_{)FS2Ce`0Ow z=Zo{;H2k{CbtqbI^McuL1eBNv8(G(eXz|L^diCli&l}jiZ-gr_&etvR$<6x+%0)uT z$d)xpvk8)6i}cQo4UX*(t>mi`akG<-MxTkE;pbF3(a!Clu6dgNqB|ELks8fWMA-;K zu&v9E-YR1q=ARRPok(TW+<`u&Z5fLX=mPkyi$bPN;>*hFYUYb_`I{nbp!2q}pQbb7 zZE9vVgfb)9q#Jg9kAbDz*pk}-j}@5_Fua8DIdDtyy=FjQ3ZiD-=8sujU0p&@zhlI} zhHigw*iGMDTWBSVeZuWjGOG4nw{g}3pi+=#iB+=x+=2&*e+drymDpA8k8pn_jc}xR z5GR2Yjo7m1h|$DmLX5dcN3yntL|CyN0kF3K^0a)6HpU~6BH;%^+6d&rbdV@sS7Gm@ zQv*{@<)NV=ff5xpwWr{M(E4X0Y0+V;ycc@J}qt$RGC+bJnH(Bo+o4QVDc!cx|k)`bGBZ=&~K# zdXJ+BhwN4XqR*lPmm=Y67$k0!H^G~G$#hTNOrcTU-ixmM{m8#)AAD?d;0;L(xz`?Z zrcb4|4rKCAa5vHH8BwsS$ZU-SPW*n+m39|jg+NF|DG-g7AUA^V5Udmm6{*J;m6TND z&bP&>k{Wu6V+a}i1Z?)rC??Ph4o}A~Bnu|N599EK>ksoTn9U>l&Vgu`S{7-B@p<(Y zDWv^EdW;rnAts)!V2eslR>vSPe4?33%iki%{*d_`yO~7dp$2kh_?*)`8O*m=BEaYf$LS-7 z-#-pn=-ps+r)ZIKPE+VZU-ec8tH@_Z)3@F`$ePRLCJq(?%@XB1)9`xV3B1*U$%IpS z>jI&q*v$R6<)&1gpB5EoelK^WSCP?}h3t+MJ`0W2{kZ(t%2l82j*w^&{1l7x#*kEA z0SlKm?lW_DoJtu~Cr-wXw;A>LAzdJJp!RrG$jq~nt-f-#YOQx0EYy@-+-H6-sPxLx z5em_WyD=aL4d{#Lg7AlGx|PDC^wEzLA7|6{$nfGoTjJUf*b{$(;-elgRMtxSs-0^c znxUp!6B^d$Ha8;-CoU2*vbukWUx<{CKC~x5zGhp%K*jFpvhou8xI0i-eyX)mFKY1EuMA3O^S9p&rQ3=2SzV;-Sd0&K=$+-GwbKt zd>!6lGtVj}vAd{Mjeec)ZzY3TgTdG)20_aDDopeq`S&1cH(5JJt$J6X(1C%95g%WD zje8m9tIS$YiTd6#(ol<42-~byJ$mv1Rb7m~3L)q|cKYGcWEu!w(B9I-kKca6aA^GC zd6a%QoAbi{m0>=Coj1B_>(7MCILxZ7;8N8wkUTUZFn11u%b`b#ydMSdY`4(e!2F4? zx2=jTw-oFsySGa<-mrxJ-rTH^Ed370G)q=^jQv=w^8LbPl|!BU2$1>JXCeaDZ#o%; zj>>fpycHw#@?v=raC_O6!Na&Y6dji?vu~`X1ntTckxjTdk~>)i+Z)wtF27a6#Z%RSFW4 zR!m@6B-t^*&C9Q7nU2bCJb^=-?i4qF&Z_Mi+w0G_>3TZuU5z|{`UV-7s)-+~HJ5nT z6tge;pm;>RFvw_jpf8KM&$zzZ=)(%636!?G-W-Arh$1{OB8i)NpJ0=<(q9_P@xD9; zDaSA_>Fcw)r9yu<^?WK-{~fZf+~@F+yW8`mu%^sN!?w`fI#Ht=+(Me;)-web{`wz7aK4*LO|Q#@{Vz8x zXnheGkrNxD-xc_fJ<9wWGp{cIktt|qc5o4DjZkUGNLck4&RolD`cvrXY9w17ba4% zd{Gxwo0T-w-eR4lB`wdiFgGu2thR6dh8+~o7%z&T5R3(8#6mM9=O%0v zrC-zIb51h$NO5>KT=&2kaa)qh!Fmb)#APABM+WK#zP@)Z!^IYOLcj(n`b)s=dLIx=$&j=;r^BHi1FpQAsA+;KWfHX@c1< z0`iowtL|rE+ITu+tr1oDUH<6uc0t7ASJ&fl;4l0>bncH%`r7n(^8s`f)IG>E?ix|9 z*nR1L9Fj9S>kFAw(gP#<-w6x7_+%JJpeM&ctM{DDlsW&$0k#Z|{8fdf`RD%`!s%6v z1%gnbE@T1_oh(RHCzCY#(^@06bXF!BVv-F)%_XmbC@r=ja2eD2%lXG1Wx z+u$*oGfkER^x8KSFqZdwmPDu$s#7ajtpERYg2RgU4$7imldL&!`c%xH{JpgOAYON5 z#$-}Q?{N~=t0upHjp#FJW(pFUmgQ7>Zhl2on%lTdhu2~UX`~$lU81T=b;8{!1iT6V6 zwvsoF+SCe#oG#X#NaOm|pS3T&J>#d7M24N5f-Mj0tvF`WE&+nb@tBvekw}LxWXl6O zr2Jb7nXG5v|E!v=)4r2>6>7U}Rec$K5;}I3YIA2^vXZ9&a%z$TO3z+v0qlk{X>_tv z-;M%hq;`GKYuQtKZ0dd$HjU4UOc#^n1H3LVeeG|IurT) z!N(BT6Gn0aycL*O?Lz*2Ryq*eh6w(LW-qY83YHVxlsg6r|LmJJiOIC?Axf zkN!Mah|posq;wRP-iBH3(`&A)Aa* zM2orU2Es#f(PVxu`I-_O!VQTiM&F;MAjdPjrvG~_n$q!AluUlm79MqH%m4oJ~T5$GcAhx;DQL=Qd1YvJ&lzcp`M_J@H#q5Kbm9H()B= zcnz?V$QqsS4Rrgu(6ztL$5fKyehPgc%8aPAv}1@JrpCsK7cRWqyV{f99vMzg^}W|n zSXZE{U4-bjsrl7}>3tW3J!ED98bZJh;7gK~Z!ee2m$Zh`tZNFAZt zAoX6cNDCWTln^KjcMDq#&v>z??$C0b&=WgWRQ{v{0FSjpRQ2b$j{I`BSKnm<%=1D* z*5A=pJypw@TV7Zky=|}VRLQkt5%)sLO~jpoi-ORXVm1=FgZcFYS@61UjyXLTlwkX2 zp%jgzCGiD3(N@`a6ZZ?Pl4#H{iU#Ln(JJiizsy3{0T5L76J-dKB5L>Un>-Y^Y16O| zxXG97I8d7qt+Xn+()6^i#!_Lqs0fp?-mZz?+2PV+(f41tn8n(6oBHS{+D&u&R0H@6 z@Y)l}wWTK;&`3f=DaB>4d%5a>ko>-JTk>t71@_tlohb5OtnB)@VxK+iyNC;bsZ|zs z-4NZJx^JX9_~(=yF{j`lD(sq5@vbK+>ie*&PIXMIAv<3~L&y!&_`O3#Q4v3)Y&9+= z->ZyHFOH9@HS#?Z@4GMOswqP>NPmTBXXxFEPoGxUe;`W`xNM1fM1}&)CEsKiG0YY- zLO-7*jejczRo{gsoI2yUV>RAbt@e}x_2mZ343JJrApBpxm;MTZKu#2@6cLGg94UjMHLM3=p>CGMI?8(Fqi zh)J?O8TW_|>pEQcu{f$n-~GS5V(Qv7*)e_dnQPy)jTfAiOFn@~k>4QfHU- z^4F(ub%11AbL}>RMj~!)ve()`rpYwY?Mm#dsZ%H^)3Is7DBOiimux+xnWoiLiPJ-Q zK5OwsrY9eBHz_FptRWxvyb`BtGSyd<(|L}1!7g_DJLxI5%OEXe(^>_qV2(Xsy@s!t zyhSp}odAyS1N)xPQfNl5NgY2zipUB=I_Pmk&V20qOrWr`FL#H$3k#72-@y8yowT-`dr!H$x<9R+`puF?_ZLt5EqaS$)ou)brS(1E$r ziKa)|MP7EviYlZ6s9w}Td_sn)a*mHPalQN|1Z{TZOjTgD2~?Th4ob?ScD-q zoV(M*69vn&#?qge9ly-l9yyk<)(Cf?d5Oi`Wj9Z)=*b9ty+f`h=DbJLvtu<6r{w%T z2AvThbsj3-$t;8&o!tu=ZAHb!9-5xELa0PVEafEZyj-k)ylT2&zQP?a_#%Hwqa^np zbk*WRhF5HqgentNTmFt8T>BQ@ZgWFD%*AmN^{|Nf)STZWM_pePTlMvPP0*b?3km8k zi*wZB*LdTE&S3_b$(aLPKf5Z2en|x@}{LTZ9ytYbL ziB}#E0toT$R3o+n`=Uuw3Zi^zsavWeWOGzv^b8JT@JJX2@Cb&P0Y#Bw?oW@vyn=U~L>aQbZPK(ik#7syC3`z1jxb7HP$pMa2oofya7iycW z@TvhJA^dVfU}Y44&7D4;nQqBD*w&wXnUFwiN-LRif!exr3+5h@nET$MJ(!?aJVc(I zO6M*pk(=m+{g3mHZ`&H#4{FDto(AjP`ess9RuzDU89BGeN zW{hp$zFh&QUZ05+L%O=Ow7#ATwMtSWPn9>e$ArdOC881IAsIDNxW=PuTu^?r*DQC3 zs*1|poP+u6M>tyEP6-bSJB*v%V=Nv0Pjtc3;e=e*@ZsA5F^Ap?(j7w~Ez~Brg7M{v zhQ7NtM~2gq)D6;N_QFw!GW!ksg8PAW`sRgmXRI3%dnvy`$=?E@-ew7o@M0^5|3}& z$)+MFk$wL@VJp1bt2g-N#<_?mem#@Ba4Dm7*(`2bFC;je$-gU96ifi0qZ5=4y86MG z`73sW=nMjSJsdM11%wVozO`gyde`K>v=|BBIh=)r)`pQ80b=WWLub+Co-JJX4{SLV_E)F1Rrv!SeKgAXt zNr`qyk=?`nt9x392+dLen2}qhhbcj78XD2y9$CpQt;sxHA_UZIEkpX?epSc8zp6Y% zzFe~}%0P?Z+R%?(GB~icPKaxc$|Z;eZqpDWuLV#$6&iFay`LD%X+Ct@(y#C-4IY3Y zGvC&&K83B`JismhyOBi-$=)%aZJE6XRYatSf-QxZ&_1_e8_^if3NbC9qK;kTbC2mH z9?x#N@M_1!#QdoGtyi%c=g7|eED7B~hk9N;77TTCzIcV%p~!*JV&PvNE5+>3WVGpK zp0j#0s(+QciZuiRN6ZKX4RFC?)mmLA^HzQS6P(;;Sa2DpwZOgwJ{TFkiOX7;?ii1?WhvPyVBsU z5-+)Sfz=0y+#U!0d+(Z}M&!0Y&0Y&*!1`((n9?D-qu(|d*wpdK!1K0KBhC@rlsBDu ziGBq%PDcL^V{ZbM^ZLDyX4si3GYv{eh)^0d7ons`CCws9qtc|A2%Cx~N|7ebB@L9y z+$5z@Gtw+64K$v6z4q_?{?~QRxvtao{qD`K-uLr|CAlO zx7`V$aD(6OJ+-y9wg_V{19(>B)6RdfUI_IFso*4fL4iSQz&~sIohc0Ntstj(JV?CiUo3 z(J6r5zN@WL)`86{s)$*SdO7>-B-jv3Y9~?jNP;y{i!9StUoULS-}}zAX1AG{{MCe% z6szicKOg_Zhydi?>nuSn?wQCxJ&9_MJ-e=^CI-vYt&j#%-j#LFg|fY&_vyQL`>F9Q ziTW4b3E6i|amSwcNpuomoTA!}k)Hcuw~%?(5?4b~9I8Q4V%^+bhol>!z^eLx5C=9E zkOB7IjY~jlXrD)+=L20eHMM&Kofc`ZZkeoLE)uG8oBgF`$-B|x}&<9$VbN6 z-Hd5e7-CS>IY<_k)Pte1DpXN)3_45l9oWfUGciz@MkO^-F%e#C;`)%fg0=cF?lH15 z;(p>$XreEiS35|nqyzVq_CM1S3-rwy=zZmuPs_QP=J{X(+#b*)tRIWHj#?r@3Yl7H zqk#+3iE$rcGgnhY!RJV~>0Z5hbrOy+v|PE#Zl~J~bwn&Wmc34e69)IvbU-gfOcYS2 z`9Z{b;&%LGOv3=FCx*ly=S)eDy+@9P*5(xf#_Txmhn%G`I<+2f+(W>18l=29RDDx& z0)!QqL^Z@cCLlrcd>d*#^)4h*@^)0cpz~SKCY8Y72zT=oEQkHgLS(SV4V>?L4mGR3 z|Cn1iJ(5>gh@&A|kqXtN;4rHr{XJ znN-B%x{c9_mt^JSOgBPz_f@L_d{8&TPIO%-2dtW=(z9U6_IR&UL3MR?Er5Bn?sAUL zfPGK-9n%Df7%tA^IijJVaqzj0Bzl)J=tK#H<`F*)ZGn@*V;2)qWD~#-eF~;8MO9TD zy^wDRZWNIkz-l6|d!mwKu0rMoZB~%^y{2lh;sK3nA!DwBcMIl!JXJhk{scYs-kZBV zm{r>nSlGQAtG4A(bqy>DI>si(5|Fsj7vlKOE0Fg!g{a!^F>|5gZu8!5-{mEd#(X;|BX93X^`CYsUMM1&EZoc;$IB+Tn( zmwj+JK-0)54fj=@TntE%y0N1#-v$`~AqC1)VQYxLvVZTKMl0w`KtVeDm~aiO$+yyb zpGGVzfN*ez&4_3+tWA}lM_fAaKgT>NH-pHH$Z96k(xkb#YHBjOR4)$OU(L-;>Al~D zj;G4GS2fG$hb0b+Y*}F*V(bGPej`VKaj9_*za)>B+B@72AeuFV)qq)e_@X@T$J?XA z5aCf3490zhm#It8oVpx0lJu3cs2ildAiPI2FVK9ed1 zRvOklUzlaD=R{N6FjyQ;#cuzTUm^&YgAm1CFrknLaSs#sKod8ohZ&G3O4-TJhL&1} z?sCsv7lAaQ1W&X`%NP5*O=XZlWQ~uz5NSuS4$b6q5h$K*%Q8@Qre|RXz4@kE-rU@L zZ3JC*{H#W8mPh{N11qYy_xT@o~{=VKdw?Wj9#8xK1?~U6C{wcWg+fh3v z=*VW8fTTq{wi?Vo5Cxs*X)DLd9^c7zdwt%Rs6MLZ7~BoZYR5Mw2J(&7?|%;K-P1B` zuhqV1o;i3=5@1@cgR*wveTm-sT?bl*s%vX3&0l9rx*HsgHV`$GnX21=q1XGm--Do1 z0nRMkAGEQvgT;%hE4QKT_ewe^ceP34&I-XtEm2`Eh1nsZ@gMrMFT`r2Pk-HyEizCN zdOZ?}kZTB}pL?3?;Qf_JxFdKGY*wb2ErHaPZ`5LZn3ZV~C~V2ON1xUoM{D}O(HN@KQIlWx#nC{q zgHY&C;_J~4PZ=H_e%g86-os#)8)pez`_&a89j5IbsXJ zYXbgrOgE?C^2*&(t{=iXd+{CfrmvdNIYV)=;m#XG;zek7F zPkKlxf2ee8Vp38yQ6FWH|I*l0a6_)9oPRG=WCnT+ocEqXaM^17>tGelg(WvU$RD<3 zue44AJ&~lO3(9{YNhSf&(xRvO+iA<<2%t$b`ZMk+OXkl-w{w`}nh+yi|J^u(&RjiM z1)`V)pcc%yn-;9BRrd>LDx?OaBQUnuWpc0x=R3zQeI)LHhznZXewE)PBR8*ZB#dHP z;Y5w9y!xaSHZ`mPnx4ZdRa>`MIQ%AV6 z>p-{ZiM%LLdeA8g`Ph?$Glo9G25c!Uy&rv29PApc#_d&O-}$l3OyukmdVdQzZ%N;x z#L{*RN1we{460xK5JrErHlNoZFY%tHdV65mSq&_<1`ZI8!y8z6ZBZFG)ajh*Nq+L- zDAGSjRWeb56F(Pan=VEy0J;F{HV&~kKNWlCKM@p$s4s!r`5wp$Nr7Dhr=9$;Jjq6Y zfv3crwh=P9pyeM-Cs!o4-fmOOLCXCWpn{3_qX`lbYG}sw#ssQWK|~&p0+WstmWkYP zG*c2`A;L9nb= zok&u8l3s__tdYK#^M3lO`b;WpF+12Y)SS^&=sEbOU9NiDspkqzq)LBD1k+gL)(9FIUEkRS#grxK2hPV?n`lG z4J+u!80_G!wT=(04vmYGSCSdp6&w<>%JzA6M{{4_tLLWusiPP*uUcz(gRSpdg%c_Z zt26S)?giamdUWhn^R=S=V7BLb{Al5b>%GU9B%^xlfMlU()4Hk$(bw+3{-X4!?dtXB zS8L6bA>YWhY>0xS(g4S=iam9_U_!Ioaw^iBtubx!&v`Hn#Ha5D#BKGM;h+xor^Wfb zx{PHvD1@9Y#i-B_A5ZIN6pqmg*Jh~fp?D6A3RMV@#UNfV5ih44#-x!#r?#i? z5_w&R&^8PLaL$EP#+vzBWS!GT-oS7zX9j_BWCTLLYTF|2)g#=G$!r`wJOF{`;9^Jm zZINA+gF-?(pUTLbW;>M|SpZCWp-s4em64LQYwYB+5l0IrmyeZReyfCi*}|^Njd~{M zuZ=ryvQ(~@=~g32E~s&u+Z}ad_^RBb0`Li=VK|!gK}W1?pXn}*1IyT=XwCUUSJx1hCzEX)P*d8dDxp~FH9>gcB$7f&kJN6;fKJ@!fna|Qcb6Ssgstk|$eb}_2I#%SW zLB{c#Z&rTevhYDUvps%1>vH_03$u>JdN>rVM?Q&f8KKYc=5bR$*%;6P1l7>yM2jhp z!VeN%YYfi4{KweI4t&|#!yZG+TQC~FzqBZoNQl>0=jnaAU3DL}_^5SL-!{VBnLnqA zyGwDxyg#}BxEQzna3i^sA`5JZd%XRQN>)~udieuOkLTX|z!3X0u%*tfB|xq+S;SQ- zFOjn*se9sqLeksykE);5J9|DciW`-#SogZ}M=5ixl+}=^_*U`q&woNpnB5nKdWgE* z%S@_@+LqIvr|aS}ZYcGb-RH5kw>Aiht#SM%>18a(on`fmbDGAU-H1h_wDz6Is~+ZF-WV^RQSxEq=6r03hU^A^Y2mMT8LM&`jL?ng zJf@LyEl4fY4f4!BuFnT5?E+mCHE5L@e;HPz;TLB#)vKLS;9nmAlLE8@@9swx>%}L( zch2ZzB$m`Dd)r98V#;?V)XSDVQ`vK1fbAn-DX{e(sh;wF87a+kSo7DWJmkvqytlg9 zl~bH9>WN(mdeB$ZS;ZXOZ+%3)epqJTM8Sc`yX!RK9(S$%e!5oGe2Al0>(;ufwNdx~ z*?!+f`G-i7d7o;7Nn%u@`dPn2?i0}y?QvYyA|PRm)gV{V7B969wmhcsLu66K8L7G6 zF9+^xD5k}}+v%}(_PkUu8Rabd-z-1;y|Vr-^}PZ6AQ{n129#BlA~rvUio{!MK;@wE zA_P}604_Aw#EkTGbP{m$XoPyDjpu|Oxe353%1YZ$W&1Nl(4BaTRIqyZ7Wjp~Fy!Ro zdhMvN7&SQbW`^O*uZ*=zRe63dT03eVqeN2|f;Vib{9-BA^Ld?tR#4Y5pQeXar$@}q zhH_jC+%=wL->KaSE~LU85pK!neTGtt?M*L8YzNTV;iRl_{)Ohg@`3~3Cyyh!`oZ~N z_AHG*236mXl8H90yqd{WDTb&PceZrr&6wYdCo29QXvC-VEN~}xe$8T}@O%&O$jl&0 z0v%kfroI(H382W~yf6-M2g%lxvSCI*;#=xy_QGk;!&~sp&#%w!ZNreedQ9>P*IZkZ zr+-^ck!9{|P)u%=G~Ui0LFVaS681uU-b%A-KNr^iJ1J=@=9~?U-94uljJ-I+(0R^05m|xf)uaGppCq=-DHiT+WR+#u*Pve zr1?P^Cd!)iHIO7k-Pr!GdX)Q>rVF3-U~(|?m zG0$LTU}j2=GWs(S4k7S?T3bD`{n@u=7*s<~96mmih!Bf#aN8mC>)k4D>G&IUHYwGe+#_g%C+Zo-RkgT= zxrIG1Z`5jt@~dmFe>$I>4$WSuh-|)h;AAZ5{%HQc*W9S<*If96oQTf zn~=1Ip!%^XwQZ|HOUv!Hh?n6YPmFTQS(x|6bRIj??}wlelI169Q^0~<@V`KX$-J!p zfQq4X*4cmefgDtE=u4ZyXoj)rk&dy2j=>_V795dc#>t@U=fkWNfaTxvwVh@<;Dle> zC1MpA+At(G(PrM$ebaAQ!ozht`~|0$>ir|3X5iMy433MINKe!i!xHI zF%sX0CfqZ0V)kC`=qvtm;rsi_f2}X{l$M?|J99b^O=3U@r?VPYi0sK|+9rH662SzG z+xX3GDfX)?HhF!Tz~i$=52>_$5ZtL{W`I77EiiuMdPx{`uK;k3xh|s-v2?VN@$ilo zAuS!Dx)Us+IshMyGKb+vmx&6<@iZ;nr6MBoM}IG#smB;V5P+NtyTn;GSoQ-stV2te zGg}rZ8+smR9u!qq>&bRa>w%YNwU|8?seO9Zt5>h?rYv$R>&fi7{Q8Fd_jUWm<6dp` z*B){i!#tZ7$Bvk*HIH`gwQXG~6$>&qXXRFvX|F8}RVxgxI?xlCW7HA3{@XXHE(pS(_>^r8<7U}S1#XjA`g0mNf>@yKu zwr)wtt;^p--;YmtoA2ATE41Vg|6Ya!yR^At%tJObgKyWEbQ>RTk*J=3$D%txE&mF`Oqx8 zyVXI3ao5uzK%SK za0~+*_jT(gp7)(=3s^8Z()c5!7x8pu6Nv{K+-7g92W@$s_*+61WC-Q)h32^~v7H)^_*2Jf!E!Oq#xVIa2 zezPoq#efXN?EU3#(Q-kXo#+x_E{VsD`Z357x_fN-zPs#FfFtSo2EK6W{Xzk-a9mfPG{Gv=!J;%85XgGd3EV(lI~Eb%hu|Ch zld@LYnI>_nx10x5JIex%&4Zd_=pAww!Q<<-?gO}T0|V`aQo6=#)|{Yw_nN+Q1uN;J z?WfR(OA%^nGF>#?>3Dw5?CT*p(WPa!-G%$txQ1PR`<`jVlEwLXr`P=I658bba=pBy zOK&yu-Boqxj4d#ess|I=2V^e=Ehzq+CBUsc10sYk52O95Zbi zZ$j+?;Ic~%JZVZSY3a~S9|7cZ#i1X))&n#IK=--xV~?T02a1`*9gOn7$eelo#EzZW zox4qtm{zMvsbWx?@sknihS7ocW~wml;X{QyC((|5#ds17F2DfW-B>8v)tl%;tigk@ z_$c&-+KROMl9Q9gl&(1ca>-Zddn|3s8_;?^L|n5lCMIT8nmDKL0#T8{sjjWJGjg&z z?{gKlRh(ZXAKA62+~UW;_WNlsmQDRR7?V6$Sy>rLqaxrZeo(Q#tEfD~x)?#grwi>a-vW6pnM zy&ImctJB3G=lP+9lX`syjF4_wkWl~@Vfcn~Qn!xmC@8X%=MBiG6^$?fTP>{{_4PG1 z@t|fW%Y5CqWlPUIxwYI9c9&iA=6!a|^Za>y-@YsF`A@B>%Jk&%@4}NRecgmE8ZtSkH zBAy4SqbSXSg?l8hd7s)}GzOM{esTuPMbh!i0kR?aHG|7{FKfkuzr1zg?N$`6tn`SL^-vtlp6J*E3;5{E$r9Tc7M4ncF=qDm3bC(O3_ev?}<6H z_eVc&m~~N+(50_u5c*3YuY_&ThTLfs?DaT1$aUk2zJ&;<1AHbeu=G&4xPEeVN7Vuy z{Ehpb(-+i45D%`+Vdgxie^=z}(HCK59aZSv)Fn=%Kn1-~>BTr~I<`dLmV*+GR~Q|& zg}R0P*-ed`7c>USKM?tMWG`2UWX%29w=B4?}k(3DjG8ft80lch^+ z<6bB|pTNH9RcuwA}agNmIWkIuN3WEzwq7Ts&V_{9d_L(A<9I_)|e#TwJHJoziDrl(*qyEb7W>aur0%@e$~o zp!drqwXLXKXlN#JufCby%Z2e3aMmHvVW4~>C)eqK{oHxX6!TYKVpDf;-ke0h3uCp!%uCmaIPz>d6d zAig&W?yAImYCsKX5dJ6l5%UwNjWw%}$N#FHz5^g5El4WC(lO62z)HN^pN}q+7g_m> zPdG;l}&pwz2TqajTBod3z|{? zVN;yB$F|Gu^@*L`0EjW3eFEF!r&t?(=JHdKvx;KjK}tiPpbP!iybT&L@k_li} zeu6dfuR(Th!VbNMD1j#K&64{Mtyy7uhV<4GkAo4U~lq@g|kj|lKg)QVJq+b}x zp@iy69X7zf6_GugEeH7R4*L-3kj!AAL2wDzqdm__%5M530d7+bg1Wqbt74O;o*q|L{{N&HcUMIi{#~0*@IR~Dct=0r9I6Mjn5i!eQ#1a& z7M=mxa@@1$kUU6UN(fa2jVhYew_5+)MbOKteXdvXka4%^`OmLMW=Hre**X}{OSa$K^{O|N?gi6qTgeDm`Rcrw!AmdEV*x)9?{owNaYDo37R#)E9{Dl( zWkTKmnN;3`^d= zpBKeq)8t}xk>1H17SjZ$V3?4c!;fYi2=6cr65_VN5|aSLqUuRdGOVko{G0&Cl8vmW z=k%m0g8Ko&S!u*0!f)A$opbxO(J@9Jg628Ss;9+)72CapK6}{m?wU*+H!S?z&M=F{ z%~)0PMX%+t)tM^Q^zA?H1AR`;8C7)Bz6X>pzjWSU9>zA)j_{~}$ROME;tkc&tD8~iAhLs~ks{1sNKBAd{O;cs2Z~3{Ic~%HlrWRQ8Pi7>@?7CZ^C`J6OnA zxIYcxrhKx}CH*7Qvj(6+q=*6phe(SEwKH6?xXSLke|MYLT=>$^8ABuDXiO*Y z)1+}z_FYn zKB!%A#JUDb=DNTVMLN_wfy0diKA2P_$(2*ku~6v?cF#B97O$!Q?0jcLS#21mgzYXY2!;Q%)k)g`3Jdl(YZ$wM9nU#RNWr22RmK7IJ7feP`q3 zPH#Rk8$@c=N{$qM7XR(*H;}BgbK{;dT}vQH)&=XSojY0!X0VJz2ek7+vaCDTj5LF3 z*{3gwl2fPJm-fqjitm-Y!?#7|ZQ`p-e7@XaX~`=r!k6>k9};*px@IW;V^3gHpL)RC zZArC}BKM4R&PqR^t6@?s?RT^Q31-l5>0@}ywZQJ4_G)lg80Y_n@>^bP+O<8wGgG>K z*}=*l(bBTs;oH;rN-`7Am*;rKUggTXaOO%cXZ}I8 z?2`VGvi6Y@OOaB`kg#yI*akt#hcqG&CU|}=@dAfP@ zA1C-}_n|*uiL?_0(badThsVuF`aoI#<>wGwRXDAE$m>cNQ8G%b<{>5SR7j3X_F>*?z0yu z7zjW4oCRsc73lg`?)0wisewNhqqB?%LL>R`?4R^)q)DygEdw5#@*)|HYq#*{1~LzSb0uYWAGl7tQ18 z5LmD+^`_IL5O`9v6LT6Y}rEqrvw=lW(p_vfC9{ z`(&rVrjasrN0)%nwTbnu-Xj7MnrRWP7GI|}GCuOHC77AE#IBr3UdX<$>Wc%~^5v1q zZD=HEGb|uhbwOWF!;Ub4O#~ieruCNSHbFWUQ1-SD`Y$FciZ@D2((>~RvK)K`B#v(? zd34`EIJhT$uKt6FfEXTwDn1TPyY&4IBeGK!Mg`_ip7%#ocT|tIXbGg*B_?O6UuY=l zRll`8@MYz9m%x{i_phAo4G)g-Udfu6>}cMUy20+k?6oR57VyPa*tXU#@(Zk)>d|e{ zZ3Z4Tz;fIb^ePsDmUls9>WA2hZ0+94 zrFZms9!Q>kv{@qIk9ccg*?mj(N699l&)fu(%qt%m@hn@*zq>cdy>{s7lz@!>rmN*q zsTUFib5nQj*q6;0c(9D~+mN%Ce(CK%#&ylrz=4fAGSULP(jVzA%v>JMV3>FOx-v6s z?vsXOVAU!}tIuXngCvmE9Ydc+aWQRMreoII?-ccGSVib5ukyC53e+vLT(m_mn)jP(Dq>lQ+C#EoSvksebLoeN%pNxBRqW*`# zpQ(WAj^GU?oTDRtCV}BR{*xa5*(>MGC@LQK{7bpk!Me8Y+3B4Jdlal&K8C-~jP6V7 z3)9qUT5;nV<36kr2R6DQ(*pthN=vnMPT9!?lfNc`)~|A`u=xfD0~DNQ*`4sVDn+34 zD&EO>Cb=I{_{Tm*FDoyJOHUKm^BtPtyHmvbsG6(adBLN{C4$OB&TbiDs=}PFC%P(; zoSYOZ?jJ4d+Ev^$^kzLjrcu4p^h zV}WliLrN@f)xMXXQ>jj5LJ!aG!aHC;ud4O99u;du(b5mSh!L$yIDYR}bVt?7p6>Xq zcquX$%zxPu)rx+K@%wOzCk>5YM`oR=;2|y0SNibt89SC~@5Hy>Ku;dcjJGl4@A&^r zl?b!zj%q(`+fggga!^e&*F#C&bXzq4&1B7c=6(5+N9yAL?d5kURk9w;3Kmrjh=OgFdpc}+`{pgKhtWV*w`5vdn)lVd;NJ9NQ_&=qGY4)4 zB0B)p;S+pYF4d{>Ybd(!jqp1HA3625fn4}i&aNXU%*PoI?Bq>~W=sHD949bC_i7^aoe#!DR{>l zizQ&d8}%pLF6z>*|F9*a=}_=x}zTUMtZ_%(KSTz+0uMAoZwfzDi48OtJAU z3#CF!jz4!+&;@x#?rAw175j+a!wCAs%5kXuIB;J`b6+`5_`my@UMQ9`;Py@Q~++%*mKR(u{tAd z+Kcbhn*09J{#an&|NV$VzDj_J7-v?Od_?w-#G}Wq==CHh3*S>6a(Z zf_v_xEgLo}d%Ktl$Vp|mx-lMMoDOzd#;UTrM+YEi6Ay@ z$*i#xDQwzer6+PY!74Md$USiwyRR!^iOh% z&J+Hx1#L%oz++IgB0t$a@!wmqoW zsw~Wj+tYk7C)A;C%az>En`GLS(o9c70Nof^wY+5c)rp0Uvpxy?oZJ zD)8RcOuoWi!ZO7902OCUyv9hSH<`I(?-8c1n12`rUy5OVZiDXLz1}#!U|7CXeISJF z4d1)ajib$=gw0UMt{r1^b8FRyDYYpJoBYzG@PHVkQX~E5>JPS`wN(o}e)PMk@9uTl zdu3!ros;cyC++g2GmiTn%ur&xp>4Wr9v5TrFG&UeW^Rfns#mJ#*Z0c6zaw%4fVLSr zCQC;`_#RZO&MW}){F*D?o>zo+!%Noh_Y*akSM&TjuB8kGdr1Jp z!xdZ>oF_B93h~uz8C}qeK6HMMU|h)mzBlf`e2lNmH-IBZ=7-wAdEK2Vhh;k-*EM%d zIXgAQdXKc#-y9#UN5zOpXM1RFWPUe{zz^{Uq9lAWf{K9*HYH&Q@){Ve(?H}1RBh^L z2^f8HFMN!KVWh*=*Gp|}@N6!>W7P1B$7G5Z*#7+I9x%;zehx#kGZ8#+)J4gys9srh z+c2#O{_Pw?d{^ZueapnN9J@9?`}!NGLrsL=O6|V^2TZr7tr8MCVtPlZX;nToV~$R< zm~CH6r`ycfotG!(Pqd}@#XJkV<6JPieN6kr-(rj2{$wvu9ahQ8BZh{l7=L1c9!+_{ zI*x0wCPEdT1#Y>Q1!+^^IIUvb5gY@zZE9>P)UyzEp+G+B@$qfOQ_pTb>a=UL6q8u< ze9NcsPG-(EZ1d)@8h?(t|00ab?DHRUiRh1ak5p)Hvx&aPJ~NxKJn-hr>R@pImOFG? zYtNMrb(D=@q}OrMo)!nLF6awT*}g!s@+VP{!7!~xHo<uxFjd9rjdqvbm2_K&G>s2|5{ z;3GgzY!9ut-^qMD>Pq3u|G6Te(_;6?C)dV;G+ENqq%ei5G8dQ*3gY@GS(?9w z9^xtTOCe_;be%NS)gM9WSe!-EuP`lCH~&n0(;575fFyZ8Ihd6I-1u8Cqso@Dg>s{$-*H~@ z#MHFdq2;>q&(SJ83Rje-olEIe6#!b&bQN&CbU;T@?~{T_rVJ213})4+aS_`DqXYu9 z4vpcbU#P!x2LA#;gqtpGH5h0~WJGUcRuT1jxS34dfhnAupMUSf@ID+o`$7GyM;|>6YW*!hlfHTY zR;)y8T(`D;0zF}n{7nhfG?$q*y7%`aUWUO1z=Ggppw~>V>cG>tD@Svuk(Wvszt!l$ z5DrO(?uj4~fP{gDa3S)VrH*Nc6lCH7eb`xt)I~d&=Ik+|9$m!VJ(4c4tYDwk{nhE-xoPr%bYN0Sn&PNY3`FB7kURjL12LPM9Kj zDOXB%{=N6Nj>Ejt17biQ{nfo8l;Ftgu|rHx@f?swV#RO6u{5yx?>Cv2 zp?^$&)V0C@bun z2Dg?t=L2T-z~a9W5cv7&-^-=n{XFlehK4s=v!lI7p&a8@`nmqM59!^kB4_1f4~2N zjG9CM(!F!i>`c6wNXN)@k+5+{M%umlNF~=3d#9IL!+wByr<*z|6T5nQ~|f2yr!;)~?JqwUI8(_`eC=#c(g;i>?aLwv@Uwi!`#Pn`(I z@2OSy=Q!9sb0^^RS_bA?^gszvOXh0ClKU!)%nVLB8AN!wVKlkE8z3{Bc*&236Ao4A z(o)pN4d;Fw+T#HBNBak#2I5$XkBYiv zzj9?vQsnu6zn7RoVV3aiM1F4sPrt;Gv|MJV=k0Tt)_(>u!*kjVT5r;}Rl*ctW$=AS zg5%H~sp~aFgggcTKLl{qy>y0}8PUvj*avijujDs=j+*zPpfrGKt%5AImU% znZ(3LJCIl5sf=v!8i=+!YNub12y?LZhCGP+(BK%`m~t>9EXYK3ORcq*p`U8Y5VtTV ztAJqAohK#H0p24+&VSy_Vd4vbpFxE4*X!em5gZ@4EWFrkS0+f@t(x&?`rC1C9YoL1 zu*L-^UZlGc`ah8PJtEyd^7<;uh@i8I|AFH)G4DsN3R)f{h#-UK{)Q);5*gLE5CaE` z0w!tge|TOQ*J)u6txppBj-CHp_%3i8|4K)@ViS>W`3v67JP%3*xEgl~F-3}!`UrDl z%rWOly?+9>Cg#X&)cgPVB6;p>_m}firu_bm5$r1|si%3-SoXT`g~meQu9YGG!6I&_ zcyiH1@j$|Un3xY{jq*JS z2s}g`hpt~q*)O?Y$1r)-kr771qx+nJ#y;@Xps|M>K9|ny; zbEORnpU)I%U4FY}{MhogGs4{Y@A`g~wGZwS<${wEv=nJhtrs4>?L)uQ0Rp%jvy`It zk8qRSlM1~09vC){NQF;!O>|Czi*5jq0;H2!biv=hf4}7p8>r4z9a!Wq25|=Kk=-u6 zENl~~AOnH&oaWdk%)lceD>xSLTU4t;JbW)miJ{*HMwr;i$tpbQ>i2SN;HA&G-%|(D zgg9A*IbW>>h@0sP3UrQH3)&Y6XswdD4=oQ}dlWtvds^SU`f{$Dragf(I6IXCF_Z+7 zH8nMn`LqwfEXmvqQX7+>Cp5#ky@^S~XqM1jqLB(B7$Xw@<1u*F6zwR)0>sZe@p3jo zvLa)>X9_ab``vQpP}TjRHv`JJrv*3YTNfVU_rAH`d)q1vmSwYa9u+4hn9ok18k(bV%VPR>k(_|IxcIkROjzxMF&oRX)Y#XQY;+%|;fmlV>eA>R zge-D;O~3+EZ#e~#12yu40|TQ;e~6t>kAFwy;*?}M2^KA2!34)7z7p$QNvSV4c(Okd z`R(peE1Da8a+gZL(eIsiP38h5K%R?!3Ot!oZ*0%q{Jj-WAQ3(*MS-G#@u6_T^}b!{ z7D>>;E~Q?8Jf%=(BcaP?Y9QA*K!|1z!Xu^7-~;K9A|TN<*&y#24aUmI$goGF!yN2O zkO;9y@N3st8Tac`z@ZG?o25#s0Y!cFw;Mkn@bT0>tqKsLuu3B!$V5n>p>zQ&QzZ|r z5QRPp>d^B9Tyq&{ex`v#r#tL#<>*s828)^bx^fsu2WI^1UOI;Twt_|hI!b=FOw$*5iQOE0hPzjQ>X`FVAI!WOuO|c7QM})!h#8(jLOxGTxQ0= z&0xaHvwzJhPHZG%Fj2gWii*OzLWMv&HE=6HYYr!RIrZHBt}8a$oxH*tfkB<=0-HAI zjG6?p9TVyOd3*nb=W^1eP36CbE}59UStcdRFfHcq`FNSJym$?Mt-*QS8_;*eG*Jt^7Iy>Pq<}f1lE+&k zy*pS1B#uOkh+= zmSRh>12vu?M=A87A#yz)d^V=aa5RHxrqD-#Qc#pw%fK=N*L|~>2h8w?Aos+8&r2j& zL^>^yWHqV0l`ms7Yu=cM#A_Re30EhVmK-`ZHo4+->{=OzhXo%~#`mMyF4b-(D78UH z=WI!@&MkrHk4q}LnY?(33y{fUZpM2TY0y>u^N0oen_;apt}GDIZ9W9F)74nfcG0Y$kzVFP3gIwKy1kEh>bsEoS0D+5EN*v zkuxbW(i@g)Xt1kBP)@a>N4fN%%F(n}B7o_4zDKZb#xwD*%X8>kWjg>L`pw_MG}I(E zew{|Sq|k?=@FwGuDvu&d7_Uw9h{b`7iHZhfF#rfKNYYHyUMapkl3Y!C}t36Saod+%v+Q zLFPG|xAu4UZ#>$+Ds=a4P$5c@`Fq#lsM*llXD^urkyoSzfU9Nd12*g|%pATKJ(HpK zuwgW;c#krBE8t_+5o71)X9dg*+`Cx%rx$F`zj9OgC-{bOX-m!^V3@U-2%`svP_?f9 z5FD(cTH89{gP(}&VX}IAVrM*=Qo$<##(y*@y@!S}6Bj<3E_gmd7Iw;RjD-{GnHVda zk@*&exjC8Ui_^q^3;OM83BcjTWM+Zup@Gcg&Oj+USUjYF3I;?yK-JZ6p8sB_4-$yV z+_nM#_yPFRtjxTR08WB87tiQ~ge{=y)>D=HCJ?t2s&#uZ>mY{%C#vq<{QuT^UVhuL zzl}Vn9A3D)wV>pW+Y8O^I}eAw}7pe7_t_nfbbBBI!f+-^Q_xzS;;Okx2R2 zE)3D=g0J3;`jGbnGuxVYG*IRxgUID0Q@O&lpr#c_N9gv^@w}i8G{Ca&8bBYa2Dv?hwPU?ce8<$--gS#S3(fMeIa69Gv6+7rOd~Xf68>4VsvA@!4R?3<=Ts5#?)k6Imdri! zh<)4fba?=8f$3D>ryRirgC=QQ(xU~^KewC`7u#LCKonAq5}$Sf!k zcp(Z&awIXQGqlg1O~8&RxYhScVsPCpDEWN!t3lIcG=i8!iU!6=QZW8t=FeI}5QVse z*#UWg&wq?GcIpxxEb`w?V)%PvJf0Ovn+gv#7&0lD(39}G8*gFXcP>^#E$7?0r+z85 zwWaq>j#`^$tPv~Vp2f!)V+FJ9*>$9@@#WaHpIq`@h(dTlz!J8{r5`|S6L2&3hie58 z9t9&SsqQcuI0jTVrIGTC-^BeyCz}rWFe#^0B*iB)DgblG<0)y;6dmZDxW;EQ^}jlN zz^V31`#f|-aBdbqz`*AI)dRe^&iJ7}la1QP(h_y=piJSsH<=heSlU0RGE|0pH*h{d zs3bnj?@B*Sojq|XyjYc3O)4cSu!MiezdI98lb zwpko{gA0ODjDhhc`z;r`3$d>hi@j_x+JkJ9KwNVHYaOmPs{-A}#|F{>(5piIbrdJ| zsSNs7p!sBUG{XGE;t+= z_7`fO@CH9*wl~8uP>7&B418&xffK5UUIgRX3XjoUtQ^9MR9e9i^ae9Wfh|&o1L5ZZ z`BA!6Q(3vh&Pv4E0&CFA&jN=H5y=Q6hMBwwzw0oNV^mA`z$lT%2!l5!RJbbo(S}|k zx^Z5wW?OgN#i9M8yJbobWeJE&?dv(ar6^e?OZnA za&hzvT^5kzE!cwg5#T_IXHopqF0?Y_;Km?gv3|3TO~_zu$iFAdOrsX<8e; z{$9o~17VD!3ffoIP^f})d71`YM+0hO_;U^`hnV^~ zFiGB`N)XCgtHFM5-6+t|0kHe(7Rr-dB}p`d+Gx>Uf0UejXl9~tCJ7v{1NIA#tB?;6 zpx+wszN5gn+4TlLb?Y+&x=T4$-+jAnK-)d~Ko46I%e#=m6DA_;NG_97Kc=WYt{_|6rrDJX1c0!srBbp@+ z{m-D^t;&KK*P4@$f4YiXcF|5*7&5~)h4!0liDv$`Ahfc1bkm)4CSG^ZNkut$TeX!DnkhhLMA9#~3_ z?-`qELfgO~g{ETzCZtx*q0w~R6cTB~sYN8Bt5Jd`s|g8PGS}i{Snv*H>FjJVwDe+) z#)eOMd>(d|#*KbUtnU_Uxz5Ls=3}zw?u`fC9P_5;6&`?;sr_#Jl!cvGacvDw=!7sy z@AvyFazw#z{`T#Z&AKo4lKvOw%^xH_6tL11 zYOC?PLPv&zT#KA~z*T;K{RBQ8H%r^ptOfB%qK2a!w@FC+xhwt^%_%&FK`2-~e%^)C zbJxrhr!Hf=;M3zp1Lw`tdh?}PxHAIO_Ut)6m*bUb5clQV+-pu39#Ooyd3^cOox;mr zZDvto=U|_!vu~BU!YkQp%fuQ2ymaO_+);BeO3by8=$f3Kuec{SF)7!g-%YOmZLC3s z>jzgS^#zaMTw8Gc4O8@OHpA%9T_#&@Un>*AwAZnO_cIl>vzc=nR`?e=ndSC;_bWcl z`EOCX9fx$AH^=ofb=f6{4?};w{psh~6f-ld^x)0f`~AD7r)MFuCA5$6s-B zYe@e2&W}5ZoE>3NT8n%ZXJ^QhKX}+{7MIqw|u?V>>D2-_wugjrfozoEr!Y4M-^Z~DAvv}6{ zB=NX+xn5$H3oQ1YKkgenTX{^}_nn}Xb${ULCeHdJ{QgZf@#dcQHRdqwbTdrLi5dH4 z+7bMoDlN%9B|BNXySC1eHVPF|eG+qjM^pA9Zeu05!zsRPA54BQhGB!1IfYYJ+!&i> zc?zesSJ1&RqET-a;K@lCj4sP`IpzPZ=4$3M(I|&|uM<<#zuh&w(9%?(zS4J7W^C5s z2$?CnJXYU?#U))1XJ2&-KQl1B=!xGK?%M6QtxUlFW+uDOy6Wb^!kpNE{3Xr>!mob? zb5x5s>9$_*t=fwB{q0r|QSh<3 zw)XASOUiRG4sOpwZl1pG?#)NSzOH6rh7C~8%=g`F71|3iKj^AWTvK-Wui!m8I-!%( zo~hl(%qz4(FnG9O#T)c??5X`i_R=V6AGYJ#BIgd4AlMcsmI|j$%H9#nQT!&X3LyPi z{;ZA3R%?Tto43CmZ^3TS>M#_oW9}G97p8U2baO6FjL&vNd@hu^)Fxd zM|!(zbBg|ykjfViJ?q2rgKsvmvc@G}et4@b$e)aqn3&j?I<~nx88|ka9>;JOJkTr{ zF-iDEE3SX&ES-w~nTh01&A=tFe}-?_f{n`-G-Mkb)k{NR`lyn6rTe8BZ}s7K{`TOj zNGXz=zYKo(ptf<@_1PrTU}7?9BK8+Z3ww%+x6;ot+4(bO8=bgpx8^{|=`E{nSj~uq zTQ%X+`L&aG;1xdt;pj{GBcp*H^b|E2V_*(tZEtU^?wcBGtB3d`=G^Y^q1{EcN9zc3 z0bpl{2}{MM`hS0$Nof(Lh~Pdf_`leD^Kh!$wheTl^i*grWQ+!7%9JT7%2X*0<|0F8 znKPz|CM;qpDTGwU#G+72WhzsdrwSo77(;5G_u_fK_uI!l_Wo!8wU51y_jsSDC)RJe zf7g9o=XGA^Nv8f#ho}(6fZ8wbZn;U7LUKG4S4TE<(g!2$2{fQ$-x5%ZeB!KDE0TW( zj>?B75`_ySLyagYWSlz+V`ZiNS}-32Dux4s!`JD~zt5mBOlZMlF6rh!~#WRF}E&Xn;5M9@`|DFWyxeE^J6k zcJ?1ICXWZhf;#Jt_M_ZmZ~^Em73Y3Ga2dm8krJ7g-I{}XS6-h`9Ly?VsJ1~`z?HEy1+Ef9sEX{g zU8Uq##2H3~l=y#0uDHAN?GIZbc2DNOc|ATHyhvt00!2j{qF&;Mvj&JGx3+<x(345 zH-CAdu!=O|@iDU`R%+S@@W$>FGauV6#&u8R{m`a6r-Zfm@&uJ?B}(b5MhkLV@5i4D z`15o@px&~}>O`-`+I=s8gl9iPocp#MpS(gc2fQj;5sd>!l==8wX-F^nNkRgwFmhb4 z1Onk{7z0`t7JQGf25{sO3$h#pq#aEUrnfXDemiCI&T*N4PJ+hTyiq%QV*}&Xmo53p z`uvW4wX|^+kFhtSwLwm~UK)#e*HWnWNJ7=#-fkOm8>3bv*OA?}%^vxT;*VmMylv8! zCB#<`Ezw=Pyu4&;yH3#>(@ay%)d93z!l)r1Phv8py0E|RvRzk0*3*)$>Gt1_;6}78 ziUZy5!-s`OViXg!SCk%pc&{zBLvzEmZI;8i=j&>oUb6)?=g^`$Dt_B z$@UfK!F$r0MNtmHuGlX`<{kPQ_kb?IxAauaPo#xMjE#-=OV2GE&PjOW1TJ58wY4Q* z_O9lcUGLKUhke^)@{KRrrT!lFHH8xz#J|3KJfK%(BEoi$JpIttkfQmaE-2mn^=Hq7 zGwjgE!MF0dzlC9JE)=zS(TVcb%t?f1ye%#mNIIYUAiPkAsdEvaSQC2Sl*mhBL;l*r z4zhV;<=fx1!~7nPTP<~~53Vz}xA#5%hna;URoB{@iW&OtJvXjg zSwtk|FaYI#M{mdhY$eh?v5a}psoe%C=_~5%ytU`vcQawe%2IuqU0=(4x6G9M1CJ+SW6{m0ufLhsxVZ7o+jK~cSTCt#{S=M5CSdIk5{5mi0}r5%0w z*owuM*v>vP%C*Ccht|hYx?XF0(bkKB;EO&3kIeGPflEg$NmqOyh(pWlYk zMugD~AWlun$y{yEXIh{42eNQzDp+TA0{mxu^oV($wyLOgIi2_Q@=)fpqqn$JJ}t># z8Pe>^Bf|aIm5Mit2Wb-Nb5v|aD5*RYGs+p1KoO1-I1* ze23DP8y0#E`e_E?3`=hEJ$txS>X`$VAK)9-jHqCC8dE=!eS1{jHp@YyXvXE@?{AL1 zi+o%omQf_#iF~MG9JDI#L|8gOz*uAe1`%%=cB15q=I+VwW6}8E!wUaw#|P<;cMMsy zDki$}Jb3ytCB9QkVhdizS}uoG=do)juP-+N)KM{I_KxgtiDiG ztJcue^wCG{^C&AtqAQQ|{Zn!x=AJ_~`rzETO0InEt-q2YDNsV)@a^cmFAXYCX}v<#m~qjN+O923_cvSl z<4I2@`{s|b-L5yekMtZ;b5spF`0)p7YuOj>Xzt067-Tt6Zh)VEnDMORj#+ z&&}bQE9C_#0;UUiP6Y@E>E&;hoo3-3vTbz#^Lr16kzrHGSh*|ZrG@F`ArjFIl zu!?hhlZ6?(03KWRjl})+tC+&Zb_Xlh7tQxW4NDaJ;+5C`yCK)jCJZZ^KnXw8fU?7s zFw=LKOVxCCW|Co+o*OJ2@&da52`e%rou^RduU>S~9sKPSo{>cUnN4^*z0joC#21#r z^B6DK7ltGHe=Zbh=0AP|#+}-RXS%~RMlrY5EAsAROKU61&LS;{7&($!<@JoT4Qax^ zXLS}j9a^9;_S_&|GvL8i9J<@R{PG2uuH4wEfAUwy#IxuWb#gxV>{-Xi@dDR<9GP^- z+++&R``X$B1o#J;nG(7WJXeS8@qn;7A*$?G$N+$XCX>k>y?^(Z%d<|nS6-nNF|#wz z#sKs+p`jrHSdjz(SPrHcGH(@w|yO#-P8Ev%Ej-u{$Xx(pL1@Q%>yToY|WA!)h_zi0j z?XdmRzjO;eU)kdR@$3R?Ka%8=kKgLqv@v`k>-j09p&6)(4*{>V<$d4Yo<2F!YY+Ob zZ8f@1iJ_sP32)lUF({bT_;M=~NG=S06|gp{n|YcYtZ&FU#(>f; z5M3FS>o&J2nsR4T@|6S(Ar2Xk=D8ReQHRWU^vf;hFFBKQKUka*%*gWNFOl0%JWg>B z4Er{*kXuP~d@wmuSaWdhB(6!$F6iAEg@q7O2N$N?2i%ug7hzd$qRod0h2L;^o|d2$VVoBsV>+O^qTIC9hM z@?5T`ub)DO`hnAsrx4fp1PwM-B5=*HPX$Bxi-*(fAtOWWpKm|(sqxw4nK-L6$|*JB z2ky=;Q|+2akwZkkdk+>CS#YCIs{O?`jvPLGxUXVM<_D-hF`Pa?)Jm(E{W6MxMB7D1 z)^64Z*?%&QP1MsMWpRtNF^RAxk*ioOaV+-dB&yG`WC?#QlAjYm1i`CPrvLn07^j|@ zy=g+~Sb^m2C4M_pZ`?5AyQ# zkt@YyKxPClvGGMB)IvUH^JaaD%gzH%BxNDos^$)|O69K&<418s*$IN;%?(dqQGlXLG1))|o;)omU@R;c`=SNTdtPjpjJOlrq`b zr66kW?A#drY;?VtVYcwb-ZQABKrc$#)^S=5JtS>~aY9^}cs5ZK+dX^ND1jzYv&AK+ z7G6#KaO7j_Al)1~-40XyKInBWNK*<;MBx!@{qF-^Kj(F<19Xk7@~Wz;!nY?4X&frQ z%s{laOKE|4ga=qA-RlYTPd?quvr&LX<~s-~e606cX_w;1K$Z`!tpziW*6Yyb5EAV2 z5gN#LurB7Kft-VYc7XasNm0=qoD{7H6u?|3V-HgQ4XD(8j9kky*ik7$_`S@c*m)Gs z?T-xhlJt3T%qO4*44f8^6sizwWUdO|27%~eC`Dj?tEVMr5Sutd8$m#b=2+SNZY6aa z9)s%TY)6gTMJ^Yor!3`4E&bbSK1#7SUkO$ zljJ-su#^gJVdFqlX;*k<&*zf;@$+&$cGtIYhg&IS^BxMdEzhR62ae>MW`Caf+82tV z)ON4GW&$N|5m`OOF7$Q_=l;QHD+SlRc|1>m&$4Oph3Q;2h-)cGTr|Ip`w)Lb=fGxn z2eVh7#OG5YZ+vOEME4v`m9Tq|`}nwv&LY<3t@MZqPDewjQ>9pCcwk%qDgaJG zoY@{3u~4nZ`dnz+KiJq18sIVh>O)(3cK-3 z?ju9dIgSdSTC|<^vZ&ID6pU@iEh4kvGa!c4QLs7}SProuk5Tk^c;ZnLwaNt~xv#`3 zO+Ynqtz?~}U30_RnwHv3)X{!?huA%K);At?at;dF$m8g+|9;Vyhhy)G?CvkLDOs)I z6#d`|HKq7DW25Mf>ykI>gkpOMascO_)YN3RDihi}?#R%`9l-EBdWbGY*0@wR)X z&g@DYIA_$zbM(DIG_%T4J4*IzQFl}iK2vuWIyzmxuT+?RGeNn#;X)7~?k0d(P$2CsH>qZ@fplG-Yv==?n{n^Cl$f$8+8kVaTAw&idCYbmZMJfVQN+ ziSWWTmAsPFnM=ZJ0>_&)!zf7$0cStt(t;(>&n zt-o95a++yzCwXL)MTzNK?g35`R0=jY~BZ{8#6LGZY*D&o-8}PRUyp*XsC?UYGeSKqvfu^0+wntFsQXz>4$n&s~2*wygY7Hnjh5Yc84=@tx^+ ze$a~=3QE*k-FPWkkI^zcQ?nJlc|CAF8hSA|cHJtb-?XZ+p@GC?^oObVc_H%U)E7|J;O*PNRB-l8# zPR9rCcPnDrKzv3-@s~hLQ{RTu&P+`*V6= zd*gu)-6w2@{LjO*g-`F8Z^?q)`~Wi^qxeYIy$gbEhyQd3(JO!VdINaP!yx(2QbKGy zIg(NkqK;aoN{X^cr8R>$uc-ZRl8D?2nxnJxU5|o%M{*Fe#!piF{Ikn?Hcr$_n>UA= z;3(V`(JPn+uPLp-Q40B@_r9mLI&R{w{Jrks4m;q{mN7wv9dDy~St)Fyw}XN}y^4L; zSyMx;ccJWI&1{VyMl=K}JufEBpX>T39NSBA7Mny)OiPc4CM z;u--j1NDxscCQ@R+T*bnVbR*%!8vYyrR&N?r-8qAkNwyxN@f481zhao*bVG#4>Nw0 zyCgMKJc~xfh2L8k)$^78yUT>4Z67|ZOZjsny{cohL)Va= zNUu_vEc{y-y+lBXfgjfztc@&ne3(&@dFRxwblw@)*zQic8;`BMZya8S`XiG)o;U68 zvv)J17R`!XaYHmad;gtQnJ0q_Jl6*a%6?$&o_Kor$hU*OUWbR;A3Qg-RHDn}?f$_3 z_{j00XuR0ZHWb|xAxnW%q)q&gN4*NVteY1%z)f1bDoNYVS%Xer|!K zXZFQhA*Ois3(QXS`pyLp91Q6#1r}egZjgDnA<3*J9GK>TN;>b@p3io+VVk(~ju`hG zvbw2{4S&9&6end5PjscMjm2*9Tbn5>Q@*;A>re<4Dh+Q@L{Xq~KcOR8wYd4u#5qSL zY|Hg6%_-_HkE*2~PYBc~2w9Y!y@otRQ$2qV)uQlxZaZc>r=de`_Hi#0^0^1vrbbWP zq&cP{-5UQEpb+}OU@f(?w=Vxp_Rz!t6B~b=0~7Y|w8fjv9gU-2^m>r|@3l|s&#C&#RN^ z8TaL6Chiw03Fg_iR*3z)kdEIjp>o zuqy9%7Z1+~dsDYey62l7mjcUH`Uw}~qN15alkE>ve^&Nxm8A>b&!+G{XKsEKw~4Z8 zEAY1AX_J<^hLi)viTRFYlFC;$(q$D-Gdmr*C>& zownlCGb~QL&=tWpF}^4G3iZKPs!(Pr){|Y{!JS8F-ivt|jjcr$LsIoJ^j)`%g1W$SwJ$ z_o-QYRePAqaX&Xv*QHhLeb3~Fe>9H1J!rjlP4ES0KIkLn@;V*9bUOOvoslfddwB>N{}Kjt=e$D>DRs{y2)np1k6sVggpR& z3;Wc`-%JQ82x^s)0P_~}F5&!1-n3=KGVI=ya^!~8nZ*S89n(*+Ait?v?s78-Q8CVy z2Nidq>3PFG@}K|ni6bHYe?FTOXG_Vs{}Omt?f)}>%_#K%S!ScVvDeA#n|Og(<>u2t zmiw`%7gjHvy<)R&(!@k>J^}esV$HHev==V1=idIOBRTuGlq*!nR>h&5_ltNfR3QVH z0)c|3Id8^CNBc0;^3LThFSIj>4Mx=f1H8cZsmx*=@tVnxlQji}mtW2)rRV1M%uH-* z=w;+p6v|B`C2Gq<_T<7uihyloA^;d7n1HJcc6M~E$EY1qq_>50TuZ)7A}VYwI9QX*I(N$DdgsDJv;c`b0WrEr;%No82xN&6r6C6KWxN#n)eQUz90cN37`o!`bt^+M zWHegPIkO*wg?uPWpst8SAlkQ)j2dH7d+ z2wF#_L8Ry_VfF#32==&RAbJmgpb@F%H|X9;14pR0@X;r<{@(*7Sj7<>?EV|D8-X8uNO;l@OUj11o3^6u0&vk!CSze4%~gaYk{f@I_^m0Z@}BO&U~A+A7T3e5OEtM2GDl@oL{6BZ;#L)H?-Me6nnn z3y)(*p+e~#CMK!(sApaTA>EG+KCb>^m4Ti$UC9C1-7FWNKgK?z7W^|S&No?AR;~05 z^#3s3xK5|va~xB(eL&6Y(OI>O8J&;SEHDiNX(B{HeG-S(JuwYpX&~;tL(l*IvAvyw zew6JHp~0GnH&Tc33;38d!gPx@2lNmkXna2OmW*u#Vg3xELI;w0y}GxxgNp7A5iTIa zaiaEm{P^(-H(*EVnCrL?ME$L~6%mys`0qWQE_4VWybhyz4n4Hz5$S|Q_`*^jKR$$s zqi1~H-OHdXAkwcuhKJf=4?}?ZU}9GqnSrj(8bxNR2hdy1mba%!kx5eDX%pbEEGivM zO`605mV8(d%{-T1eNA{9kru?$7(=^%;^4R(=e`#B5OnRJT47)xkh?OP0 zG9ctuTqrmGe!0f8E-+asyg2 zP%&v+e;~S3!_m)UYZZ1l68ALBghn)w8RVnn1yU`?h_89w2C|Iw(QM(X^VZKWQTW)E zh(X^v!tKK+%O2rY=`=9Thz3GX1Wh#Utu!cflQVyk#-NIC>HZ9}ccw)}MOp)$7?KZe zzw{Hm2Qgb*s4n=}RasSpr@nI6$&)Eg`JaNA>>=}BZ<}&kE@?zDG!YM+-C(W5+Br^% zDi{ZGpXEad&p2re9sx4;FyayC_51NcYXB}42lw>)VqslxAdL;81d=$yo&-e!t1qSe zXZ)Jn$SF^PK!BOMEvIh*>i9Ak9Eh;jFjjNW?4h%;~UyiB+%o&$M!p0^Zj+2h!_yU1OLM>cx z$~&}R$FH;K38QoHFvu^0cNQ;(HWzyD<-_QK@t&8dW z&OaRRoP}%f%K&;W)Z8cd=0Fp&F%hLkCVR-v{ms(1v3GLf`|%U)Rki`LV)1G6fa~y( zk+Jdh2E4*I#wK}6wT#>f+HK={;Vq$Mqy&Te;6n9ps?28tG01&82jMz%?#%UhO36?! zYue3w5BPt7Tu|~Xv;(8AfnmL$i{{uLdp2-$XPG_>3IbxER*gblZg5hxvJT#;5sXgl zH8=JzStT4gM!x81K2{-YW2$4d^2jyx7j~EpK?n(oK9gC!21Pz&fni}7;B4yscOeVT zWWKO?HSqnru2JP1_IK520NBfg;y?a7hKJ{Wp#O$~&_+>`$!-nQ#5?UU3 zQ6Q!R2j=}DAt5bzNHWAH=cd%f0Y;UKf&-1Trf=9w8X&)NJNgN(_vOXK*BdtK-idAS zJ_=?~m@hIf{ z$7DfN#QQID$PY#qxyH`C+#W z%_-a4WJGzd(Jh!rylJlcH0FbOm+KAN9Ga-ty%C`UKV^yPK$hljRL-9eXFnl(HxGAr zwqK|5h%iU;+Z@b5BlMjZ`#Xkq^swPqFxsm~H(kG0z(CU#?CfQWOI=3MhBrmGCvj?e`g&*q+U|r5 z-Jmc%JsqVf9MNEJXD3y4GXvemq}=iG@z{4{!Lsd^=V<_BFKzY?_N$obsru@7(I7YN z$rHn96W7b6S033o(BIeJUz-^)mYP$l3wJ{hsJI$pFQQGcm^UE_PSd+IHi;-7@0Vr} zj_=vhK8#qkdL{^wr?(#cvhE93h9Gc}*|m;>f?+ zf~_Yu>G=<&=H|+tWb8g_KhaeXo)PFlyhhGa`PGkvKHou5FFal@+(;bP5#Czvyrw&P zczM|a!1sZg{3x+Dnle9tD0AE!CH=EI_8tm1x1<9Z2P48u+AZ|uB?lC%;01E~ zp!9i}(`sts1*61d9#%usAItXx4`lYW!?g7ld~M#ikkp_OK3 zsHQj$RrCgMu9TC81fdjA;UoS${0JmZa%h^u-SYeQY}5Taaptc+F<3CN*oe#s;^;~K z-%fP9KJon3-1XDaDznS9UNtip$_wK=`B;x7Hovx)nLZuDT=ojQ(px#6$jr(I#;iS5 zK*4oV_=E-z5r|vBciL=E@7QT&Md%%jUX<|L2`Tn{6-NXRR1%1YXO$h$6uG|aKH2Q!F-RXks!ZjhHfeh6Y8taCxW6pf0eOi)%4Dz-+1OxMy? zP*9*_J)jU*opQl3ULnTP+FuGuBY+4iYAwo4w>)fTh6pFz#>%ztjy zN+&h>jr;jLJpaJy}?xMzUug z@f}TEgXiU+60wZ~Y~PTdC*?|4D<4vclNfN@FfAz#vtxbC;AO>t2yzW+zCV$i#W&&f`Y=Sh z-)INgJ8n|n^If_|;al6?-4+MkEi&q4>RP^Dt5g|{ZxYQ7xn{YV@#?iTfp;IFH1+RQ z>Z~Qi4I=le7?8F8pj)#$b?C`Ni@n6|#M+!Up_bFby>)t0e-_*Jc-%b}E5ZbXzq6?o(r++2naUybyO_SXx1OFY` zLIs4qaTp8F)j?2St8D!1QeqAWTa%oeHyf5OMDyO-{m%(F2s|lS;Br}g7uqT0lo8(d zpE-uAdiiDbv&*AY=3bFKpY0>JUpzaAR-H(mu{`e5$c+to`*+NYCb6?ejAE+sU%CWp z&=I)>Ffb*-Q`*`{Y?0Np1E`*~ChDA-TcO_5ZgROZP^&LEJo{w9rqMD^u= zeYq*T*)rgSHiQ5nQrZq$y~qHxz^t~fzG@XKX8M3O#wTlcxQYQaus%jDi9Chf0GV71 zhUkZ5H%;g{iY(&@c6;hGNBeW#IQcYIm18csCF-54LiQ}+LHmUp)4b?+dlvgha_&{o zICJK2mfHrN+}=`@ct* zhOE_(mwD}sd#>bX{!(TirjzdlUcS@A;~2}t0d9UDiy`FoCc4}tH4}fIFY@&sKZiYy(7tEMLMnGKEcvlCmdCB{I24E;=Ls^CCipX+5JtrU5FC z|H%%#tldi32bllAg&#%()E?Lk`C;+rzg>%<{N8%z4!G@3h@;FKm=A~|RnI-~`byFm zGEccM+u@U0Lw&AdD;KSD|Fc&V-~btk_c}cY2xQab1m}}sh-#7P&9+aEkZo9~%duLO zpul}v;`>`wAfD((;dI+bk-!^M1ENi?*^6_`8#X(Q^j0?l#&|T-OInydx* zN3=ZaTF@h&+vu-#$@_p5c)dXvd!h2Z^322RrJ!ke?EshQ=#XerH7O%5X4%zm9vdIukPeOW7v6iX9|s<>*GOmV&TIxkdHv3` zkFrU*GTR+G_Z!p6ww{NFdHwNZDR7RQ)mLBZ@hN$HJq#qqvbZIfKR`asq@0Z&HQ$%$ z$i**()WPed+^H!aoLkS*alZEp0UqU|Z{>@UnD zZQn^=i!6n7z#XC+x5La4)7^j>2Bv$QfLz%+!q9k-lrVvXs1U&F^Q)TzR&;BGjnDys zF2Sq~hT(*FxBp8!RFc4Iy54|@_dRwFUJY!ss9abk$p&sg5-C4=+yh$a*Bc1aimw1T zQc4@)!;Yi(p~XOK;mc?Ut$+mI&vaR(+a5ResaPLPt( zFb+WFenuQZ^!$d#wAKUXVbF~>r?@#cXRo(SfAnZ;&m+Vbf}jjMh*=V}xt{$!#t9?_ zM#ybH&o!tvbGWt8N(XJ=iYZdhjzLEEKK7E%_38Xziw*k}8OD(%h0i3zqS|-xkw#q$ zh7)eTf3il*C^AQ`DIhP%+y?wW9D>%)dqq?DF3i1z-_>C+t0%Zbpt~|+o|ZjI9+0zpFjrtS6zJ_!B|~sbAWZ=Z=e_vNk!u=TWlTCLPwIUa1%zLgiwlu zaEqz@d@T{M)z%SG!e9IQx%B8~lkC2Mjq;2dz4kSZSe$}EwFilbLbfwN<|>S7LZR~O zY#o6hi`=>?4HchzI0FgWqJ#v&^ocnc*-gi=IwEAODk3Atz`g3W?1079y|g9tUFU_N z*=&k|M%x)|9`EEERZ)(^*ZM|I0CXm-t;n>bzzWR2>Kevvwb*kfLK72hdky2@Nu#Kw z6uey*+a7RBz0jNB?Xs0{j{jS~@szmmq|^u=;CVK3`@0RqELj=|9*k*uk<<}PK@pM- zL7p2@K=vi|YPuUif5_{&AkDkz*bD~zdB;1R=+H!KkLa7qnx$i+oQSOKz0Q~54g&su z;5@Bo#J6mztbA4_RIh5BFo^hr)o^j43^UPz`gH2_bammL;NV7^@t@rDf7s@=xn5jR?I7Ll2M}G}KBc zxa3?&4)F4k`m;Oe3RBJwqOO83>Q zOAZN=sQ+`+4#igYS`6q?iudPtykl!DxcTWnyGS=df@U45v!DL``xoQEt9M?M5>$S0x##=J>=HH zdP`t%9PeJ>DN~o%tMuS7a?)`B{!qZm(xIU#;F1R|;TJ~;+c`i0PpQ*C%(V9Im8s9r z(?;bXh}r7XHH{UoOG_)khZ7bO5=wHJ1&ND&fAx0DryYMDuv1qg6kQQ0eTeqkL-u3m z5@~pls>3S@v2w|j|W7YnT#sO9j;h#J>tb8QiDZZ(+stf6tpK9ylc-XC!U1g0g@ zmoCL(LWm>uOFTSjp5UEfA0WbS0O9y1ROrTrGR5?(ex{#!tWRD>^hua>+Ru82HcbU&X$scd>-JV4hzS$_B;5 zkQXY)HAr;&jfDJ~`9p0H-?WK}QkLtF-s3ZW|CrCz$wHotBng2%h^$g}A2u1nfat;T z(A8_!RKk07*{Gx%9OAnHJNTDb5Ogjr3raHaJrGFd2`|PJfF7Pi9PFpFtFnQJRU+hzxwyD+gncytQWm*z z#fBSG-U2*mV?-nIKK|6}yOYi|<2op(mMq{tkU~T#kP&{diNh)%2Kb-@^gw+G8cr3^ zWVeL;;p&hyCxGvf-Cw@6Fyv~MUeePJV&ht;5|>#u3}u@NKrmfD?tlFc@JpsRQS&6kFe%Hjr3xr!*Qv10RUgh> zsx0S-)TS~jOY@?VhBSz_RS>_}pFe-n=*EVIB3-3n(U58~Zm`Dv?Kuwd%pAM=iflRZ z(i?!Yz8-3WQS58wG~sndLNvs@MZlO@&d)D#^XAQnsHpYG5~6VOIsng-@b7ptzKzdv z%_$$3a>x`PfFzMJ-r`}vd*^p%EUX<(ReZfq)7P(r%UbqU47U zwIS3jtfVykBhkSZmU2*njG$6Kww(5O3cR}TSf=a<{B<<9!~*{TN-;@z;d^*%T*QZE|?rZ3a#htXP@PK~WtP2x}E;cr2&TqAZpDxU876)E9S0;CqDEyLI0cuNH2Jki<6h z$Y}|4ARnMgveOP@!_bC(;;W&d&gaKfrU#|bON!*%?sLkh;Q|pkM0^dK{tKCoUFBtE zr_9wmBBG-=l6iN`)=1Fkz8{O3$flD7X&+)6>!{n#w@+j}kuy?8ztueMFoz{n*|MQT zDk32f4OK)PKfl7{p#eLnM3I{_kL?kP`p*m8DK$LaZO0zP=9brfp@!eqU}X(#+SQS} z#yh&u{zBn^^6;7^9c z7XCNr>5BywtFtFrPx90_N z?%~VR7d`37c_uf{l4}XTWoBNl^2KzZp+2`H0-@pC1lsp~YDl2X=fsD56 ztFY576m^N={FxK7_SbDjDpRoUFmwSD-w6pRg|V?w9-S|=-!YsqQ&#XL+-u3Y?|cWV zVQ+9L09ppo#N|8v(DMNQ$@g)8gbCV(sHKBEdbc`u%RS^3K?sPzG`=w=Wti!Y{3cxi zBIsMby0nZIdVB%!Oeyq6aqqN9v_gBgA?p|%uGygbh5byN1mf=Q?vk)vj2lH_mo-Fl z3bGLzh|X(r(y{eb0&?#`(Vt_l)PnXjh&dyV?i~k>LVR6V>z1Q)3wwktY-23!b>CSv z@JybbE%Z&3Uo}u_Oi{PQ6}ytLlyoKz9l>ey)NbsM@&^V6;)k`XDESjfZN>$sj0836>Y z5_4imXccWt+Z*hFzmd#kXNk3wQ^s#p&fAJQz}@Kv;1Piq)!IAxw^0#TT3ZLnShqtD zTVu~P&Sj%9-i)mXx=fyChbfee;iW@st{UFrapdD__O>*mToUUxoeuXJ*h4}MS^Pgw z_sk2-n)Flg#^BPqhDlHo1Yt2D$##9+I^-gCP?Ww2nm)`A=A}&lan=~JxHL#MDeD@)TA#KrR4(k=ps182<<)A& z67>-J&bPC}W3_jl6ORpLDIGK8+MeG#c(Z=PL_3uX`UvLTx_w)WAd$tx5VcYq&)6V= z)?h^RF&`~VB% zvsxy&k+>k?VKYFco>F=LVB+2dzdNCQPs4BW2ACL|Vq8O)s)PZR!gW~Xr+gtSxdwNB zMdknb&Qrb03#_SLw>3J_*Wz8j@Va-ToG1{|yoOqiKx+JDRx5Nki-;*OQzgW&m&tDA zOoxg#Q+aiDH0Jwu5g^SQ*i<`T#7Pu&d(oyV9tNr)*{9_ojXksn#phz9UO@A5ehx=v z3?7}>UHtKM-%tBbtc_}r^zR{E4rbbxWJ`33myIP{1y$fCf?aC~g_3_s*=c+B_|9&d zk+QO?bu28Z4uao}5SEsDH!2TjJT5CZTkqyeq1=6sL8Of^CRt(t>PVi3pU^ZyqA2Q( z%*Scj*?RD15`T`NJE5;7sn`xM=BNqhZb#a3slN zpn*2}KEqUL5^Ya`;{lUaw|n3{f@bAvSdK=mpLx;)U3LxwPfY*l=;=kQpNaKoFdW9N zu7k|(b`Qz;ICvEe>hyDn!tkfA)l8Hrp|IevG+rLYw&garZG93VZ?|k%;Q-ID(938IFFqi*#@t+RU=Pt&w(?&uEUXDHu^w<;?msS!k1x)Cb{7hB z(PW|&jh(P9m1SjAY=mxC)=*B&^Hx^29Qs&R`z1X5wi?-`)H~RhcyE&*&hYLw?WKB! z{H$0=5p2!1kA|Zft0+I*f35u4Vc=xejC?M+u&^!rS$vpTN{F6DXpKz2<2Y)H#2N3~SOA!zZkXiA9UXNi6~EYy z?HrUJ;=}TT>Ll7ZNRVhJJ}f?{PS&Zt#ITdisB#^1u^d!T7aMil+qbrIdJskkZ|`g` zsLIBk2bEhY(1Xfp4;}0kZ*OgrNZJ8+(+!aKiP|T0MdiggTNFyTDK*otI4*zraq!5I zRav6jx3>@f0j9Vj3ow-@ZKBsB6D^tI_gxIu<;IOlWF6cp>k1dNU!d{dC+1{XR`4R+ z>z&Z|maBzpxyfBAN0q@s18Aayy}id@4qLvBH}n~jzwf)cXW_zyPD@@$Lx=8m3ilFJ zNsp2{5djv6>1u0dCm-KPT;5$lnNg~X#?1vAW4>ruZqYL+zd&_n|7|OhIE#gOu~1I0 z^=|Wi6oE`GK~ShQn4~Ttvl(1>yG6LykXi>jZ)PlIX#_N=1FcYxNqDnoHhq_@J z<9S-0LXi*%D-rLu`FRX_BM+9BkLg33U0hdX(z19MZ^-fGD^~FGg!@M7 zNjbIUE1vhmmUKFpoAOE$3u9O4_&tM)GQ19f|9Gz%7yRzC!h1ph0Zci8NmY}%=)H!z zgFoB;EH7cOKAIaO%-#UL=gcXDaTrI4un(pOD?tbp!C!jNN?*S&2cv7?$NjbuvIqLT z`ivUh!FL`XrFgomt7f5sV!lD;zsK?sB=K_lxx%$Px;7LuBTR&UXlP&+-2v*H!+;Vf z3ueubx^@^?BbklsBiPdUhJKi0s3l%j(H5D6jx@oZm~>xUy>tyta&8%$j~~n09{Y^h zd1Lb!5G?=+D;dvYF7~uo zw#?XB^hJjS9fxb3ntu*;p%mnw;ynmH@{8}8!RL|5B*1(~5jUWJb{#NcC0_P(e{PbR znrOua@9E2c`2yEACzIP&fGeUgd->rL%Cf=>${eQD#IRKZTsN`0{aE2@b zUU3dey!aj%0O800@v<-%el$|gWb_j!G7}ILY2>9z_kuTp4zPS)?x+dq`a-iA02qOI zfRN}L^RMrdbuJpC!P2+UP%hy2Y2(aCl)ye!K8+k9jqBlOu96Gp_FhvPTBy@8Blho+ zk=4idAkgE;$j)#WIW#8-7f0VuI`rZZ^`m1b`JMi_O7fTT=4t48>jOYz-1G4@M5CKhmwh=fB!hh*d%AhVdPcbE~>If)!3nuy*KoT?0s{+BAX zYsFxL&;wFp+GF4cPOhMYDv&^?A6~jFq^!1~Moj4XStg1Hj>#SFmA#s*xx1^M1BNRF9PFz8+TBO&2gn`U313V%gB|g3Ur&QuN}@9D=WCa7mX({YeOA!=m&ygxlJk+{##G7JM`mW~7mwuC1_XuWyVm}#c_3(_i>C-YG$C{i9 z709!f{B=%_+>}fp^zrYV5=vg*B7uCAL+@A!S*)Z(D*gi5;vZciW{E02%jH8Aim2n= zM5pxe;KS662>7cglDpf8yUSiy`{K3Fo((K4lyl_nQoYU#0U{VGh92`h*%FMCMBPkyxR$ z9|i%c0-c_7$25>Z^$6pA!XWZiJa_OgP1=92|M!+w!d`1END{TUpWnQ72^M{HTP zmgLf;Xe=CWvA_4VF;!m|98XVgw5Qf9DYbs7eI1IhQvr({iGBciH9o*}+-%gxZ-Dfb zh9QQkY@mUVScoYRVy37s9+oc*;&I$zDn%BJ8LRi2V`?O`S!4YJspUPcqArlyD(KH9 zPT6^A*~$3M!DqJ?Q(j)LW^PT9me&enE0`XQBz31#P)fk0mXcLkH>cH z(#joERu@USXt8czAaCmuP zp~s)UznI4?0ZwpCk_$`%@*6)>X>jAsz(f#3&}q5AADLFk|H9*V)gTdZC2p z4m4xA%QUD~X3Z$(EYX8wsw8~^Z`1-pd@Ph=m2Q{(%REERY~C@pRl{!6{L6&{D#K3g zWd)=JIR~@72WTu6Yy1H`+uSe#P@kCw_lFjGKteQbWd%}XG00uZrrpAQhmU6@BV$;; zoQIP)l!k((xw%;n$@WQaK;Dm8TvfBozN+)1c|xC9Lb=3-J0Ymydp>k_S3{6@LI%O& z-8iM%B-r1#Dz1<0ox^gv>&?nD*F*lt?8qSi;z<@Zu+4FV&*gq4T6f|vn&gf z#bFnUTo?We^)JF90L|O&A|JvtBxY$z3H(-8aEjZz5m?Io#Yh^Kk}$#Q=k)<7u|xm+ zzJn)#;Ue+tvp} zZwO{#@e<3&s)wrZadA;7zTsYf?0Q~UsDycz)(LjY_C~(2bX_Lp+`%v5YPaAdck3zvo2eYGU=3OK5!sTH(3T$JrU%)2Df^?q>fUY6XgIT-I*J!+|%B zC@LMMP7ylr=1Tr;qlmyLoROf44lVW}o#DvHNProDB*6MNfps1a&k=W6T1KHJYc!;r zm#`X7cRaGtD9*O=_xglBlcW7Ky6KEU#83{NRZl?LbsXZSnC-xgRSo3`y~e|h3`}5U zx2gPD!`8a1sp9R`ZQkbI& z?7=%kGNU&Rn`Bb~)G=Xs8C%(>NINBPPT03fV!3PB`Nz!bRypCwORk3fn;?Y+lXfug2 z*0J9UEb^U|7GpBv6v{djvB5l!9CHhllnV;~9zzrz5bUu{3c9g}$-)5Lbla>^s|iwGpRydG@&zya1cbe9<_tsCxXTkc=Qa0zDdRI*7#D z%=(PIM+ZilvCwQ{ssxy}cAOmuKD>7?4Yn8LRSlzJRe;IE zOS`pGt;hu&ItrguW#a|aMl9gvJ2;9FzvDHfzcGKo1X&mEA) zN3pOaJW)-Jw44IEO${!i7{-kj{!z%_JaR{@VP6JYY2{X3fai*h|8BW41Yqqe_VFnlU0Oa#VEM zHGpOqo}5H^(~a?!XmUz*na7_~`O5VV91uV?AorUo2Yqx#WB(0eOBJx34ZFd;$mNLJA8j~X6LnL8eU-5+Q5FCNccDRVO~C@RCjYN{ z?MhA0&peN$(JBZ~4?r1F^F-4b)G=10kjZ_wfI=~)mYT0Z632MTVTFrRsa|Rt9T)Y< zQ&xwwMK{P`QJ@i*Vf8RKY!MZWB-YIz8UdAWX6KfVP~K?N}|zBFeWs3qV*+_0F*b?!WN$NLMHmX3~F zn(l0F624ADBWUg&y|mJMn-r3Q5WJ(J1b;-dj6zjy)Z#=s+~^|ENE^LHeDtu9(bw^% zCtia7N9N=5W`6pjxQc@0n~t5`!}J-n*;$6=*X;}q<(Z2-%N7nhbz?(bf#_zi0cTA{ zCZF`sj5(gK6BjAp>E-KSHo#j{bG} zF2>ibk?f1R=E%;ybXQL?>ZpsxpCk1uhIUeFbiwZR15!>JKWNS^>90NpJeyQvTDZac z5?RcWNlJq`N=qr`R*e>x!(0ih8zFyJ9mYjU3?2L`VV2$;o=43xHSv27owe zNF(vmMjAj!0d+u6%iq4unQ^g#7uC99`H$jr8wT??Y#Ix(EB)8!PKl1@fBiAA7mM@1 z{(PDPxBq`W|Nmdl-i!a2Z_5YLo>*#+6+)gc$OXa#0OCLM`yebY*AX58#-l90A`s{! z%9wDA;4F~2k_Xv$4L;r;gf1YDF?T&^e{Lo?DB{x7?Xg+timSof^i8}6AtwO5^s-T> z#KOmYOYERx!T7KVN!H-Z6Oo^vUlP{|`A(|O*rj|*{0dhYN=p81F97%( zL9ZaItG_-q+8x0hzhZLo+k8sjd7Q(GpRLCzr;0H+y5k9&Y6RCGN>G2*JEFC3UkKVX zA0x1tlx8xaVkK)AHu9c1$0>o^sEJJSctB(ti_4M}t6V1A0~3fu|#U-Pob1k{8TE`G-k?n{qAOi%GzT{GSYY#cuun)fJWv z15(EE(8$w9#k&E%oM+Kk0{%h?)WT^?2IJQKAML&QKb316Hg4~Bsa-0yOUV#w+Zt#v zgpeUbsjW$gQWD7!7A<3=CKghn43&_1$dGv#g^($hSt8S-Ri?#S;XN+u**)Lq^ZCC2 zz`K9g&(m%#?)$p0`#R6_IFI8vt8U_7kK6GK>pKB=o_Cqcb!-y|M!R%$erHD~BsjVR zZvI55HaJX60Cx9{?&IS6(>MH5y#{R|%3!W1^QnC3H?(}gLBnR(quCNAr<&|0l6uHwph_s*||?*D@ekfR92&UEh=6gm?hggLHO&DPl$E2kGC z$&xNvpn$*G&cEQIV;q}r7AhH%6<{gA-d-vXrq(CeOC>)Y0IVtxP=_im$aP_{JpV;{ zLy(hHcK;TVSC|5vAVdl(EFZu%QtV7G$>#cCgq<~45U1lmb1?hXlY*f!2e>tV<$6|% zauonWSbpaT%~^DzZ9lmfGv5S>~YuImXo_)iwweg(Jx%7(*qSC)3(f- zRGAvzyPui#8`p(d^87pE@aQkL;sR|qOkW^)ge^k9a+x!rDE5Pm$HN$?LB$BmuN)|k z!8HLMF8p*bqWHLIuK~W!6B}<5;ygFQKkvup65r-3v?NGoynEd5cEa5ePK)Lqvq)VZSE0xf$qUXPZPmipra5}1@EYm08IJ|U;HFx|yT$R|i4 zMpdjMpgvymU0`!I6{yhoiaMWS`W!0QfB#_1m*sNmp>4Dv0k zKBwOo>=4~!$AX*GRcHyEW+ae+w$@5X?REe5RqIH;doGZ4QqhuLgN6p;$(r@+bsIBm zqzDm?Fe3pSZ6Jsgath}`=K2+K%xemN>y+S+o#@W^0@WaGv$X(_z@8ET(-z#cr>LH* z(<~1I&3i~HCx9$`C{t1$rdgn5<}ZM<1&lfzuCSR91rL*thAjo>-B5MYyk6^o<9(++hj5A}$5Ep^11h~g&8kT@F2A(D|J(@X z^*qB98w|$Kjqqf`S8-S zZBOdyYwFMenr+KKEPqy3R+dy(hKcG2RaI60nZ!OmTd%oiPx)pKG9wIoD5x(ViLj%` zH601JMB(JX@OyURx{NH(yVcXn>@r`TZJ_X(VwWl;-?+OKY`6T4ZZ_aLpl(%;+pwpV zGKVnDW`}flp_`L|Zc;>tu{g8O&#C2)U9CLhJJbOxK%RbC2P_)%qFZeiAZat*?|2hEnWVVPWCLFvNS6&gAayZf>isn>TO%FuNUh zjFFlakzJ<`{#8ri=~b4C5(KT1%+4gE&;s1=Qj-(heG*owzIvhhHp+rXB1>-8-)6>kyyzNKQiR z@z@^ci5p!4@dq4ETNu%OKik{$%RdmX8a}^XYkdUS!i;<2E!!&h>FYlsET<|35z>0r zZB4uU4j(1!I}E0Ziuho{*X>Wh+<+Z(vpk^ z7*UVzsi@M~sTEL1<>}onhm0@2!QS!4CxQ68p)Mf;@n>j`gVQ&Sg4S#7 z__kYfsdUZGmP!_Nn}e~sLPa@Gr;+7ouwZdEdw?>S5K5)*I@D#fpPL^Yvs&CwfAQsI zym+h$z*%fqtY>%i`@r)`qe!ChxK2unY3pH(XJBZ!s;=$K8aeF{x-VA05lx%-P@Hzx zJ4uM1txv){=aemRUzhA=ObQ6@hOz!h&Z3pz%AFnQt4)7rNOv>~Ior*7rFmYg&WV5@B zq6|Wucos<$W|E9eYxBLGE^yju9R2(UoRXpH8z|n6poJtq_OAYCVe`38VnVqq)gu`E z)o#{$O;DrsRX)D5z6~}?R<(!~>Oxyzrhcw?d?E{PFFAg+CKvkOxpU5?Ga!NE3Q&tS zG4UJQfl*hUvh=lH+x$~9fm!DtscO7OJL|5#pP;z`f?w}spYu1%Z8*?-?&4k@1L|g8 z;F){9_4>!XI?)_I?ofvWOM_XHzzF|?O4sQ$8cbN`5c;sDIJ<5@UeV8Kq=C_ClslBL zw7)o8b&>QRfBa!EDfDEY3Nge#Ey7uhyF^W+snreM@>7gxKc-aqfyJo>4Bws9z4#rE zK3(Q1r#ToXY8>?L?R`!`!NIO$+}h9QMp8U*GQS5hDKNDtjQAaW;;7Qy@@(3a>5~P+ zHY$h;X{PSqZ!*&wW0ICsT_O^@8Xq~}GhSoa)g$c3hO|R(vyU8|`8ArfbnA+SjdgaZ z`p)Dyos@6#g#B)zf#D+6aPH;P)qlocJ~% zzIpTC6XKX&se49Ky=ncuDkf1-KHTq5d;F)_QV>Kh}4)q*a&d-BPn088%ChLCI+-I;PVeOWiY?& z3c+ImK&709+a*7?7U@SpI=F=BP*Wb6K+(r56|m3RS0PaZL5xIk%3F!3tI~7;xD>R= zViA;%0cMZJmMCcZ^jPW0zI~7I8^WQh=U)bBOrL{bbpXj@B=)wrG2t1@7F3 zPQ*dbtI2T7@do@orfzy>^WFC^qv|f1%vsg?tl_&Ap?3$ zxY`E|44$Dl^B7~6B3_de!-;7;0;)iaRNj~xnL$ta+$`TYe(&yG4QZ(;=Cx%0-Fv}4 z^X*0}CK3+!3rEn>j`{fUBnADg0tOL?VV3YSVqQNo&_ut(l&rrrXDfXZ@86`WQ{U$I zj=o6HK2^W9w0dSmr0r5EF7G6g?}Xp0c1rZeq3my5QROIPJ_aVcdZ@Sf#p zChyFliRM_AQuiN&*27F3#4;|`3@TmEv8$zHp)`mal*#e#ho8+cC>sxHb>}W}Ip}I` zdAbX!*UsUc0RaKvVJDPYqa^4xnK z;M9Y6%#R4?tQMi$R(_oGN;-jU~_bR2J+DYP&0X8NaAkZo2to7!J2Zq8b`Yc$Sye!z)SoI~FinfRCt8)uO z9nz9Cfx^(xxpTKbgo zv%7M3slX-FN~(#Mx5oFCJN)m;xqJcPkcTQah_y?b{=#5_U~qAEk%0LN$T1fvqDt~V z9c4oUTp@ceAi%8Nos7!W%dAq-Q^2@ayX^ zGv$ft+SW8ZEt-IZ?vw|oscrX&3ifOgXLX>^w_x-p16nVZyC!03PGV^m2`ao#n$Uh_ zvI#;T*?ta4K6A6(u$3qaA_<#+BG;3no1S&`LAb_cVe@@DL6fhwpK*@S8P`9{AC+Jp zQ*kg-*XdP~Lr%5Gy}0V}b46?&7Pd~4hwy>7tK=JLvv|y&591}VC=o#W2y&H-3RLDZ z-*LisNJ~jG9WUN!8~43I&DOLlU?_gMuLU%O#B+18-g_%l)29W@>H>t>Ps_reHc|U9NKE7-#aW zi#Wb%qom}*@$9r}0+i}cX=3oK4e#$vqwzW&f!A;+bW&j ze0oXMXe;-kuXvSET;N!T;OFS*whM!jR8~e#QU&GvcUr`R2dys@XSb8XJ(u-TJqOyZ zt^=*!_ovzjQ)lxQ7>9z_v?Y!&0q0;ToDnPyn6Mj|7u`Y%illcJf0@;ZtYcxc(Q`t0 z>1|Al-Dq`voxJ=JV&ew{>&-p&r!za319UV3z-v-#f5Y<#_#>u!q3}`#UF}TFXRwpZ zN>`kGiTZ5K)~z*zj#}RQrwzK{ur@!_sD(uZnG+Lxx#PDw5BK;s$*dO_FZ$BDAN@DO zDXr&2#?Qi`W_wpViA^X02q`5l7jVaem@}!zX^}%CR|MQPWG4v!2!am%H_`z(kWC}3 zN?RBbv>^mk6_{xN3E!s6Uc<~=qMtp@(=Exi7G=I!IK4)rVoc9>$vMcdF*qkP~Y8@VIz0W3Avwa zSXr(9xnW0Em&&81yLAtW_EK3--dQH(ZeFmV-$or>(f!m)Wg1a*ye1f&H(u$!T^ zq0>B~Ip4h}#}kS7s^TgwWi$-yQKeLSAQKqKT_jWv7X4ds>A>=8D9c|&*b~*9N9llD z!t~>_Ud7R3f!7b`&T%g^o?oZFd1^7AI8K-M;RZ$A#-@~(yR_*Mm z3@WKcMQB&ENA5_Y6ak(jA;Rl4a`JUL#XX%VanRuHHf{ChM5f z$_P6U5HNq8VXkvp^e7pVTA)C3-92f`Zepk5WpX*k6c2>Ea#8y2%QI1K0G;41aW$Ft zXGl+5V1+kfSP&Vd=LiC5=RfAdgU~%yrKgvFvoixqJ$?5%V8uVV`}asf} zmJPPu7VOXA>oW&BX1%CA36%x?jw24YjTYUD5raE>PBr`#f=_9selq8sU@6G6SEGAf zX4;Fv#0`V4I>=ExZ$s@zrBgdw>Q!647f|WSDAeVHoH|%g)B#nTf3z1~yp&-#5kP#h zanCU?zCb}oV!wD4{GlB7ciegp7M5VII0|Ub`s#$~+stf75icEgs@5ZEiFp2m@PJVQVb<)}9n7s>BNvfb{Bvdzq>S z3@jMa^dgIv-$XAReH*){iERX{!Aa0moj&t4IMdy8|;-h9iudwxs~`BWL!VNz)hlJ_lK#%3ni}tewnkTXKhx< zBXNj!MnA)of-Dpi@YD1W^_iDPlSUJ)3JBj>&(K?~r6s=ghyu>nEXRSf)Hamd*4q&9 zr&X}46v^$@cFO);y=_^pB%n6B&asYM19xZy^D^X0e{eQ0Q9;yNi=_P zYjl2|f~-LsaZ1IDT$-N#J&FKw_oUd_*#Z9hbD>w)+^up`NYD#}?amis29Sk|u$lW; zG^kQ423U~EzQxCyg*@X~YJ$}B-a+!0tPA^34We@5Vf468tkx1PO<-LAp799?Dn8k$ zbvubZfIBlbtE=D1XJlG>%6t0RO|#vhu9I^_%;JrA$(8JE>G|Z)>P?;<&w5a=j#MA{ z3r-iyQeB~V@U#kyu0c6kb1Fp*JX(PPrY}($|K~2u^tKqogkzysr@_jVE2{yD6gXqM zIh~MpPWpI!->T%n`^x?H4B*7Yh~Ddn(*l_{Lu{!tuCEatZJkdcT(=iWS33;8D!&57 zbpJ?MP7{t^ZosaNM*qg?dR{B}qgQjSW$aRw@up$cNm0PecKokfTI%g$bTub-Y1EK) zF0`#H4w2L$oaw>K3y^E`hQm6u-L{vbpgmW=7wT#?A;UF5^qJ-!*Wow%KEUywKJqgp zjMkf;3x_yMwcDVU*^`H2;1LB$9+ALP%r&aw5qY3^kshU905x_s_yl+GHw5@M1xJo_ zA3%Xifm>5Sa`x*4m&XZtQ>kB0QZv^}Kt?9SSY9 zbLijX9|4%vTK7LY@V>uOh`=m|z$xne4b~Gxn~VB1eb_=S`}4IdGEBWmeH(3=$}yto z_M`y2Sm3d^7Gqjy$^kzgB#s*U$w9)cM)SOpxuFF;bwl=_Od+V>c&Mxk)6zGD1v*Hx zL&!4i6_|C;Bzu=h-Q&ts~nXz z7xFC}5n@b*>pA3zcqdBqWIW!hsB$rjq;U?<&gELZY}v|mli>?8u{)b)Hx;8kY!*_} zxEw$INWhihuRG7?eyv{i+ead3-LypMeJr0+#`4kemrK)75yp6}lGDTfGpj0IJb+3c zUk(vf+GsWEs|n&DjsSNY0Zn^naO@rAIJ--ZvrhBhPRi;w`9(~#;aj49WF$zjXGAlz>;$W zACC&kJfAggpcHY}B*c8a;U@7zEGkl`;l5hkY1mV(7b&*{{B=@ug$<%oQmO|;-b++B zk3zy96mzDFFDKb~VjI7_!j>Nyu5`|ZUdu)NH>q5SJh<>VI?_d)R|deMPP z(g1C&Ge0dST2t8XsAY4)KIgD+OK;8Bp4)}Xk~t^^4P%nt24j`x$R>)$kND(y|8*m_ zUBL#q=hE14QY{tb)mHh8>7*2B@Rt;WCLqCqpEO&&`)2X@P3m*@t_u8tf)iV0^M}mqj3X6I3EaWW#cLQx4VG; z-;z=#wMNe$4Nt8J)~eDRwi91T?h`b8(Ook&NJN`AQs{JVEwgxoT`K2CS!I6V$c6!m zowS`$zr7@|dMB6vAE^rS`D{eS=+#3#|SVyK}A zwS_3uNb{OBvhj64Ot%PROY$l;JIh7zhO^GjfeT_=V2o4k!NWl@Q5+OIRx01IJ9&QN zOYeuyMdst&Vg z$x8EDv005cJocgyAI+Ta409=LG|H{cmTT}KkUq!+k}Y>|FNq|L?munfL!;QlkGDLG zfSzVOkl26`U_d-n`j5|$^~Yzh{&r%_2U)Y~C-VNtCh;%n9hg&sD@u4tW+O0AVQr@F zHWN2eiC{-pcWWG9iN~{BSA$M8KG``RERLwxZ7;spe1958|gs^EWL_i}RG z?btUD0E3>su7{>|u1N?Q{oI;%WEdohdUp8q6CwPQ;~yf`u-73 zU^VRHuK%CY*7NY|S9m$a1k9eN-aB$DXO#kc4F1!PyKrzrKV?wzRl8=Z%)Jxy=g;5B zsGJ_;YZ8L=WZR}YSBU8j%s-MRgHMc_33^Y1w~yf)?MXq;srw&o8fgO*D1eO~kVjwA z%8RlM*cqXp6gU&F90p>Q1#BwbOpXrP2 zQvY*h<`?dLCTp!7nCUo$@E$O{lgQD3Y?3+HBswerUpvA@jN2ym4UHZW)nU2Wsc3zWWcZ|IZrt<{@I-xEi!U$)-|mvGt_ZJlbV7#WcN*OZP+_m{;|9_U~`JPVQKtp>ws^f8%2F(6CVs z=gRR-PknQpSgp_H#F_N6@o>8r-L7)o&76|aq=$3&Q#1Czb;{?o1ctO;=-?4+FSjHE zNl&^<9h2slvCCqDX>cEaBU@Q-OMQ;#xrB0Q@t4CWOzqgi7PFqqGYfAnr70_%L#Jns z*%i}dx3I$p4ixqe!479k*#}2DM|n<;jQh7S)4lDYB+snP$BYT|yFWd%!D(#@ckhI5 z)1e6*zMkcl#a)fN#k9nV&$S|RS@X&wAR#8^mdk=c>yyRVX5WAPpycJUF0v~{cXzfV z=;w`>+bHyz4=NVW1ms0g_%f2ow45%=tM(*9=r_y9OLk%NfY8K8zWgt4UZ%-Zo`z!& zEih*%0?sOL`p*nXhx_kO$03RI_RI-c?d44@D!Q&^%75k^eUzH|p0)WyJa+L>IH#vX zoqvgLOV5kMn78PWFnY?ldHoPhHb69&vhj`(sv7*f! z=qHZgw-Qz|7iWmJgeV z%t>v{Vaasn5Mll!&M(hU+FQlqT*v#J*I% z?;$h}5axPW8mE(+n|%KL>dmLGUcg&pTX{7x=6Lf)lTH^0@Z~c9A>Fq;El9I}ey;2$_{CPNTy{{U9xqbVyHXzWwr3FcF z6;1GQV9eZKzykP2X_YA>7N-E{YU@q`UlHZp%?2ijE2D0b+LBGI%$vuDPf}st^Aw(? z4K+Iif^#09cm*EN8h&quK2GfMiFI8W>0U4`(F3;uF3 zd4o}wbeB^(maq70Nd|D6VziP^j)GG{WViBJk^2P&1-HNqJvu&qWH?LJbcjDCQ?@2= zawJg~zKLb-I8*Guc^rFf3A3@yoX$_5N)G1@E<4_R=|mDWY?09RZDwKUr^sg=+73S* z#$Ur?foM$s)!W;;bJ0w%lnp_Vsyg+2Qivz{I7wc%cU?)ir{6#xOZ(27$MvnGwv3S#Cn$hya+ICspRhsBbM4FMN3tg z8<3nk{S&f{hX5g+Z{KmH#@qM){V0qNo5xq*f^L~K%I^D@$sqEvFYPorO%yPi;Z;}9 z!s9Eh<7-xWtLvkeGfNht^1&i&h;N*D$IuLlY7`F zD80;|SE$yW=rm7UB>haGqPpGI;5hjAfS2RlnJ#TLw%huhH#*1;CMXg-@ySe}V}{yv zwv72Xm1MWf{v`j5-z$f~4K#r?-z~jvFO(LLw=4YmkyMJI3Y2w^e}$)X9vru5vz)=r zR_ka1B`ZO$1jI86sN~MrJh$}@?hOAsJ~p-n9P+)pgtJ@M)ArnK{6VTw-g&hLRfZ|}2E=vm!B z;ivh}>M%zqFPGB9>#<-+SSOKujn zETIm`9$Ka1o)eXSz%d2ucrRZ5sLVFjqVIczrrcIs^>t{7$G8baOJl$NKA9ErjU|`n z@SYE`=@`#^(^Q=ORRocxB>Ux#R;4!l2|x?{oj3vqcr;r_t~9Y|n9B3Pc|q@_@S#NG zfeZiGZi|aOoai{=CRAm90QMymICap9vY@X|3lA@#Tr$G&hqERoCdVGWzCB6|=b=yIVdHEz>5AWE?gzH>nIJ%fU4c#Xe+ojgb;!(BwzGFID zK9DxkQuw4H3m%nU0iQ#@45nZOR4j`GwtX05PuV{b;rH$X3Vn=+|E7imsO(1%9f~Bb zg0eC)Mh-ghX=w*x;pM>qqnd)5QN+`iPG|LLIw7^g@wCUhqp$`BAJJIE!*K>xr&Lxg zl>QzBgF`hLjVOkqQKMxc6r+=t`#utG{{sG7ZsX3+c+KPyV2PF zjUg_LC9CXIotI-_v)yyEGe8!uDL&SsGko92G@W!N?lU*_zkS2eIxO2|UVEZNWqQL0 zEa=2S=6rL%LQhB3Q*LAH(>|AT^A~5|6l1b0rjON<9XOxf+|FSvq_SKYx>WjJBs>mA z73j_r-c!zJ81KR8ISLa6`4Z^W)lV=ft`?&!2R!huhaPt@4%YT&g{x;}0L61=U#_dG zQ)tyTPDKaHc+9}ppiS&#!KFC|v!}Bn{AE|)-N$VM5QYr*XWt}SNs(-&j`5x4u|%a! z77(=S*CQ-B>*f{D^HwX(2fcKud--Ml-7bt(IdCb@{A&THgxqQRr|COAFfg405f8U>2s(Z-yGP^ohkbtRIQ0PLvGq z$n#nG+f4M^C?j(aVyrt~EPJn^lro0**ui<%)Jj5s|Mj0YZj%@|Q;Y&)X&%iGyaivJ z^DrLqMg88s>qp8Kq)F5CZ2%hq zmY?AWF(dF)_4pBeZ?ArC1)#1xS&8XcU_u4ZLxiTG$2oVn`871iSc?XDtnCKbWJomx z1*d;AcvN}E6qnpAMgw_+#{}cJ)K$$yjPcNg&~rVw)O?eMaVHuv~6 zQyt_koL!T$q|oGOJZa0CaCxqQPaZe#3&`IN}NnG zv+F8bc?4td^zH9iv3ztzv^b^T6VGs7Q(1EI$#?d&7DOt!Ls;+epG|zZED{BvOq5h- z3%Q<5`zY9n7G>X7m}tF??UakDnyyoMcVYbn0at9;@%HmafGE}gCMh)PzMnU|)(8!a zy4qSJM=w~^ur7EDPkyCt<0CcLkglAQv9WANP7CUaH&tpbH6qUZ!0=t-elDwRg$`lvO^Gjfo@wk-*_t>Huec1 z(`2E&90I4}u1}vV)-0)lZB2P`aV5HKxfpom0JV44`3}waXdL#^{6kqdf^Si`+O5Cw z@T=YT%t2T8cEYjD>XCxdU8NNjbT~x~^z?j5n{zoj|IV`AR*l^VWzMjzbdjCH(QN^N zaCkEGJ6(N^xiWzA)4NyR{WYhJxuOP8(o^`4JOPS^JZ9{7sSn(EKho_ zO|w59$(!vjRz82d)fTk@Y2PV;_;__r7-rSxArWY-to$%yxzwQD_C*o>DN4eI{nD>y zo(D+|psje7cp9y0N#h&?7dx!659h=wS5SZT-XCzLOrS}%8STaixE?L%*<|~2{>Us0%5E# zjTHkDKpzZ+mu_Vqi)p#g;Y}#!ZEf4MWgmVPj`Rz!_^I;VNRn~Q<0VxwH&6GjPCo4; zK8woQ{v+o`-JOEEn|P3>`NqVod4%c5uut7cTy=9Ww!{wkv^=VxU_~cAfFw^NB1(w$ zIys9i6EZbHd^ruLXCejzJwV&E$2cl8bKE0uReUz_2C&L#F*DbEd1B`1dGO$YDf&-D zrHU7S5dN&XXcSEgFj1$igc&Sx0R{`Q6Y~h4z#NYK%5ofKp0V2FeJQ#ZBhEE+!&El~ z4CiTOA`{-v{Y@Er36ujQg2WcQLxZ)6?gv3$H-!TbG0wZnI)pS9b|}R}qe|R>L9g$6 zWh{hDxhziR|sbfi>7J z0eBZOKi*n@N6D(=T&73h4qBe{j}#S=CJATnmj`=}GAaIS|%qqUD4=@t`AQ(6q#tMPMtB!G1n&L}v@- z&i$__B22-&*~}qBQAFQ-<1uV0-sxkDXL7pBN^HggC$dJyhA^qS;{*oX+^c5oOC zbQ8Yt;g`KdWMI+~RWe8TA{^-OhukY82>Ij&h0uv!{9eE?O96#ZMIHciRT<0LT<>H!~=Nof2Mcm{Sz{*d6uN<3Ika%FR zH)OOr#}eZM2mp!F5U};yKYqU%gPz6h_qDYpc#@w6GTH)g%dA11LfH@KK(~lB2E}k8 ze*B5wetN9G8HUMMR#sJs9OpFBO+m0L34J@8_&aG?5 zl^exy)>s3@BCr#GrDZ={{m}%xqqGd4eWdmCSB^=PgkIc*Q0R|ZcNY-dI|@GEZ93*g z;L|;`PoIv!F|_uyE55N>=;xom+wC(hiFiDa zu>q*i&CZoUgt`j@`p7sWOxyGF{@*7h{xs%6|E@JPu>9ymQ|CTWyDKOtY|nRxJH;QE zFoOB$YcbJch(YGQl?WgaSyuReAYi?=jkF)$OlrvAk$XA{mJ4H@gQ{is=paQS>^?v213PpviAoO3;a%8F9>=P1r$U|`_ONQbTE zEsi`gBIy}fU5gC}V7PXzdC=$$`*p7CezZZ%5@Nwdsd+*iBvDe=wQ1O^-|9y7>QYPO zzUa|?@0Ux-YNByL>_T(((>t`MP8;LO(FWY<^^6c)q1k@)Te&Gt&~4`XFn7etEa&u8 z!ftCEw|U!l`?ur@U0(2s{yY=|L*bMBeY|(PDsbxGU#>_vAtO3@+zOh)`uDZNrEj?Z zz8+_OP5kfc&nnlL{(b#8Sz7Vm*BDaaasT=HCEb6wH^^Y@AUOGW;}>g<9LB1>vo&)E zi!9Y#UAI2md;XG2aAtdd;rM+{PR^tC8I_O=7B>BCr!bl)U=n6*`wOm$jlu6EQN0(u zBH$!$PdPI?DVwdp+nVa?SZzd0H1B*117gwo4)8v zIQro+78e(Hyd+RQqojyYAbumNho|+Mw7!Bp_b2?;4xUhjbDxtcDsJZ`oo?_xKHR?F z5R#dZ@xqms9^k(@f`B@?5L3)xE7U!O-rV|3S|a4{Ut z{9W3J-dw%yaeqQd!E+eL&(TB}r1(V|HmMliweIf$lyCZ2bMPE;ruuRFo zzyO6xK+WNCR;|Lz-@Z(U0l)XSa`n&tr8O}#GxO{G7QrM)iu?G&$&XIn5~GdR=fGW| zaXQM78a^9CoX{iHd}d+cc(QtohHtljHI1<4qqlU?861_1pI&77QN7E?SjG4=Lyuo* zsH^`X!M}3r$2Vz=fC8=47{gEhy`PJVi-!c2pzFh%L>O0*sc`#y#9qz$;c>ihJ&SRK z@5z91N9^y^-E_QsN%?>NPHI}3q#zc?@iUnF_q2akC0e)0;^NW;i~~w!5PpA;o2gZ2 zicHZxj8%JNlb)Lx$HEXvY}eA#DzzW0&ebb@0P8YP$i&IH^5et3$jC^M#C+J*@Pp;S zV(Zzq_)6EM!AiFkYGIEe>pl)fM#c&*G7=J7I1jtOr-w>xTUuHK9Vf(XY!=Uu>HjFU z?z0=Iz^4`}^F2O7du#^vK9V*wn{JC2y_ACjy!Adp`?V5pWh963;3L$%vwg#o@}hFFv5;ZwRCt31D75Re;mT) zu5_ilckf>EKaX`<^dNs}s5B}n>iH4+&)L+p+S)%v22kO$0RP@a|7r@S@9F7Lh~+!% z2=nQNmx6JfzjCWUDN$sk(k(1FIN~GU+l*mU-q5?PO*Y>0yeD2FhPJj#c?Ole@aI8m z44luU!QusY?#GWGGcz*{Djv>trnbBn^T#H*(x0uBpQaFd`$GF%SGu#aGr!&NyNHNF z=h?Qe&k4!M$o3D90s;cy1zZ;UxrBw$hBZEL!rQ)oU;OdGAM@&f!n9qoG$-$J|Hu0< zwR$jtCALFbivw!f+S)og11U1d$#eVl81zIRki#(OY6=WH(Y;XR9j>6H@vyn6b{XIPQt ziiJFBrUe!jmIy|L!2;uZ1_tr<F*kw@FAyAiXU1=EjEKnw*$eE}uHy_x=0#;nbJ9ENIU9U+3iX-J46_7V zr)k-R$`pa-k|;|4v`8Obj|~g-W>#jVqYX)j^L5e`NH~!hEdNI^uWLX z-x&xgNAQ=;m9eoMzKvZkI0ruSndz=8qqb`5C93H|HiJbn_JLzQ`?+;z2GVnKY#Kr? z!_MKa=IZL|GW3{Bz4x3T8kI3ZOhPhKYGSoqVkJq!!oM8J8Yd#&oF-7f#>|UTAfuwv zvEs8WIGJeqXy@m1ymRN;@}(SVuU$B+9j2DqG5SrWOqFevc9W1f=zP_2m+iIQv+qAT zx;P~zC7Hm%laZ0RNX6dP2Scbi+RXQ<8GCrGA%ghHo$=y66t|n9jv z>grWH6Tz)9yxeFm8lN3ww)DNtOY(|WM7(aHq)@2QUEk~PhH&8s+z=HVlZ}I|;o+Dd z`b4k5NX*0}iI$p}=>ab7a0z z7-@L9iSKGT>Khf)V;3mu6rsOaYT@@8$25R02VvnowBh9r&tNFf%+4cB4QxQrr35)0WMh2K3 zKq??+ls`);lfv{Mn3UaWq@uXKhtP7UWC;$~cU!Dh;U$LmZ4KQv3tBKUk)Qm=ytfVf zjoV{*<#0)Db}Wq;u6KXw*D}OB!U0a92Qwd1oq_2CUxQ9 z%zRGMfjN9gVD#MR25edyU9Wu|FRuea(F0|}bgFN-B$A$$Oh23R+_i(QC~t_njgz=g z2D0J8#=Y;9l#-I-wlb>PFtHv=CD>a>94yJ<-xkZSr1=U$sDOX~5x=E`MEyIi`=(FH zUcY&>vDs%BOYklA8*a^*sNL`_7Rmy6I+J4Djf?5w#D#-{y8i5T2X#4VX*08;$K`Ka zM28IAMl>`u%uEE!QqlS!xp;^6BIP28&+)wq$0KH7V1Q`(DG9<--W-00r7lEte?k#v zws#(6DEFVcVUjF&pW01EPt`?po6~s&KDh{SXROdXY>hlcN&QmXSi-&55zWjD3Js?( z2I+()ZBN*p7zI9bU-^u{F1Io7(j1qA)vtv2dSsOpnQsmXCdMh7)}MKE`#lfyJSHdL z!V(7qr-|`ee~6Y&&nKNt&CDb`h7|i--se~EWo_J25E2`BpOi$mUp>h4=(nl!ir>Tg zPG45G4Lz5NiAqrmy}5+cLgbcl#!BBq5+irdC%%h(`f*75l%^!IoAPF`&2_}3&wG2sjg)Pm(#;+KK-d)lI);>W^zUZ2WT~*X#atSs z=dtap)*7Z;qU3Vc>jH@(E8c$i>s8%tUWLl-QBQaexj+|cQJ(`q5hG~N(z@I2C9qpK z3@WB(W@K~J2DY3g8#V^I^1G)xu?K5>eOE@&a&mIhnt~o1zaT-0@3AR#H9&5$=%6dF z?Z(484SDsJ`|5jz&DilyyX3SlU%n&=dyEcoA=16Y1IgnOOVf>iuP-8x{+y zNo?fj6=QfT0ef^>6SPiUE9po)+DIo9*}0=>3m6Un5MUY!2??SFAw!t<8lOWf{yGWq zlgT(AK6)}4w_O*tp}YZLWvZdQ0#S@nbpj&sQ!+8bUwt8m!#qD)@NRffhu zS z_7K@WQ1vY;4cueP+c{NFg_&QEa}R^(0f$F!7r?SFFP}q3gZ(fCQ+5sy4-lobwY7h( z(G7Ayb%4%s2(D;Du@lT$-JdK)NT0m0Hra^Z!07%&zTZMCM;lW9;`aW%51JYpRJRdek9ie_%fcp6HZZU?@k|hKPJ{4iys!djLU5(35OyPM%QL5+D8B+USYKZc2W-D9 z@u(Z^=|=BZz4`_3;?vo@zT3D77m%k6+1H@&H@<|YJiToSP0e)0_>H$WjXpnyQ#CU+73WR< zd;d@>jQSAvgyhRBm-!R{)9dTo2(?X2OcZ4MwhM26PZX^wC|KQ?>w@LqY+UQ?>^wL) zV32z&bhy!FX=!PU>ABv@Pj6)+n9*yif2fBVJBU` ze*NHRe}%^PV6CpMt{}4NaBIkTGMraM<&h6%(x27$&5iI>qDg6g!tiOOSTU>hl+Ew2 zgrelQyj)ys-UJdg-xW77HE6FM#C7$o1YFp&C2v5x2 z+3gm3->qgfJ{?PpVe>O-sxDFs#c~!v$Yu*?4a6~CZ9QY-pO9c#siOclm=u&qM-T%} zgYD+iKkyy)#!AicQ9-fr#*cg0lR0GPv86)DujXy_>e;h1Gv83v6BDZigm{^+?FFjv zSKgGke_r*T75y0dSdH)TQt23VNeM*sKBG84h4gLQPcY)+z5HWc*nm(9185F4)J_z7 z^y$_jz^}GM(XpnNFdhMb&ZO+RFW44`O7m++hS`@il%`L>k^Y-F<*FxG)`Ra=k|n2S zXP@UnVY59E%t@+6(xLNqC-_GMlM)9T8@INGon79}QYS7hu6bJ=7j-O^`T}2`qGG^d zocsRP5*a7z%2w#NCwGjNhs)u2{IX!Bzf_m%_KHhP@7lgNf&PyK1%A$V;mkQ31un`d z{tE29@|gg#qOoXtcwF2;hZN0I;Z3NdwhN5E(ha`8$iSpdxkM$Wm{Bq@tG51_C~5Gs zoYU#Y?8C3)E{I~^vgyC!JSNiI)D0PLeSa5fN2G5}0&^g970amvylxJE}HIR#p~k^SXAyXLt2Yk-cB^ zV)0Nc@~fm@pLdJBP^+#SuN3^;J7VWAaH#qM=_V~b9gp?={%XLRz@UkBJ%yeT&DIQ_ zM>tgFo~b!g0oh74ZRU=7bm0--0-4)ji+|^Cf1$MtJBwH36}EqEx$`W=@Vjd1*TnN- zTUUvgeqNo=FZ+b^=E5cpDz|z_oB{`<+gZ-Z1k#^}7y&&@?nu(W>c%G%l%DMbEJ zVo>Ffap+snH9;zN^fBo#FmAABV_~@{RQfJDT1QvcicVUg3l38KcAwYbW*>I8lZ(^D zdb=pUiZ8NzB-@aZCbMxTaNt)*G6YhEfGh;<tzEeDmg#f2n5t($u#IC?SZ|JtyjL={L_R z?i}wlib_&wpn)ow(-_KBW9sVBoeHue{$$z3i1xS?jk9-n1cZxnK{YXxB9CK@v!kP< zs_JW0JRDTgJ{Gg2q@4pzHJ4HiZdL`9)7@nh3xmMVt*+FHK=Or&cPeDmpY1Ts8CB}iO($+t&_TE3Q$>47H(Q|uw#txO?Hq~^o zb||jWW#K^q^)@3@j?hTegH{U1X~`KHY^CoFVKg*zxjg2cK%Je56a}c4W=-(uV6E}Y zrs&?UWMgXwIZsQw{&z8IhpghoQvon}O-}u)j1zoX4K4rEHWp(-OL z_5_8`u3PkCV^Rfw4?_PL$C;TKip;vyZ-LhN=-!DItNQJ))qC^V#@08SO!y#Bu$i0r z)EGLHT9(?4gmNsN3&=@Ef_oJD(6{la^LFZMz)761JiKl9Z3#(o6)L)hp*rn ztHqe~hJ<<9*ROU?Zt1U1cx z-grI!T$PbEsNKG2*tRExwJ!S`E@7NVcLc9icvJM0_`_KYS7r_l(wvpmpI_M(e?z&x zRG`x_f$_=1xHdOGb56JzCc-wX?lhR(PJ0&jwJD zN9qcCJ7H6TdEsz-EG#haqw3c;ENWQ!kG zESdjswCa&U3=fyVBWWNpq6~dlb}-k3^|3R5pb`e&_3lT;2zA|o#I6rmPX1U(La~a*T+!UYy%%6i@(|Z zmlpE6<2dqp=ohvoMyP_0PBf~+EXv>k`UoO=Fh@m3Z4y96mdzR2nz<>f?J-|pV5QhKU%z@qTc(s=RP+$40aCIx zDDa>_9FWDY*=@Do2m-WY>CH&i39;65xm+s$ArK;@>pVe4QT%*qN|H6I5&RU)yu2C( zbl8WB=AvC}M8oBpD?ryV2AvNI4D6`v%P%VGHkoF0Paa~vyZW&Upxn8NRI$sKFT?tp z`AYx;2{q|Q?V87X>w3Iydc4WMZ*azoxVz-hrG2?_2YAa0EkkdO{0$(6NqsY$UiA0( zBY?q#;VMLZJ{8~kNa6Qoj^hjhr#?>tw?TQZ4Us@IS64{Gkf3lk6JSI-6e9<3*8 zvMMPl)j;8s+pVmwUSvDOhwilOO4G?axZ9d9>hS9swmwa@f31x6=hR}EJbV5{oc0ejJA3zN*2!9}_p*e1%50lnuhP{9k2@9JU zqJu+!!t_MLlPF-n!xlPI<^1pO0XLf3oo_jKbhw|Y-b1@qN=MfTe8>JujbZ-ALVgYD zF))F1_(z^5CKDuD`o=7ue94H3*I^$nL_YKW@--CdHlTr-STyPz8}T^a1Sp6F9zwxU za_c!#BW(o1&mHGdqjX_PU|C^4`q&JLts>`QNGv(+ZR8U}PG;rRxOG4SZUT)c)Cv8G zczGc(Y>;niO||FO5aZY{RH`f9k-K_~J^o{lqmD}(Kts;~9 zb8I8P9)C>prA*om$W-dwIJDv7;tCVqdWXu4d@g{qs9IZv@%t7TYqlodCA;0FR z!aMT#U{*9r@59bvh#%9+r^3R`puEcE+j3mIDSD-L9ujb_JITmgzCOc`(2m`~HR&QO zaf6{j5jEpOIkCOpmv5M_D*aMVvD7U%+im0*4rLV*ENR7x!(|~{ zvvq#)9;JmBWMPrX-vB8CK)Fi!zA6W@pFumyL!ou^H z!{yFr45LeyW32PS^^DhNTKBhC^0ipq1%AVB-we8W^JdO77wXz@A3%D@Xr0n?L4TkU zaxXw-&Ry<=kJ>7^A$soIxs9OCuCAdX%ljXX)^Yi4AXb{0rEXX$-01rs;=i!R#tq7j zaw1~l&7d!+cP|11FM6Q|X4j$e9Zw48*gIVDU74>;5bm;7r}feL`s(VvE5UW4Dc}EO z%I55Ukset`qKD6*CXw-d6g6J$MAGlgdrya2( zvc1;~x0?FFAmr4|AS}b0OI2k$tE4Jy8?Tu`AS$`LBBitjBXZ-dz0qJv;jh|-ncRV9FQ+mR#Ps=0-c(2auGhBC> z!5}(ZFg)&LBl5b}#8aNX6ZPd=_GMYiYtIFu2&xpWox#LFsi~b*Z= z2<*j?YHv^43l7(@*F4X+UaT6BS>d~<&;>PL(sp)H5zpKT2Z#Y4Ljo7hTEvhN6VrPK zb~x=$N6F=@{b&Yy;)YiG=6VEZdcQ~zVTzQkFCsFs*lD^MI~YNA5Mia+)Kkz^AGy3$ z+dU&EqOm{C@iYVgt2FA=!VX#o;eHhI-@^fzGW(jRW->4Sc>xZ$KsDQ(@5$CFe6ZDM z5oul#dd_uuI8%!U!WL&M9o_WQ->_WODEBukw_UkIS8E=$zcEMe?FfQZBr08uRloH` zP=nVy=M|*J!|;N#5QmWZIx}-WqCmw9Iy*U)*o^>beQ_iMrg`z!v5cHt7u#*1BmIwk zX1-sp?Ms@UpTBbSLKEtV4ZXf(W;QlCkN7Bkr$AH(lpWuDEDwi1z+CpQz252H5#T7F zB0?|NrKYAbvi=?W&Ak&0BRgV*h%D@SCGsm89kY5hKHi5+SN1j++=gsR@o7X5BCluv zx_S4bw4n?m5W+kpLTBR@S^sU~`&AGBz!llnQ>F;dkLr*hGq~pM*k)RyPQH|U_bG|i z{NssHBDhqjN!CL7|6@m4ky1R(4mzT!FLN88K6~zcM`l*mUW?(;>$h(q z(XJRC&TFw=>7+32@+O5t)5+H9>2$YP>9nSnmXsh?G!|K!f}EmaFB>ZxTSWCOe=I|N zd*F5y@JRGKxJz07qzl4zdCbi9*S}sNr0MiDZeBWNczpaJ@PJUNas!3)1czF?+{p}9 zKId%iDl!P8`{$NB9eB-V{~kkzI1%^9K>aP$jeLG-8bTE|!YnvAq%c6DHT$2XxJG^+ zY!B<8a=TB3OToz?T5|YuK|jAJNrrgDeCEK%*Z(+gFqlecD@k6ELiYyY%idl*Y<~}` z>wJ8CSFhHlO`o&ty-~{YCjsRDR>fp-=Uj!ghqR2qRK5JHiV6TY1Au}Q{*$@&XhrjU=_XMGZufzEGE;0;@{#qZ3NZ!*K@i8y7qNM z@(MQ1U!PjUq-mMjk*R$^3l(yqo8|CRW-718@LF$0)f|`sye%E|$bNI~(B~Mq5hy;l zCTWguF)>NW#)tn_Ee*WA*80p(N_wP;{T~p;R-_TS(<<~F~R(gWRJmeYB|2}xzbCk?s)6`16+OQkb zT)OBI7H`lW&VIor$%26i>*~PXUA@}ty~9o#Cpk7h=}BBis$3N8aVin79YDNqT{sT_ zs{uaaHvWP&OX&5GGO%vUbEDHdTc7_gSSVGqtrvFP!*ITGL{XsRj&ny`pMS7rqJkuB z`BXjnL=PDSA-5OspWgSP^t7~>l>BzEF?M%%ffhYlIX+r}n5%PdaV%ALi9%At$x=Jw`UlED^k%C2k+S|*oY zKa3&L1G@{NCTGoo6POut`*uOfJ5P06z2N@f6Fd5F_k{O@ISo8fZT8+-h*mp|%389Z z7W95BFkxpY#T4#@<+fsBAMU9oq>FQDo1p5qVJ0?)EU;YVpij{6$rL_l%`2M-Y5@-j z1g+MlCTS%ld(h+I`!+$!VG8+bm!^a^IP~y(g}JysR#oZW)ee0}<>rK&pi?q;Z^0Nh zO}50RTy8Z+(YbHr@3w|HC!?esf=~jc6r}{AawvrWA{qJ~Zc5R3s{_lM_l4KGHw5a? zjwFef=x#q4$j+30@&371$CZPUgcB;T{9-zx@~a(8#V2>}>}_YC**-%t^`v9;3Smy! z`pHm$7H}W7EgjJWN_wlEqk3losM9cVt|Xw9VSof!q`fCH#}-H~9ugi(if8$xB_y7v zS%xk>l;a4rZ_jc2Jtc!q;H+A z%H#FSj{cD*dqSGoZ+SoV0}semW_C8VE%4HJ4xRVFd za~-nF0Y8*U_C7v7Ko}Rci+I+PXfeA;7y4w^?_voMqRBXeM5!zriw7lBb8_T8;-3@J z^s)s_SjQviN_J`AJ!-rnwp_~NKWCx41LO)y5Tk%Qx$QVn2lF%Ao`?vPlZjV$>N$OW z_H(_oqlel#?tP@K$ITuYyTq}e%<`eE%aP5oe;^9tX-!5|X0jUYRy8J%5NJ5i(k@2Dj)%kP3x4h7st-(w%KURQu~FTF*hVW)ul23Y!D z9-F(7kM&cl%G_oZ2{Jgi5wrqp5N%}*hk+Nd-zyDuEwV3Sqc)lTn@cg;b<3SnQ5}fw z2vD3E3+Wg=%hv8}VoR>W@zJ3Nr$ZUYy;!1G_-x*x!jauF4OL}?-cQ)Fh}X$T#lxdw ztxrdmscd-*3^x5A>%cvro-h3)wf-+8NPeO}^#zafl91Xj=T#Q>icoRC79|kMvNJQo zi)j_Qz)KYQE%gQ!h z0>;_wj+a}ZuJ!E?_8w1ko=^hqM8o3;fMryBRRPqpWM{2=?=O`)nM>o5adfj$0N*$M z93hHO9iZva^EWl5Wn@S%4@<9Z77W={Dops%F_bO8O-wXYRi$%t1W0jF$dkvk>4J05 zf6cudfIVu@MJ}}J+*0auh?V2TiXuO^OX)PUwcR0+-MI&l0m?x0_0I>I=OkQ*oHH(K z6gli+oB{uyvT_V$QAZuXwZ*^JB?Slh2T4SqmtzL~DgT7zRuzqF4}#=u6}QxD(0u0&IfV$W?m^!E9*)Kti> zVyi=n@wex^!@n?nfAnr05-X28u?g*kUn7;J!)BS|U_glk?aBCqQQOt(h;BPzDPS|# zpyoh{$hVBiF|&+eEc*qz{m#305t8f;YJf43CtvN$$ z1Jv1IUrJ(PZZJ5aJ8O;)SBPlTIXOA|DtCrH+{3B8IEe1eH>`n4VbM6;Dy`{Zqqt%8 zIA=G`67htfI-X$S`0V_|(ZL%8Kn8!=kUgW76QX=l2nvT_zh2CA1zecv^oWZ@z{C05)xYSzzYM`%>PGYdOPht7jLSZPQ z(`b6icOvJR7uybL=4WJNGEFQ_DU;6-(+~dezOknN97?(QCM}ab8Bhn_-MOkAyN^czdp=8vpI{08Y2vTmAmerV4f5Fl+uafZQo6YA;vT|~X z9`h{0k!63k>-0ZPO(+}el^zmoT6sm?gw*=uEJT9HGUTxm64aEXk&Q)2d9L@%5-F63;Hzfi#X9}u%K&yS+5Dy)|U7XV{F`?f@3gN5TQ<*%Qb*w=^9cI!FH89zXes=^PjyQ5`G3 z$DTTJk3b5bIM|+=ngRm&o35-jtS;!b3BE^<&>+Wq1sf(H9)QhiW@<`GPoV1cGW9=` z{Db>^e-iHwi(1;RNT}!Ves4<#D57(f1P!w?!rvsEoH(UHI z$E0ymX~MF(v{=QsTgJ4<$PfWsLkp=~MZ*TU<;`jk1T+)6?K4 z?_je9@7gT}qqsj)alTg0#^x@j3;lj6sO@wlc$>!HUpm|Rvv1tCNRYQu)S7s ze6)XtM&vN;c!#iylmC{-M#gw%7r;<3o`2VGH7+;#XD(@+!@R@;1&7!iz}_4$ac_v* zq!D9R^T?O*gDi-agGjUv9#2&K$te^_(o+E#G#9W1D+viw$oI&r&@tL^zB`i*@H$jm zj6Rj7-(DLYOptk`g78b4a@g+JqoHL0hAWR$VCpEjOakVHE^IB23_*>J(1miK&H8Rv zjzwn=u(PtVK0ANegbt77JT}dvsqiq7J?T|`qQtSH3^=Y6X;*~YSApF5t^s@#H!%90 zovLV2aJNZZkwk5Mx2V|TzB&~ zfGR0gEysnO0|)MS^|>hQ1x-zqb1N@Yf#I59rw{-tsCF|PVFJQ?E#vh55ev3)B6q|f zj@N<|OS|I_WS=eQZsM&pUaPf}VWM_?dA^fxK@rQ5Dbv%`hZ7ZyJ$gLHM}hIK*yqrr zmYJB6l5*wEY=Y`sG?#X~*n3dUqzafenIBI!YLbuP|ml zosd!|UERUuk;>3MeK7WK9g2pD9+lM&#tl4#aYAPFdkogbYS_%u*}`5s4!|N}^=vKl zagv{>$dRp*S&%42^YGiqw+8`IPu9dWmhHYK&YS$X(YkFrriaO z9Vv>~1PICV>&0*2Yx41+#SrS4_;)41_#H&UIco%KMNo(5N~G+dtQNK3_3(6FS5G3 zUbJLGgm<9sCT=gx&qHa5S6j!B0wp`F1oq@Zn=afomxWLY-ex1dysD}L#LCluc@~tk z^Ur4AZkS*jN^O>@0h4OY6MaYHiPR_*QT}f*r&ir> zB=E0=JO=nDlv-F;qoXIp-I z;vyJkXUkhW#UOt8L@RrR@8TggMq8SX6CFQ)UsF4BMk3j?-oAO$9hL$DDpbXwA@$H4 ztv*MgJ#c*l!Hfm@5fWme2)d#|x2wqLhBg?g$9bjDE$>0XfPZsQtzdd?0UcEz4E%69 z5(V;M>wujKm^CcIwH^q|S>R~uSO&A3&EVJBbr7_`p6ml*6Uf;d=n5k2T-k>C0~gI6 z)P>;u_Ye1=i@(eUi!@ii{0g`z=c9vNpr9eYpSAsLbi*B{2}~A{m^6L}w*jSld(tt> z`MD<=IvuLu)W!1KbFj1LCe}T7%>ZNL?)og==$>~8D2SKCTG^MTgF-U}hVmg9+L)5G zZNVnv)sD>tjCU# z3+$bz;9+JBQ|MN!8VV?*6M$3?b?;ZZCm@GHMuTD>3dIy3IqcIIII5Y+NCgk^r>BtAQx6omB~O;~TY%*O;zD6{y<34CU6RPoG8~&Bn*Y#lcs59q+*l z3>;UY@6j&&Z`0=%_>s_@%;Y-AfkM1Eb~=t`gv^_pY$B^xn!iKp%eZ$=Quq+J$b z;!lUF5i%K69XvbRh-%dyro3{~0?IRd>PT;q#I^KG_mK9QIlTBbO=xt8j=tPMq=0qV zWWrJUOgje_StXd0Gu-ZlZsP9%5hQUbJtCIl!r1`y?%lUs_Z!3?hIjmDZm~GK`X<3l zyN2!5@)Vbt34N8(wP9yxXJW!cXTk2}#0X;@J7RoJjEpqfesBfQQtgmPPFN7g_4mM{ z4Lr!uH{8%J9M4yA1sNqJnyb5J!FH8PC4l}I1U{6T7xkqmelaMTu%cF;XMw>U583X} z@?nJSgEqqI(^p^#{R&Vidz+Y;fRkV`V{CRE3ep8&$9aB7)f)Y9FNV$*aNOAU<;4$_ zdBL#+2_bjqLBP7iCDSIRL@&BBl6p#r8X%k8UdyJuM>p~qB+7%$d|z8Wjv-#l&MA;` z!-~kFZ`kw~w2SOtXJnL=wY4gVlH*UKg17|z0vDE;+W_f1f`^H+>g(DS#+M?15r8=h z4K$MxFAZlF5%H-HBAJ_;+hR`wwNmcwbuOoeufF_;2^B)15f~0YD$N74Z>Kf5;@079 z?GO9s-*${Lc@izZMKD3q(PzqeK7{Mi2Q?X5np&rQ&e)YtzlAgM3`H{rx|2Vr4cAYo zUc7!jCA+3c4o)Fx9wFXccP_FSZ~{HA&%iDIO$J4g!_O~JbGBCR^&pgJfqmV}ZrIOb z?vwcCF0xVY-jz8{HUPLBDt!UjfJ3(^1NZ`>1@%I-eg)UkYBO8DxL^SGk2|VWkisAV zm3p$ki(9X@cC;lANxuOSEI!^=&4*4{SXfZ75@3X@`Y0_~>tEq+9ifk6`0cBK$pPL} zE{9uK*c$`~Se;^2WU!=XVz*3Lu%`YRX3!qy3gElDVC362Gd0aIsMPF5+kpQHI7y_x zt}Ve9ae%6_+W!FNXTMubNhXsO)C-_cKPg7U@Yz;abR>-(%*(Bjc77M!KxRE#Fq-di0&07vZ3NKLa}4fIM)`L}Qq%3C#|K}Y;)PZ*2&w*A@P~c+ z&aFUGBvDCVTF@>4_$B4gzxCiddF(u#b#3UL0y51??T``hpsa#IYild-Z-cxSz!f5K zc%1V1np4YPfr|nYS@fCKSR@((5RX#T15UTFu#jPNbLGDl{rGXx&S%e7-oDjVXvi#| zh$Y?xbv4ARK?-r_;QM6#1gA5&o6hd9OV9+$g+X6(j0UTe+6#ObN2YYYrJ10I%^mcR+{Qkh@kADO5RWjs~b~G@^Czscvd<0iT-x=oY9S2-g^({cKcwn=rA|cagqA5*h!m0YT`vHPG2%kM_)1+$(0l44}%A z;shi@zyjl*xt8@BjCJ_tpj>o7r6Zyk{Zg?V&z<%2WIc5!2sFNxk;?6ljnv%R>!&cW zVPm*{d(8mz@xiR+Ep(rJA~hlhAo~kg!0+gn&>N=+-vqKPAC7Da&dmBQV&_N1!Z-o$ zjmIgLVM4!~0IMU2w63wSC8*T^0x@9Mhv00F-LZx322HFea5gsTsZlw=Nv9FaDg#R>Z=>u35^YJ-?<_z+sI~0+S(dongQZmz;3wgmrvf;e?i0Q z8XO`k2z%5XzdpbT1Oz!)*WT6H`S!Zb@6wvX*0kA+BQSf30hMO;299@B+{PncPe7|G z;Oigv!-O9=kSoZ_dO+rbYS=twhJ;P?8YAO5EAH1$WFS+4ynXX%Z!Xrp`VqMDLBu1C zvR0f#>U3W%L~vm zoHJx>pf{6Vx+Lz%Ye~BRKwuNjEMmjIX#4e5cXv0mZro;KVj5(-co|4NAje{En#qcn z+JSv-5vqc`tgIl{#aXA0|LN30&JaZm)rQPG(5L_|-O-QSc92;+PZDb@KF*~c>``bV zm$$i&;ZS*p_7$`}dhPxO$T&SS1L9c?tPdF7;M719lBJ|%12n_noF`vRra5FzqMQJv zBLW+Ovw8=bo=HIUumSrpm{9h%mXP2Raz)^#u&_bzk_#}u0KYb&YM( z*kgN{YF;9IIm=|!I-l82o?Hx5M++Wb70pW9)9gRp7hTPFbr`13Ya3mtOHvG zvUFfzAiM=M@_NHwzRArE*2qqPVIawrdB}Czns)HyzJG7j@|OJ=>`}je|AszB19kPO z?R`CHq=mw)sHjN9dk?yi419K{kp|e_@6EJse{)V2*Z9V%thN2afq?;FSM&k>!VEw< z&;xTPcxb|rM+fj&|+lT?6xe6`C z&^*)e^0bOGptaui5Vn&?G9}?S0~`jxB7}!-H^{HUA-5BH90kTVXqE3hUIEJ?go#U& zr-T^6BX;%b)r~P|mjxWq5sI_=8d~3gq1!uVhr%d3JJ>|%MG{cbuZdS#Q49aMx%FK#23{)osT?k=Mj|9ojC){>9`5q+9*w?RBk87ad@u?9FTEn1@ z0B;*Ke($Z^p>=@z@mB+;y9~6|L*Q6AF3rgaQTr{)1|1*(GT{D(5?XM!UQp=rt2HW0 zeoXZ1{A2yus{0X#c&~oNxzS?zi@9>$p(8MU?AIUohe;@k)po>8M zKR*}$_YMB-ivJ&9C-c9x$UWBvPhmX9iHyt2#*-90n|UDS3&HYNO?KAlo*tKuP^r9> zy8ao3`$<%1PNwn>JrsTzQ=XQZGAfR?Mai!gw2LqcIs%5&^5(|q;Pjq6c<8En|8rx{ z|DF1On-Jr_-(5uiTbt*9B{lz_`v#wn%~wVzlk=7j*4j<)e&Kzr->h+imPG8LSx0UO zs`;LEv0R4>TZv|U9{;7PZu@NIBGSGJgYNlWJk9Q;VAA3qiQFFBrLVf;>}NHxJ~#!^ zI@Ms^&0F86-*0ML;l3*W?5F(a+4cPPDrdXZv)7`v+60h&a^a1`pF6P5%HH~OF%}lX zUr6gm^cV1n;r_Yy>hb%4KX+l>QU3DhxY08I`~xWd@5}t(x%uzDZ%Af5PkH5mZ1YsSvb9g6a{QeHkPpP`fw#YK~msDi+`4 z{V{NKkp|aS0Cx%XI~2(@F5N1iE(MCyX?2|(qF0Ky#C&oLYmR`_a0jZWOSA~eYD8y% zE=&AKAWBdUwP)aFF?}KGc8`Xbm>B56a)G;d;Kr(O!d$RGK%EYBYH+;?_&#RioZCQc zg|@u-P5phPo6%MCS=rzxBMYwQs9OEv+$O*@#&&XwE%<(7edy`!1v(`Hk=AAm-f|lH zfDL`~SI2$0I14VYX));pUMtqF!V(lGPg|tf8@l&EwcP^Ogdi9x3g5Aj2E#{~0U~n` zZbf^`VW10F1OS0{6$n$R+ZzGIiXhzFbG_fYzn*vuPPiED>%B02_Fj{e`!_EkQRPnc zS*Ejyc^TdlxbAOBE1*E;mCwZB5;KB;m!(4mOs6M|pC?;RL!$@!*B@;Sm>)0H99b8Z zSm$VeMD7KG%cm6C^MKliPwjg!NwWf$FHYax7A*r84d7B@iW5A5HUJNf@8LQ$)eiuP zavl3*`kMsFOo$b4M#CLvPOjg?{Xy~HMjS>nOVEwnKWv&*8zluQxdK+p1; zs0$1?rJD%lA1wnOgY>%gt9lQlp$V9f29uAV;`&ar8GbW433iX)es074@(Aux5`jIk zv4^a2!)5ag*g8O@Y(}X7C-x>X61nmNkqkZdL5xDK5Cg)*Gu{z4np&E?Og^ai?!bJ& z-5iK4bDcChFK-kmchHc*7?Rl(ddV4@6o7_V zF!K(0G!jzMhRHQ|p;6HGpersIuI_PP{MZOifY%~}aEVE2-{pvJQ(&@4kY`j2UUT;X zLnJKJELY=|F5pP^=Acl6{!AAj5P?H=u6uDY+!49Z1FBYj;l2nZk!a(a9plg;rCaUw zXl5zVeIgL*I_>Lx&@Ktj=dhmkV?T@$Y znc^R+rc{GgfltZDBRq)=VZ-ehEK_{IX$iYn!jXkezvuXrZ*}DvBM^TqF>$W;#|h-L zTBQ~gH~?9OFuV33;?07Z7HyueyW8&TGiaGEar+2dZNLv&?J23)gZKb5p6QzacL){c z)gm7a!@@FvIG_L~7d(6P#htK+fs;)wa9F_!uAf|k*1l@^S@<4Ys4*g*Z+cSzY#h>S z;E^N0J&2%~5ccQ*Wh)=$o;ZrDbO9XO*20t`_Ld0Pp3fzmo{G7_Q zA8xzygnn3Pfh_qj4QoOnT*^8E)Uo!l!$cqxLWD*?JlWnBAK_!ILi3j-E3~V~%nxlS zWRJbLzydBFU)!V>xYG&9tJk_f;5Wi>qrW|bS46`tAoTTc%u6~N!1X9MlGp+4A$)Rg zCEp_08*sJ+i+_WTD@l+byA8@E|23{C16Q4{(37{+75RyEHD$#~S~N4$GCcXM$;W=U z0VKxa7y_siE6iQX0Z$4TG9*}$Ee~X|M++QG(amX4#D_OrUjbc+de|X>&j}529UHsq zna^e8A#TC(vh$cenQQh$2fqt+KgEHN69j%b=i*?gJxw4fbewJ%&Ata!9t6FROJRb` zW#7}`3IP^&_RvdkiA3D!Zjx;@UTl-gQ-9q+1l6NN?&UO zEeB0NfV|m{-?&WuD^^xkKp@8JT52jPb5e(aEN$L@OIQM2-QvJ~$M8;qm*Gn0_gH>T z^Z+PrlnIEMATNpBW;fr$=&A^9ct;?u=KCIvZddog=8$i|L0;YBX8`e{o1oirh&tGM zx`xGGe>1)IGo!}3qN8D@YF#nK2|@>-TSM~8+pMaA!*d4td3kx|^in*Ivvr6bzZc65 zBzW~!asJYzIP!uR>;Vpbha87l&+ZWjq?G&Hj8zM(UcO=UIe`KkzOmuWK-9(x-rqZ= z00}D__>D_&eaFCR6$oGQk}nT*kVIus2;?!)Mt!1&;Ix5E6;bZmY>G`f;#}g zRZ|e=pE7ne+(*I{4NLPjDoQFyXPDjqnx`SY!*TDPfEzyPhD4qbQ0;;JI`d~TxGp@= zt`mr5V!j0;HSgdeTmX~Zeivz}fFnASM}v&uef=kAKg>H2lEJBwvV(N8bTmMlM2LEY z+e*Sni9Z;BC0H~0<+~|C1DJ1tWlkd(3%E=cbMp~_z%!?k!gWa7ML%gfZ@%q`R^04VdI^R_=af#^@SrvFS0Q!< zMx}%+1NI$o>*?a4b-n`HbmCyWos-#OD)A?Mn2_o*qV;ZsoW%R_$Bc3BC6ERNxLacr zeobngf7sz`0v|C%c?nja@0;zmHiYq^;Z)Y%6-;mG)d!F_k<<*`hK`WNHwDBM6rieIaS25SGE>JWEc5I~fv3CjKnRbvMNy6VQ_nRv!r6Gmw>W1p3cGQc_e<2BHiJ6wj$WGUnENHZYI+zJYRklArAUz_Wa{LJ)t=&xqV7v^NV4x z#kWB~Yn!BO{cf32gb;goYyz$XUBMaz8xI828EYxZntSW7rf0mx>ah z7vFQx=wfg^^zRE8e+dw_op}c*9>T=^kJ=Dl8$&Kf^kfx6bHXmnChtfZEKI?VWAf<1 zu6X7m`9Se6>HO@^+a>#bJ8LR2ofxRY_KC3f!#Ir-&7D{XOsZYRAFF^d4J-~w{}Ex{6wQ9CtVMa1|n(KppUX&094AytISGX4~Ig=4@A&da@7 zFw*i}%z)s^puVr@`9;!*qpcqRVP20YdqVS0&Ymz0Qc}R>DwMVn@{F_J zqt|yP!=y+{;02(^M09)D8Sazag*?J<)txbea{mGO3)~sGb9|upjeNW>Rru^sXuYBF zNh;i#*+|eA@QNQqK5GDzht4;nHxk*Wl5ck-*n9J^ zp7*x>x7)DH!;;KHBvJ|)8k7tnrFoE0rcj6m6e=@GqCuiWqe?}DQs%WNLM3AfD^Vy? zQdIl(F1gol?|mHmxA&j>cslOqevW&s`hGv3_izp8bzbK+=FUmB`_Z~3BI4Fud31-l z#-QE?>&|3VUh3aoW{_{U0jlc=wtXD@j;J{=-!xWJOHivFzG44o%5zP#9Zp5_Y^BtC zlbV8~h@2bvTJ%*u)1s*IMRGk#heV4tI|l!hcK_we_pHO%YYe(t?5B4CqOA@okWCT# zl95NQ1P%SLv5XqupxBQwp^^x^EvmmsxKZ@pRtkTR&H}x==jY=dP3Lq8 z=XA`if4)$mk9k7bvR|xA#Y;_-*sHecome6tGxd$-A%#Zzv~|9PonF>-&a3|5E?}#t zpZn$sRrf7C&+~7aAdHp41!~v-6Tx3{v~6ewwf_QdyB`&Od&n?KhYt8y$A)?lH_ecz zMg5M$Db3l<(PjNtl!)?r5BC0x)~@T=$Vdy$`9?Z+2Rh#RlRY72>E zxSW3~3fvp7{wOR^>LXrfQPDHC>)V!zkXg5G_N>w;)8LD#UoOQ*4-KRsY^(C<_$Vkh z4T%-nLmjWT?H#FtcG6A6Y7SeaVkXIFUj8XF^ZeSP$%A}v|MLZ!!T{vV2)P=GPE6-d zhVIyPW0PmJl78K$ogV}VZTZq;{qf3@vGkISx?BoNphs-+H_I4;azVMMen1!}PSmDj zqDj8`EiIQCNKedMdk@Qpe3fwQ$E^0Z=`Y?uLUG&D(5F{L1_VPuEv3?D?Utp)+RuC} zOiYrWOf21KL0_&d(VVDQKVBdb+ZPu|Ip-T4ysJ?m&ch|grK5VSD!Ninkos)pvBui4 zMmyK?XXoCL>mD8Sm1Z3w_R>GGvH>l-^G}+x1&M7eTmz2L>__88YU`(GAz|iimK(8G zd#JIMRlkuQm6;>5Llx?y_xT&B$ENNW54p9BE{M~fLf@xTr~b1$!mkQVn^2to_5LcC z2ikEcI6umkL=EojsauFc-@ZNsJ;(aE-$`PLXD-m zs&{qPCP+Pl-K&hx{Q;(7nA>_sC#6e^3_sD{Ri$J5`o^xlFEzf93W*Mg*gydlK%qVt zSY9YH+PXb?29pwUCXF)*C8zH4085PEph4cJ71>8qUD!7!iLevtyeREG z*^qXTYR#%>cOZ!(x%*- z!qk4sez4{~rPM!L5f)lk36IR6XsXHR;5n0#fZ&l`?8jI)C6@B>g+d)Y|JX&$@$RXtGOz)=p{p0Sd^7`Z?^SHNKg&Zx`znV*_ zZN=|8Vv|zSOgAAHb+O1}^Qc}5N=hCiyvV|hD>Vn6g6}f3anR9+1mMKAa(j9ktfo05 zI(qorh=ElOM=p3|Z}ME&ZofifR9@!ol~hs_|4u&SsB2HcN;a=jUn_C$);;6 zu`IEeMq<0J%0x*hidH`WMIv#!Te0cYA`_sSx(~aBXi`E#_CK5MM1YUr5w;|?`sRIO z%jm5SygA%Lu1L`QAK|Lj!>63EiY}d*p>TDB&kNj;_UuaWs3x97$kuLe12Z;^Mjf-% z(DP{gvhWKRzJZd&dtRaENO{iiC1)+sM?%sF-Nv$eo`)T5eP+Pmu-d0feG6|pUilhY0SR$JaFK-L<9RCr!goo$RR7)txp^lhoxSYqb>+eB4T0;RxRHO-Wx?L;srT-8s2qMsrwaBmFzAZoZp+Wi?$oK%p3Z%h(Xd%G z4rr1b>MGFAkQGg->dMT5U(-kar;77GrK$fZ+x<^T^MC5JO%aX6|J1Pme_7v;8&lMj zSxLP58lITwkRNC6iDp`m;{0zlR~y}l>YAY{3NwA_VKtsL(477Sonc)cmfi_zCO&L! zJO}i};FiSKZwbO^%&u{N`oCR}b(hee<*e3BKHAzi&a>g?^PZW@oQiHk*}Tl8lEJR8 zwpE>y4o^;YBL6C?y}$7#CA`+Q>dDg0EQ?p3>{DJ($-gC4i&;5RlVy6kT5#q$)&*lR*{_?KmQ)et>S78mL9JHMo7{jB`_DxYcr0 zuVWOiXo7K`U`6GbG)tzPESMn8f<^SJ-5%gP2hRN)>WG6-0j4+p35miaN@?H|+JC1K z_^GUYS&$pObnq{Cw3qUG6~Zl!UE2w%jAVhKIf6jZG*@66L=;7&>qev&``0pM(Qkg? zeCg9!&3u!s50VJ!5$Z1Bo2khy?V7a1V7Pzj2th=stY6?xJ>_Xh|?Z z;y_gQ&-@@a7#c{iB7tY$HRtvf$!1#3K|OFHF~cU(mGKI;lc&*KLq9>}CF0P-V+N`j zAE{_7(Qdc)&_iyI_Fs)}tp}P(U8*vpTK zQR^3PmN^PjU#Up%L|^tJk6v@q9@3Lhpwp{&*2e&c0f`PckKm1ahaL4XB&7UrH|JLk z_J5K6OU8zfWoHj8J{56bpBb`9KIlk|s>nMe`O?0P^7>aEYCEH4{bvhcwpiulmWk6G zq8cQ>R&;W@8#Lx=(v}WO8(A_Sq<@aC90SHL3j2ds%)V;9nSv=e3$%*?Pe}(ygF(l7lGuj+InV!BSFFI{Y()I^Q;2kNvT0<(ffjUg>!fpfR z^zhOK3hi%A9S>%)yf3)$9G0GxxZat`0(?W|EAmL4&%E7asc2l98XF(7Dqv_-*kt!g)q$yRE~z)U9jE1BYKL?|dq@p> zP47YnsR?}`Ydm6P=KkVR72iu+pL19Boa(aJmk8z#4XpZ9vh830dJYVY$XwvykGspb z9Fa(pNB=aKmDs+SlXWM!%K0$JbU>jItx9{%a`U!hEfkb){UIJ;C3@3k0^uXg}0!2&XRsQDJ9Xl*)1z=HY(y~!~Z72umE$F22`PE#c`_sF)2swAT#rY4#^|X!E6$UXfe$(9knaYkJ$Z zIUCO~4CDXyUuG^-78M6`u{OW5n1?;!C`?AELH}YYf<^~Z#!qLPBK;boJ$LhBtkrqx z&o0ILnl1SWSrB~DLUd(r&gxRTsg&F{Oa}m-A-`vUlaBb<0nPOHDfc6UjcP*= zEco-+wH^n%$jgky2r4wf0ePE&p&t78$NPI2-o#Fx>mSD~3KQ{S|2__LI6^}MNf*I@ zDXj61&WHb(udmXJya<>Lo22A`DdJb4c8_$aTy^RgUSZen_<;pqRGPuY`@?#8QQ6n| zg2%8cS1p}8E5s#twp-YLA61XE*C{d?c120oWHM!)w{Uw_cHqYT;`ce(35YsNZ*&Hg zxMLIUpd)jnPPrMJR9vj?G_BbfPEo3+eis=zEF~FrPx{D~O}+u$fe~}Ztkm8Hm~!Rx zjx-q>aVQV!eR2H>`s&>iTrcO|ESdLu{f&6uW9sYeBUORM0B@Y4mlh4wczufsk*G!qjkd<0UxoM$K-eWr+LqB`(5b{L z=Q5t@10^&2D7-a}Sd_NQD!~>Fj*K~(n5dNEnmc>MK!8=nHR|7t7hmapW)^4Ge|21R z^m2-HG#D;ScXh0r)s6fgr2ZR2F%B%))8t04c>r0vFg)kwx|>~M|DtsX5HHM;0&tkS z=%u2%1WABG%D=F&KT4mT{b$0H1$nJvmJUuiy)K+iD379>5QM}SKDNW*Dv}>yYfEW& z-fVvcG@R0zHDif*k_>>pPMzjI4(r|YZqgeVab-hOR5#5kqsRt`NeBoiZ2n};;1U6@ zL#I)6R{u6b&+S|TrG?8BUMMIYa}!F5?xlJ*`#xT>W5it{Y>uCRg^h?ue*~zXJgTXf zvUR!Yhtuao>6!g3*)U2;=?d`_)w)8z7@1YISDh(9Eddk+ds%Ct{G}B42w-%7Sn$d- zKq!#mCT^;0`XGrPnPC4OmHuJp!HT~sHJ3Lxak%F|VsJB|=Y zTcEq_PXIiL3^N%$|H8+I)4Q#4uo3SpkvxtPK5*}3@K8YOM2IWlw*NwpoJKfy3O+FE zR?ViQn+@l<$q@OHfPD;PFYn&n`YI3m;3hVcfCFz}tJ!KxS0M{i+IV~R`kUvg zS3UmmL4DDJ+R>o~lM~lmnS1@+T&!ci`{QW3c>&?T<4Nmw{@O!xh_QAD5!IoUkoC`| zSJI}UIOk8{^Z)8=i0js@Su^O#^g%>eLcDadl$yo=HqzA9S=j#6^iLtD5)$g4Ke_T) zTRCSZF;0q??;y%UETxb)6~ zm*pWs*_0OLC)ztSL(|QyttSKH&eU>Y%oXi|S3!PZ+a!6QBlGEH#t)$*Sb0Y#Z@vg} z!TatkdDgTQ*CuBfs-DG8#wT4#%jp&hXeUNsVMqZ`^H=Vmnvj}Phj`-#z*MoDCrylu z)>Z-6AVwL8s9m=Ilt+drgSYH5%L|)pdPW<$z7d#ixtw}h^|%>Vef-pC9g;kl&Zp&6Z^tL&p&TjLo5cHvQe51dW}NO*A0E-VnTo;3{`0bh+N5o(@U$Sosm1VTlxb zbQ}$hn_u`$WATs>SNf1;0=c=#XU>fAztUK3(->$i>ZRjKf21V2E1H~b4%sDc+?}pE zmP|zF?dfy(vm*b2vNI8jVcnQD_ln=_8hBJ1Ci9Y)%^p6m35?x3AZxnnS^NArowsLh zcD)<9wC=EXGj1#jk+~U|brV>G?*IOEV+)I3u`VATEBYT0Qly(4x!ry5AMYAPdBOAmJ0!idW}Z(;BrD+q8sZFJLm91LYW`o44@c$UqXX}Gu_GAFxb zC=bn$2b`aGx(U~mc-q^o{fH}{ca7GT5B|8w6)ButZwg65PkZ-Q!Bc7~)1LYDkqZ1W zt+xGRBX9pvy8OZMQ0sd?Z+KZQRhjcEYLZUpOGWAunaqnvU;fD9rITDQDQx}YdBG1R zHLaeYmy{GXuTjXI>8gi3^lkxV7q|q8>R0{Wd!aHS0DAA8JJpJzfk3{>U(1`%mI3>v z3h_)PP!O5m!5V%N!ZSFXm?xqw+aJm~rx`j_YTJ)U>YOln>Z@$4u{JmlOw z%ED<0rMmLidJ?@al*wbBjAlIVy%F`VyLle5)+jp_p**XbDLh))>B1!FyFfy%-mQ?552Y9D>YW)XUaWM!(s7G`B9uoURI|B{8imuIddX zT1E*x6m##a&c7E2HOZqo9{*m55A!*&j_ur7nk(y{dfcrf80m#c8I#cvU7pal`Ivj% zNWb@-$_baSka;DC>S%MP0A8_N`34vLvC9rBSyz!X*82Inn;2*^v;Y47DoXxdtxnOf zZAN9OYjWSFH#;$v+s;x$65?49zE}6Yf+sP&YJT}T)s{V8NHs6j0sTiqaX z+&k{C4*iqR>fR+tmejyH{aDW+bAC<*g)I#wt6^v<49=H=HC!ihVErvs+;cniU^zv_ zjMC^v-;7DV-pK`xS{@HN-;9=SBfoEZt0fMX{s>;Rd*sNYE@ukzbjRyue>@Uodk3$@NB#7aPRS`yMbu^Snu!zsMpYfU{UG}W=uW#nhoyDJXiLD7`sJtFHa6qavTI$cqd7^3- z&0WN_Dv<_NRgK@YYsB=KGk1@NZ4v#pnQOquxT-Lo{qMh*lgc3|Md3uu#3m2Y z(=w3{yng+_+cZgA0;IRSTNtdeH;F~a_MR^w%pH@O%50ReyP%BGBtlR zXr)*cLUKd*r~UR5d8KGz^z67RAt7Pf$uSPsPn_X6cAgf-N7aqo18i`aR6R9yWMHLM zZxehv@k`u&Cuiqzx0lO5WWHplxy@EdLP8_u^m#Sofej4}PHSI(k?hk)?%&&38>YB* zLi=vrf;Kl>M92j(ZL>SHN666uHJXCUzrJ2VLvf{n#-~U2)tuY?SJn?`d91iittvvc zzGjNb8OA-WUAs0_rIp0ilMU+i@1JNTzkRuDhW2%gNU{>)lW4WI8 zDQR>8=*rqOM{#`KvZYbk9eidwv$3?+Lrc-5-&R2(KK)Q`iAcX~D2jgm{F$*M5!odh()Nf8`2Y2Sp(K8MGYoD)g zQiDCe*z|L4*y(V!lX<0Vw}yrW(Q~uXg6#n;G$kf4c#C7p?;4p`s*D)lFPqpy z>d!wHKb99rj*gCwhsTw9@h!i!RX4LB({RpEKZ-9l0Zq8VJA5qe@Fr#%xKgr z|NVB0W-6LSTO3C$1(<%jd1uOn5R@v44lujV*_6Yv0UgA*zt&LFE+s z81c#&*-ymdFv3z(Q~UYMOt6@nwwh_!j9>6kYD#a!Bi+-zP@-*ZEntSMpE|K-2Eod2 z`4d=l9C^f4F8ccVMnptxQ`lJc$c_uk4)f%;U5{wERdQtazi1+Zh)+5-91BG}m(3)R z60jzk8IGu|J?`skxc)IQbUCP_80ugW8yR+m5H5dS%ZZlgqksHE7aCB62%Fs%!vDQ{ z+e`K;W3<%QkY_s=iV}7R<9JPoC^d88!U>;Z!#JO&&^qh@tZm9y@n_ECBFCMr8Xx zv4{1Asx*of z&$;rQs23Hmvx}~`8g#PdL+;GjU2=;?iIKW9efrsMOJjIzcUcrn&QB?n#}cf~s6K4B zwrx-yEqY*^n+rDCg6*?2k5W_WI$6tWG4p<`}!Wen(7t zlo6CKcUU5kTFrrrgv1$*zDFfUil*GiVr2(8w4Q9%WV^t`XCW$fwlu)^ls zaJtcA-LEITCOMO}V}$o#RvJ8g@nZg!mBFXq8AYV0r$d(us6Av78=`ERMLvRJ zP|1U^BE~?WDllu-tk!eOAH|9pyJ(x-ym|BPfH6EPHoecqH7(1yUwXQ8IKfi*EoJ>y zJ~L&6sLd#&C*A+QT$-)&hfb=!{_sIT7sX6PBTVzG0N2f%=bvx@src_r;tV~GGrw!L zOQ_7yJY?s&1R4zg8D}ol@>ud5k)dP87zM!kyw+-c(t^~XxHplw6{}Nj)bR^}189r?gGj3xc2i@C`(-wSrWt5A0A-KSd#g>*&IfvP1 zV^vkZ3zgPg7;L|ZIxSBzrX3s3-}ROiwSkmXLG!$ONl7U#xMb8*Osie4XulT$3vzL< z8<^GWr)MCNu3+qU>=+Z+*PrXvvT-MNcFy*K!#jKMygm>jm@a&8ZWYM>gY0anT~nt{ zEs0-wf{06q~vpyZxaQ>Pk_w6%xw_z`WU9+~W(CYPC&RffG_ zVxU?UIG!E-RN-SZGzwn6d^zB4TrqlJJ!MHqlcy9?-q`EMKm)52O%7DNTIKi=LVDX> zRmc!?!tZ5eDX&T3vO>?)akkr`-3xjB-m*YeXQvcy-6~=1R9$A?=~2t;OgUb%Q#Z;g zV^hj_Eflr*n(&ASeUlmS`7>wCn6UQcf=wq(!BnD(?%y5Cw7h^zsj2f$B%ar03}f4} zCYXt5kTw(noX`|1%hx-)V%f4PHiVT#Fik!5{-wXT|7biH5f8A-2^IAw7EaBAHct|6Er#WD)xocs9j10iO^O3*`zo)s?Mt{=pPoY{>-RL6 zb1ahMo*if8Z?H4Ca^*_+FedZ0T2H*I?NzOz-?FBz$++?EZB7C?5IGz_e!N79(aJSw zs+2D5RN1j}=bo}exo4&nA}h4Fho`6KzxK32EFLuq1c&;nyPT@koddg2UH!T8M*X?7 z$@XVta#nnB z0o)Oq$&HabJqzCz={pK;Q87qZi9#I&_je^F`)-^#A^p|7CH6QGuzmuU#VFQHAUKdM z8zF`he&nArzPVQlm$4pEIxa8a_xyLQCF>xHDd}RRX!8MVTy(&R?BOV?%yON(byN9l z<e@2_5 zk`}1tz2nA`xG5xQogB>=t$ys_qgTt7JayrA<$bRamUK9?AsU*R z*$Yom%0NutKIM7Au9o-heo}4mdK_`$f>dSR^K0M{MBQ9m&Xcv(>bCrn(IDR7&h_hy zX_f}On+3i(=W=pT&=bZ1jBCJn3iC% z>VOq`ohrAJhgbc&A*`7g5DtAbKK1CHJ+}qq!yty|zt4`_ycy2n6kS;yYElrdFIXCX zSj%-iVG=89pQ1IF6T=Q+I_Eh!IGE2B^I{mnXXE<1ZIoZT-+No>pDMBrpzSJTJD06k zard(1s%RrQLUVBy)?TR{E-U+1bbN6Ya13_GU_BCz{>I4rR4&3>zZ1(#AL#UG!V3*ze}u_PV>r18cfS$e@$uv8-I^^Iby4@elwe%4 z0T%KKjsB>5`Xwb*;L`4XoYQ{$I?N}H?3dEgpln>cbm{4%A1yxonzXWpnj^uNu_)Q% z_boj}SbTt5fv~H?>eZ)Tn_`j#p#bZlJBuSvW5_aWFy|kW7XSCembDwRyR)IeuwldY z`a!gq@6rFUkmKZl+q2Js>XIAF3q%?`B-G0Um&Db5tGTr0Pq)_IaUOC(&JMxmw-*=h z5>pscR&C@U#u*IIa9zh~HD5vbG6iM>vx)Id=ApmCyPRdNPB;FZS@0+E!r7k_PwS(E zM^(+|{Tyz2kekn*AzUGLMd)A_xU_7)2zGDe<(Z~;Xzj4sBiU~JQDP_tVf7nZL-$0& zt32QtVqp=IBv=Hg35jkpPL=TAk<;IYPAWW%oGod5!?1j`&6S@pRirx0RTM{sgoJPf zgKBfy4c>wV<5x%lq`R8{^O>#%&cBg+8YQDeYXEyHbD^oHji=iBCm}tQ^iJW$Y|-JO z-PL!pv)v(+Wc_?k>ci}>b;xq^$#(~wA+S*XN)3GV_3dpZ*gulf574zWG7`Aw_8mK- z{+XL(y|CJ+<;*VXOyr6~>LDwoHU9Ih`ADl)sjphG;@#E8hRs+O;O-0O&MB-d=Rrqz zao@6qOxU8tHN`4}>sOj-74osgk)G+pClREE7sGbG$WrgA3Q97Gy?|s9N-z5?C6@+t2+n(072KeN$fejgkc2p13oiIxB2Iqa<%VtS68use8Yf`r>BC#@vyp!C zgb|?njC2`dEJPRR%qD=g#jYkR+`SB1DQ8!3>Ff~6DBlGHS7l|?#N4MxPntBz+mAVI z|Nfvq1`b{}9J8v%;81Gdk%JicLVPT>E zrK35hA8XIXA$AGA#K1l~)s+vWTYu0sJRq8#w>h_5)Kgv6j)C(sT;Ly+mj&YS;6ZP9 zm!IDq83B1Zuk_x^kJE6X8v(r!zLTTw&BP+0o z523yo4_(t=hk*?9`t|d8z0>G%7s>I>6crxwFwo4jn7m!Pckesi$5kCp&dh)UCSAT6 z$u%a@2`GU*H8#B*AE!MVDpHrQuFZ!+Vrvekf@F2;is8CCYrUSHTVeQ@Db;qFjIrc7 z7}!46V8|)qkyNU88#b5ABqXk_B&8!6k(@q{i4}RIQNRK{!`wA5pE}4AKeYr+4d1S}y2!m}C zzd~W?XX(iC7a4&Z{yve&zHZ^P;x)x9GMV#J@0X_oM2Jt-Xu^@K?R(6 z3HwemYLl^v!gqoe4)*F8psF0mAzitbhA4=Ns8lyOIXR}EycfzU5Gj<~(R!YBa9Ya;nT6ro7Noh% z4!|+aYWx`51qC@eXM9EKW!d=*fIb2-H~Sj z0XxGZNk}p9=4VqLucI0i4(rZ7 z@6`YN*?EALsIe^lyU)V=FJAnh)Wu~|`R`vgp+T&4cqGw6<%=^0B6o%72f=5+z<~;V znB{gJo2grIJ@FcJK~ecHEw!uqjokK`#W!=9v}dCdj8jhmO#*%j3J!Jy%7UmzPJF3K zCd#DmfC1^$yNGMqznTINznTI2mSoZP zS*GNJqN1xL=l=~WA5TACar!bKF%8i5fSRL5k2XA<-SX`cdVVo#CynGh>Z|9bSS>sn z8546A+6&3n;ridd<9+DU`N7?~`Ce_P)6=3W^BvuegfMUa8_1uLP)i!xzH{e-vrG4Q zz+d{q)3cFi(ljP7GbKJon=)Z+qq&ihbWL>2hZ?pGu9)4mOP4~D8xJ9=53H-Q`sq4E z5m4*KqB(u~lo_3G|DrL8%E!WT{g$(LyyL`VGcme-X2eMM{@uHGXMl$mQ@%kDagv6; z+FUOz%m6zDioo7>?b;OyjE=j)>oy;O&{W;qZ40iz%a0gi_wLA>o2D;A4h{+-Cto~oLyLoSeST-lX~|-z@&YwuCu;cr%fI=$0yGVkvq zf2UVG@ z!Bp$p*A1w%UW0M#ceJ)h?!bD#B3d_Rcv&SNjWliL%2QQ?_L8KFPtoFx z-zV3}nxD>H!Z-@hfjGa~*=MGZZ6fitU;Vorv-Dxe!Fj~^_V#gd3ofh5ZE= zXXtxZ8tjsfGLvV_spFS7GiJ@YoePY5h5{@C8s<+;LwLBIC5KujR{@g+%o>Nk{ zR>9pV+ziu72AvRw{7%w#(~~WKGe&LI)$Ws+S;r7(HUpMO3yI*I_j!ZIT!+`R)f!j*fj9Qcs0VyKOq~XwIq@_>r z(1Z+*qblpDs!1Q~ zNB8eL0O8e9{MRFZ|98j|ztVsrI(ROUd5?;HcH)}p>D~lI6uSfvX+||@hS&Sx-O6er zn9hqaoEuwCv9YR%xY?QkpSu5ze+JYZle9|Mz&DAJmwhtfX8nclLf!lb8@IcFliQNy$!w7}SE0E?Sknkm>CTW5%o_ekf5gGhbi! z=ucUqzTI=sO3G+>L5R6>e7~C?(k@^2_Tx_Uo%}m(i2&O@0&GZ5+GW7UvNBX;UVylw zs?w%iJF0rto6?N`f){r>K`STDT*26h1Z?_nfH;!?27(oRPRkuJ5hSbgzarMv%TBxV zVt4M`>G;QZtlrR}ZvaVazJ7IfbR79r`469&{`?#{BJ|&I5bmHXQd(1}EN(!RP)Ky8 zT~;|nEa_b*3vB#_0M8}7DyaM5!8R8i7Dj9o=}yGE7Hhsp_1W2Akv|KS#I z`0#iQ@g*WHf{J7=ALufN`X;r~Rkz-hz-k&{oXp*X%c?tKlbf5D9~kQFn7qE0!t8}> zlgFs`4qu|jL22d!{QAnRWd~!_4h056DjsDw8T12e5k%PR>dtfLzT!M7#1SV9t#@H0 z9u7D^$;2J9{W>S7T*LELpEy+tq3_Gfl{Ot6rl|M{#Ql%Qg~_(wE>m0oUPq&Wly5}M zpQ1=d(Vq_6>ez*YmoNX|E)LPuiaT{`CDCqlg6)7^)5cO|p8!I}IlCa|1};xK_2L6oOo3-?^vdVwW97n_x2l%a z_caJq&~Adz*AR%A)n#`57Di*ApExDt9a2Ggr7j3bX5YOl`S#!06-7Oo+11qM^=x(| zM`FV^Tt~fm6_^c|$|r6c;~YZc)UymJDV} zKB$H&?c#Ex|7VoZMpPuR%$feZPOaJtwTW=C|JW}abcJzRNQ^;Be-HYzVg*o*X1jKK zs0bqC*@(}xJrG86q8p{Wq$Ti`FbgF7$NqWw0mM<5J}=}H6pfxt!S*htN*SmAf&L|b z>zaflXqG6%YiV8GJ{Eg&$U5scx)jXwU7|cM7d!uAV%xG!!g#{wV) z%X}}Q$a4t^Yu4*lJUe&${{2Mt|C&ElvKQzT;kQWqTCM-|>C=qaOO}MUE$f#^35BW} zjJO1=go#@Ydwc5vd*{r6DErr%-}D+izmsZ&O*6a*(x)ukHSMHX!-FIh8JU}{*2ind znjILd)xaW&>Hr|&wsYW@$>2{iSzsBNmoESIYh#Xf&h8-KpzxfPRNiCqyy}KhC2Y0c z2Mag`f(fRQ5d|ErP?R)*x1dpw|hDEHU2X@=}8b7lG>J zeQK%CN=$!dc_os_1pL&4Y(Yv!X?tQE#USqZJ4$VGQ`rYnAQA`+E5ap|gS+BIG6S zz&20H%4p_C@`|^}tz-GE@MVB)7{-!BxT0H(bD_sM|0Wbj3SRA3#+m4;ZGjzPou;zC8>5zO>Yh45Ks#Tn;Z6zuap?CKcPaFI(R7mEDjRsWTzT z{elasBHq7$PvuE?BrpwJ2)T~ARV`g{pJwu?J8XQ@t?cIfjM0^s9 zSNP(^3(VZhm)0kZ-usS{le=^8UOHbaIvMCs;EncuXyAnNk0#_Ny*V3^FG_%N8qOvA z-){5^3PL{k0u`Kh@7{S&#@HIrsHCsY+pV7c=Iz@FRP3%@o01cDUEelZzykzfLCtoUYVej4@yg;4rngn0I{!p;X4gTyne@To5tU3Cu+)enVQ6WJRG7? zbMVuuLg#`sKNfLg`Z&s7zc$X_NBbNmHJj;=F3ae@B$T4GStqKJxZ}88y2D0{XvDM8 za05dQY-pXMqa77T3JYwE8#v-Wk4JqWo(L=`FMsu_d%u2Gp;5mceu|RQMC#4!TwH#_ z?4Vt105YB5PjmbG&vhuia|n@-F%IRDOYx3Pw9#HKw$6+IyT4CD?Q?{|Aj;f3lEd@% z`B|UmVOdF45=>4K&_P^J22T}K{J`V+nDaVPscPz(nna%5U8H zupV4_;fpgruz+#-_AS1n0TosslE0SoMm#+DAz zgDW?tHl>|6IPMcx9j-EEu2SA%1z(GJAxW**ZI$wUj4J{ri(UnmP@zb$UlIOj z?bZ6>?Qc-}@6s1^*n&a`Cv4xIfw)&Tl)JSG3u<0-j>26*!GfvXS^PYXe4IfGEUGZX z6Lv@&5;b~(Y|+qz-UktJxJ^-Z_8O=g1Xbf}vjXFQqMNEjgfhWP$4QNO_>%q-PT#O=tSE%5DI1#CWSxD z&#y)^31HEJ43WSHBEd8Oq@G+WBA;W>9MNck;VhGLn)@K4xHnGfp$@1Uhp$rX+3_z7 zAId&=x#X&9YJrcEfeg6@glZQsX1xC1$MfjPCajiE6uO(OCrL)Jh3jDX+`KISgyJFn zJv|$lGinjrLiVZSLq7gFuusMLA+_+$e$0u5eiHb=;{y`^~t$(lVY-=G!NIsJY;R$O+)oDSO& zEp_b_X3*4A%DP9}F3k4ofwR~`BL?I+!99UD#ua+@{CPjsi#SL+t|sFdnT!@W+n=Sr zmzFiD`2abX-h$(8%}?GpX++jP*j#J`tMDvjX37gJ@k7t zRr5aikPt)2dOw0sfquOEk&}zdfQhRuOWSsn720U5ap|i^kId@dje{2fnzVGO={K!; z_&5^t{d@Py>0^3(_vm5rrNWcppTw4A)(gvV>vF~!63jyuBTGd4+q+R^Jv2W zjwM_37cQ$+3cgEG7x!cuB}Iq<@8x}0FYIBU+Z;h=oRP_S=v;A~yx04vB!MZxPvC~D zc-NT5Z}gCkOd4k#PEiO(sAY=1dFG3cA3t(uMTb-Rm%2T=IGxnAw0__9em#&xysgh| z_3H(&uV4WQA~k#z%jj{3AaMi*#e{wT@#6{SOxOEVei;e~);+BO@6?q?jCcor9)1R+ zviphCh7I4oeED-1kW20%{D+)7wn-#57HQu_MXvE1Ya-Q|Y~3Z((USBRvD{NGEiCOb z9=^BzC4G|u0s?ez195->)DOc)y1d&qTdrqEKx5!;n zS^sj%NW0!3W?juSE2)n;gzG623=U6InE$;<>ka(9=@y9uwhb>>gg_OOh@34yK3$Ye z!kVoqO=uQLl#uwW8m_k3dUrwW2{ZW_*<5=^7ZM|b^N>e$+hhOM^Lc=)#$ zkVhEDNrRX%Xw0H1fflZaHM+aI=i9H>(YeD8G0iahyt$be7%CTAwo6hLCYH1=ra*f( zg(Cxl19Icv46>u_ig7cR)7&0Q)u}EFs*8D=)0{c`8(vf<)_OLPj6XLy0PVFTML+OsOAjat0J-n7?`og#S7FM3Hk7j3hq6A{CI$@Q7p~T zb3G4{P>3o-&wZO(Pn%aWzmH?IX$KpdA}nRuh}>B!-1+_!>|L;teiwhS$*GD}#dez7 zopLfF9^syuxB9P5H!i6!ChHpQmXo%Am7Q-(`FzkS8VG2L5q)n12d*ifCfa?u9NqBB z8OHNA;5|i)O85T#6*BZA0b0YgH=Qxzy?o;3+@psuj#B+2t-m-yr_vV~9B7xTiLVF= zT-L9r3`D>S>{1Jxm+EVT)>%9r$g-c(5oWJ#s)Bp-&;A!0NL-qiy4>(wdh7Pm$&WEG zJEj|#zQES(8|>u%G5veU4sS^ne-e{dXK7SwAsP7&zBnh9NC>}LMGOWb<#6mu=~CGT z2T^}VK%_!@vEU~5o~Yxy-tVQ}Vre2qW0U31HwYR$8ykoPN9$A5f%Fe7m%Q(Z0HZQ8 zGRE789wu)X57d9+*7T#xrQgKzyMCKH4X-gO?{dWWSoDS_5asg`zptylz)A34KU^37 z)kS98j~$!yer-(W-)zoy6HfdZ`)#!@A_+56X)ZN0r~b+#9m@x4u_1<{<= z8hW#I?=~Qq3|MN*5Ky<);QxfGT?eRs4k#LP8vKqn;xJ%CnepSz66?(v8T}pjqkCb! zbo*&+2j*q?z|m_AbOvu7W5nsz_NrQ5(Sz8ZA9;CuEJvVHyh$vFsS=SrJuRXwFb{b* zO{i@V8?DVLnhv6T@z+wJBHE@+8_VTdh7y7D3%lQnIe6VZ|Ma}P>}>P$h1ZNG*ta+Q z_F$^kVhWMa_KRP(?HrZYVf(?MHA+TpFBzi!=`s`%Hs*~c}1km`sEAc2i2PM1IoJHi1JlQrVJwPr_ln=SJ6 zj>jYkED5X0xeixF5FQ1_?O*Y9@Z_GJOU+AiX74_jXoEp0(V5zv3=+5#@BRft5>&Hw zmvsAW+qQu?kFHpJ;OWz+%n6*@oxlTGoJEfkeSlQHe*LO2@N2-us?Tjq<$C_C_SpY< zPxaH+zMaPmZjk&V{zlQvYg@j*`(PKHS6ckC)gmR{r-7x!BHCF4CJ>N=)z4kwxNF+$ zckgQGm*0YTtB89DbzSZeWsp689dGkZy1wQ)>8|aw*>3O@M1BfltK2B{lc58yn>HO* zGk&fmcW%$(_E9Dyb>%ar=75zTuLF=l4#VOwY+7#AD3=Wzgys>6)TH%gX4kt->e;)u zXof7V=Cy&Me15m=SgN^Q32lVj7`YgM32Jd4UoA?G@e}AUrRuBSp06So2=|5m3F#b% zwkFQXcVNygDi8s+F54GSClI3sa^rhzHz1TAah%1DmN z7r}Ex+~F6%0~mPe_JmBduOyYVFvVOKfSiHL_#8OUOEB~~&MI{y3KTvkA=?DGKET@G zGgV$>0Lr+$3?z8=$$O8%XR2?2fAvo=JqU#?Fy~oE_K6tWp=eX8` zCIN=Jx&1slbs|Z5RAW2nIX!#!ymNW*tJ&cuu~mk}9#!xET=7FAn@T^B$f90=Lu3>( zUC5E`MJo}hlL32zS*?4`k)WAHal`8~uX{*J0w8{+Ff#x9UH!RpYe(-O4gbiAlF1k! zE)p@id`(KP9-ub$W{FIN>|u|_Y9OvY7tNxe_}f(8+as!ZH3o#WA|~OSg!?RPrXb^o z;&<%0Nw`07z<>q$H|5|h2{osEx2ZQ(e)4<$-Nwf^2)muG;asoMe)ufsH(#dle>Xg@ z{CeNOkVzenkizMgHXeG%^|mAOFH;#o1xP`2Wj{mtUDKvIw=$HM@x2^-0B+p;fStQ{ zAKvJ>HCB7(Ox+*dNogmn%8ARhPXRapuUSZS=&k3+H2!(7#8aag22b1SxaIfc&W&5V zbm>=wbkPim+5Pjf<#R1j>~OqH|DTjBTlKf1`B^xm;3+}rO|W&su6y_H5ga!nR3WuR zp@ut0zJRFjj5Oz8fy|jf>_KGj4(SZ3E>ViJh)2I^SVyA1?1fL(0lSVGwVKStY0V;1 zcaMmxu@ADcddM!{ z8==78MDRNLq6X|oN#HDHfTAzm0H zKsJfYNoJstr6sW5V2jdPU$RJw6MJV({)Guzj)3#pgkT@?IJUYg9yh!g&nxhCLW>8m zauUl35x^{0wpAH(Y==S2e8O&w&)uJo;9FA$1$~PxE9|gcnl2PCKeCpk7v$RKj*F&o za{v4|4bTlTZ3VZ&tDc^vC2gl#(n~`b!sE@SPnz`1iy{|5_jYM8Cy1p{| z_{W9q?l#!rd6!?1{gi4tjt(~TxonkiVameNP)TYSbbC#wTioDq8jm4Fqe#J*FI}2* zwF6NOh=bt%e9Z$;($vscuqi2JTjY~z=s4ZI6xBq`6G0EpNC}jRfmEBRQ6`LMvQ&Qs z6iU`pmq|}&KK0c43qJn-%&vZj;{Qd*e`eO-HX^=IUUW@DA-(!n{qUNp0o2I_ky<-O zXBbcEh5MIs|FIwo8V7hZ=fpHVpXYr+*D75)EB9k+1dC@eq!Qw0@{PGK|7s1I7L0^+ z=7YldmJSZ(;78C~73#%|3`R1Y!lN}stpXZ$5OIW8kGw%2BJ=I9qQ&O-gf=0kb?Xiu zK+ZX+;RV*=93hcyVziljyDt6AEG;kLl5)qWt8aqX8U3P#4u51T$Uk8beye`i=+O^a z75S}7v2qR?b00V`@+8G0Pzo}|2+!xaLY;%p0CsE>xJ8bdCB* z@XBb-pJlMCMPT0MB$4IY!dgd4>$y(^Df)b#7{&s&95nGIzSi()OBv*}Pv_oCe*F01 z-J|riT8Xr#K~`~1yFM$R;fO+_&82lih?45eU8zq|K8Xq=ynjcY`&QAK!%SjFF1!A1 zR$yJ~%!ty5CwJI-ywd|m1+1DqNs@pQQQxT9q6QB_Oy8feE3X@uD3cKzPR{)IT0MbI ziTj>Z#C$Pj!^c?<9z3~PGgLz(Jy%ba$b&;^Q8#hy*h9^_^4xmM{-FI>s@}3>Wf!It zG9_T2A1#WOCmjA_+65 zUmcD6^y}B}&p(Yz^I)C2w_i#KsverC>%CWLGd)BYp8UdRjhXlFTLb84egL~U`fcNs z^H%1buYXy|MGn|%ZJX1bwjVrxya75ng~#Q~O9a2VBim?C;ZfD&=OsC>y?f!SCAeBp zm8>eVs4LcvrBq0*(@HB?WvzAFm}$WeF<>)hqgMD5cj)}c{^5yjI9m@V6fklU`b+5n z1J0hEV+ct%k=BuOT2tjd<-s<3gX)Xo+9U6kdbMthM1LZ#@xr~$7k*jNDKmMz1q&BO z)q4R6|9$)Rv84A~=A4{bEv#^j4@Q0BGp za{ISA`&e*OVY1ZUx_`eML22dMagwrhF}S*3k_(u8(fB{5uW%=GH_mSyF=0Z=`LHS` z2h1IlO9|rY-DJwRx`TJnXU-lgxPPD(>c;Vw{X9aCB()n#8sqGqist#gv!dlMA|_y` zMw7pDK)fGlv6r8~B-Qmc#a^mR}jExvrmZ*lhnt^`_N z{k3uu$^J2Fe-0Q>aAIm}<0D~VgS&VC4BntO*l~>2;>E8q!saC@9hdYsiD=;hZ~!Nm z2bNv>Fa4#evbCLmL@NxsQ`_$@GJDH4E~caeT5B$`qN>CJNRtbp?%vS5#+I>K zM@0#KfR;yk?4U|M$jQ!k88K_%fePd(8eRz64c5YTvK9?FU~*}~>>E9Amh9(1KBI_F zM;EEF+}8*g65ObPQ16c_cJ!Hfj#~xnA+mv7L#k}n2>F+tUMo+o5`OF8yAF6p?M&9S z^Jx1OD^%z}s7Jm_cKF8*Ug#^p{wo_nY?gfX>{!!O6K+3;v2HfS6jmOmm37Psjv!Hu zw}%3gP6{ZH`mcsJp~#Ss;%cfm+P#+s#PY!5ca32W>=C2NumS9b{A|?5NJS?wcZ!6o z)c0f2)vH5V(DQ3I?lrV^bfY`As^r*Ox~)v=a@eXJJ9aEwxKN9sPGGw5eQ$gooxEOs zA;MJ{|0{s$jkjNh{yk&fH_w8wU40L(@7{fmvGIawMD%~jelq!xlzKQi+QrsE@u*&E zg`HK&;lO=IgY@<-w|B996FBdZbok;^eH>2hJ%Kz**P8|1Tnk?oyp#T*=G^tOn^tl~ z$n7sbPHG+<{LXQit*vIoSvJM^bJ``Ybfi$a;Wt&EoSn zWlUC4so{Qdy%_G;x@G0xtYVBt(!L7pF}W>f)%;l$m%>8xid($0j5tH(W}SfI?%O4{EET~(kB)c z7I2E0tAN-6qysgzT7m;6jW$l3KAm>dti;R9GJD{JWPVODUu{;;+WJu&PNJCj6R3AR#fv(4^}KGkJ4u?VZp` zzEt>W847|drY=-nRyPNyDzNu}1nnHoByqUkYy>d^1I<%AL9w@VQsvHc2{oAeWpo4} zaNF5P0+6W6UrIMAf0?mr{~Cpr&Fv@r@~My0^z`mhzM5$NNawTx$g9QAwV&R<|1PKl z_6f(1yUt!)0Bt|d@2}gP zb(q*|7gkGJ6s>27#yEq6Lf9ld@%2v`C8fkScNLVs7DNj%?Zc{1R~+%@Lw}Te(H860*b1hJ&ZN2fqN3gc z2@uf_>fIZ;s3;(=qEzP*z>TqHX{o7fjH{a)W|UH+SA&B-&ELG;zD5o5Ec^1c_<;)X zGkRtV4N3Yx=lU4jS*D!2U^1`{s=8|+ID#GaS~Z_Djg~O})a+;FVoC1UF=;X51e*-P zbJzMQHgjq+JIBDSxu3n)-rPKygFK_xW0zjNdhw6>Pr^uV)(LX;(d41OcJIizuj>EY zdHJ#dn2mZ+BUTc;EACuiM1<%a2QNV=an%L?4#9IC(|-uP$qy-6!HmgT2rFrnYIqs= zGzm%KqCyIT{TwW>r~LY839~(JT}JFvQ&kmtC^d9qqZgz`=~g*RMkeCKi7ByW>X<$?HOe?(v0?&Yf`wk; z`Y8QiWm{~*c2SH)HF+LgZ}8&2_BzmK>>IL!k-<3BE%;4(AVx-nSSNWx+XB99qjvMx z$&%P=ccgmVo4%7T7k|kmq9(JO? z$0KA@=v&Ai)2(AigdGHz4;EqdC`?o5E?ufCE9h;Zp!}ZKJLi4= z@})z^j&V0`U_k?qhN(G6li&Rxw7m&b&uiQE-@bQjkug!mkfKBy$e5yblcZfV5E&E7 zlp#?&M2M7Bl(A?Ok%S6m$V??;6rnOjk%aei(Kq+=U;lT#YrSi|t!F*YbKmOs`wrK2 zUgvq7$8nql>m56GaBL*ex(7oc{CGY(Ilkf}4nL#@_HNQg_+1H^WiWo~-cR;PNrZc` zzETtM+7QRq#XljZ(gdYkojE+81SrQcLrROZ+sz43fcU@Thws4@Xr!a3cT8@d=G2uE zt4$l5`|D``PS#KP;|GZ5*!Sb4ZyR;=)XJp%AKyP4#yhtmiy$55z*=Jwn^3C}Wcm@L z$3Ei~XG+F=iRv=d!fU1hX^w0jIg*CC`b_Xn!Q!}lxt8RTX))u^*#iIwtC$3vxA2_p zPghER>!*>ZkP`_1egFQRM$6%&n(vI?Kr1V#+lZl*+=+#1s;cOfdf-Fzx;K^ERt%e~ ztCOY%a`1_RliMovkXqn=SK|3Fs>Pi5poItD#iXM2=tNadLQVP+_H_Z0L(n=9Aa(jB zI^7UmedDU8O`i^8*Vm6`8qKhQ*eF8jmrjEh8Pd% z7aAQsf6koy>{t510|ul3G+I7ZYj~7e9#SJlrbpF!1sY@E6{(3)QBh;w#mt+zXI0}rZ;r7>c#+`e zCll{1y}iBt6Hey@0{&S(mL9Q;*Z8hotqG5{U%r?>ZX*4r*Z9d@tVz%zCuU6Q?K^cQgl`o(yh9V2Xsh?s0H7M=Oy7Sca^?X1lS6e_^4o8hWi zAJUA3t)mI`de^qAWoR1j-kq>d`|+@zq)bLI?DMV!PGi^Frb~Yxryr=pDiYN9;smhaV4wgiIG=Jkf4CK>>~8{P~kx zytO;5d1V{D*}<#)3uq3E9N~FS84r$Db{H~qa(1?_II5PusVFbUZp!Lb!bv4- z>C&d!Lb1e2I3Hrx_s`is>`QhETRh7C8p9u7##Q;Y>ZIp}Je?!;#L=T|GsYhn_;_ri zM5$mVAeKn%=rccm{kk4N3tm;=qJI~Gq$-yOhyB%)yL3Q%9HO zu3#9X@}>#xD09f1iA4G%M;4p)&h2^qs5Ju2kOGr|xT2BVSTw%k0y%Oxjta;eI%6}C zTyUHVwLPmWEj3kV>}?TOTwTZSdUt9=P*7oIjlJ_qRwmNE5%2PeG6ZEf{%3P?4zPKE zq%mi!by}L~GR46m0-%u52HUqU0rtS3K)+u(oEfY^@4;u7I)U4O&Ush8r16P?HxINr6 zc~XCLu{VDH5CPx91_sBC%P%KFi+OECM7iCB)me6S5P(m+m+HT5cy&|1+d}B}s_f9Q zqq_Z{qNaS5@sV^1czC`?cEXKlg%_nX%;*hWgP@_DP*?#p{^;~FrfkJ+&ddFXp8=7A z?;N?}!wlZA|2Vv=nzriVP?0EEA^BAZ{1ZSfOkII1BwvAJAT;yPS)-#ThYiEv$OEos zpTVA+HVjt3X6)^KDkUXls?Kf1MepA)=-4s5;@vxFJ6*aA2ke4@0CYa`DoQ3s`3i)k zB3xRB?N9Sfq|1~?Cf!(R%8)*Q_!x7ILVW2iT6Kg?8qO%j&0R{~$9*_Ovtai}ec~)%dF<|4@@$bdIK{w{G3K<1(G` zNyJ>lIqe_a90}Z8U+;5!t^}A&{s&x|!JetX zIEgbNdO~7YOtr3erptq-8*vQ5khptq1=nt)mt<*P(aMp66vHG3?$6&0Dt~uwv3!b8&=W8r0WwKkIV{ z;{>qsi{B%LX#!uU%{^!*udccj>a|fR@;?7lY#4uGhNWjTx#6PX!r=J0xPNCJ+K6|( z4)6|!E`DJp4&HA|c*kmQ|Mn|cn~P4cyV10r2eP(X#Hy?)wrVZi(g_OX?cTSKA37uu z+Obc@4TPi!D6*pt4)oQSOy!;YHSL{#W>$;;Np}syZAw8h&hmTkl5%8#zMx>0cy8PU z!?uX&Z}J~GeCZNLWbK*VPc>=21$7UV%84UKK*~tJ?pUw2V0K+QRTOz?uxOV)W|`j)|H3e*h@91=VOVwJ4{b*EI1z=Wz# zXdaP)ZLoz?k!na#lYE4#ie3bcF^JaMW_pJS{k?XS!J_9IW%m)R!WZKb}^(a{mbjujo@8H9s$EYRYe+P!*| zam>{KZ9j6wUiR0nU+;>d-L)72OD~Co@8{Hy^IKal{g^xae)$||V>`1#r=|IbvibR< zFC5iPJd^r4rczLiPS{}qeXW(eyxui{YK@b+quaCWptb3r34WB5vu2o-80~Ft@vVOm zR`%7=+xH0{gA!uj*eB*k9~edj=gnZ<66$-0l52llv7!_RTwfj{f99Dpq~BxuZI6n2 z{qp59JZEyYl3uG%>mhB)VHTM$QDi;fW6u>A7i-Tja9x5BqGQziG@Vl9+lOuuU0URb7n(!&H5V*f;92T}AIpMqr?Lhj1Gp4H zco&=hW57T%wa_n*I!Q4>e-kr<3$(V6>mS}ZfCoom;Lx?s0zukV3ShH4f%|yc@U?4J z?5S9C3bs`ei6FDiVps24^j&Z{IgD;;yS2ZJlQ7w=eOb@_Kb$E~o7+W(oB!f4)NSbE#Xd9Hv#ys+RSZ{lEr3S zZRn87#O);|=@dY+%QKRvP7K%w3$=V$-wEpj6aqMWG`(6FgVq?X_z)xaVh-WBMXOe` zbfgr!kdEAJrJaR&BXlBP16BmMawB5-4b>Cowf?Gju!LA&xl8H{OvcK=SyEm75WF=8 zXawg;g^k@5DqHy+o-JEK2YZJ+?S5&C^W#S61d{L@*&@y|AKEuOI{Go08>R%zMO9q5 z47tui(h82B3y-COup)`IryL;2A@xBk1AT}1)K;QRIjdC7cx^$`f zdizApoIvt+@cHJ(?5Hh_;?xH%tB-?EpAr{x-3;_7yE=FLX4szn6<8{ru%g|B!~M z&NhPI@eAI#!7N>R!urs$6DO9^u|_!o*_s@cH%x|7AUP9_ zdNY_!CL9XS!_UV8!xaKW$nomU)`v*pce;+mMQxpNYDXpa9}7g|lKbJz*RSuRt$nNd zo86wYG%q3NV+_~tnljQ#4QJ-o^743SC8>x+9U6q{nFmH{q43^ELXp$nGkisA`K}cQ z2X(L9ju{1DtZ;E08VM2tynXPU1c}>xO`4RES|ECe_*JQSyodxvXAspr?ex@CfSJ?f zUsss!9IVc4mc=!*X~g1d%M867G2a0Vj=6;)BielCNaS3Z0ySW?J~gAh zU%O^S!b?soaOVEuyADRe%R57(BQ{HY?}WtI5&7m5I=+qSQ%E-b3|P;rqgYpdr%JC} zuh0E^o$az7xLZft#`pVv%=*yPt5-u$bYH0NKK1sEeA|ltGBWz(fFs2Ki8D_&`vMfx zUlAj5#WGI|A}!?r#lWL#MQga%524VftzT4lp(Gd9hgeDRr++Tuf*x%LW~ldE9P`$A zlCtgKsbey~B`Z_xCeYUyBFbDshUK?v6eptCdXg;^kR+%kzMFc|+#p5TgNL4S_F#M` zw87LCR!%UQpVj8H9lQN2DdN~qrBdy?_bs9b*sg8}FO_dH82UJ;7IZ?A${apB!FTjx z?6df~OF^9}+l3%QM@<1_j9R|=y6OXeln>KZUb*t?ty{M^$#&&D8P>21_f9}FF@g*i zV#WQf=n5g3T+h$Xr|B8JtoVMq=aeu_Cr3x%zZD4YW*Wj`pbpaOG&Zb7V4Stj*zQV7 zC&>uFF6=8IpB zA(w`dxNT7S@#BE!EO4O|0|~EslxNlm&1yd{EybO+kP>JFMRJA94Ek|Y32yvuK~TMK zjIwn^j-eD>WG-^rh)QKO2MHNt=#d~mC~#!pRI__)_6=Q_By|I14yuP=71NE`ez-=gi7N9d2AJXY0)m^YB{s&xptzT=qkYf znYb7%cV*qzuQVDn*h!pfJFb@PKkiNyAU$#IzAaj8qQTA&dkX|z4N|VEs@;loL%dUR zi>=l)Ow-~ILXI9e;wA>WT?~r#$c;JKFsFoniP)ZzJ!D&G=wjLsAVx4=v~VK_7@P;@ zW9#PfH_}<>r=goNJ(?8xUG|T+h?q)B1_EeXj8&VVja!!$d_Uu`fFe<_gsf~}OFebkoQ4Bk9PgGPrvSoUI96GVK zb3pY0KRG+WhR$8Tex3Gx|8UF4Nk=0tEHF+f5(O^Vi{h%6gf{$8M)v9RiWh?kk-{op z>A_!#EvkgV(XCS_Z^}r1al(v18f@G?Qw+bq!=wtI-oZ=PtEqiEYR$<5=x{N@YPb-E zadiD{VxpWPo!Bw~kWQci&IQXL_KPanUoeZddJQ z{i>!8qa&Kjm+r0O@98|zyqfpgSh~Q=Gg46p(=ek;i^F_x_zFXv1rH1yh7f_OYL17; zVTZ03W~C*$%)3HBGx6N|u3ft#9)KLHJN2xekaJ*@UtFAJTSk-RqR%f-RQqCkD~St$ zf9X7MGS1{ka2kL~hn2!Y+UfXZpnP_%;@olZW-DIiQV(+?*c!tK{p zRiV{l`Q*8>!()P*F?%8J(CvbTE0 zMWya(LseCCi;B``C@Cm}?%46-)hoA{{fdJ*+wrjQ>ZlWG#rX+}dY5c+qRWa{Vv9zY zMa35Bf|?4(QT(AAUg3~_{jQxm2S<-y^y*&~QY&Sh-1nMg>BZif8X5_8_Ex6;)1!O# z>?vyw)q2E;5kXGJ>5vDkU;K^NVXEcyjNQaY4>ayge@0!f*gk~Hih~VbclHsf!wv1% zk57N*ZJR_|4bMltLDawh@L`J&tl)yAl*PT3tRVkRz}; zpne= z@FC$Y-g$8*G!4+0Ow{SCp+U|cGJexWGyf81K%}Z1J#k`?(d3*Sg`)hoNx$pB0;Q20 z^H%zxYgciNZjwh*P_`&z{3hzmoYV5|x1#Trc3)+j&| zio&b1UMMWYu)mNz-n~#zD{MbJk|m90`}+_0_~>3tR{0M=t9HkMp`$nMj&`r1TIY>D zUN9VQ$s9m0#_`2G`j{eERm+N3{H+!$3>Cx(4%8-W(k3^@FqpyA^sq~&)4o1snUUm( zQy?8f_x5bMY8EsUl zx7FfkifNkhi1;0UjyrS~+js7C(m9@*`T%6e*!Vo_N5e~3c=MWW?bcO6VKIRpti1V1 zvYGiD%Mfl_c06_RBoy_}aH1J~)EUZO$)5;|A(<<_lTKszbX*9Vwab4rbL!l=nr3jh zX8NDnA3W8dq`bVZnU(G}NVr)l=;qhSRZJK|rj53F?`WzP>bxFZ&htO@6CfnZVKub{anIsh$z%Pi>*(Cc%ZsnurP+RC-+vC)v)BCVu>`1t zB5}oK7*Y_HSf>~C_v2SjZ}>Kw7IZtBbB}$eI$Y4}IDC`%D!4t!~7^}44 zC3q~{Gtn%iAxac<%*%y;!L^8v`v!YPEX*;G-N|GQV9qNp!kiF$RU^7N-ntn_r4uw} z=JN1=OSJyHIMpGRK>PEx1}LDV^`GbjCA%W}H|IOM6vh$!3;6Haev?pK zWAN**4Hgk+VxoFo+#B;GA8O;Rp@g`UP2BR``nV+UP5|@4?gf|M?;!%f+P{~de{5&( zF$+u1HzD?Qw)9!Gs);$`)Qm*=(=4eSZX=|J7!-Tk4TgzIGlnwSzYVOjKUh>rmapDS z^t)gJ^s;XsJtHTOlKeW#`GT#Cq)Vqjx{bNL;69wpAKt6ibSfBHALKV;w1>~AeKuq_ zv3I(5zJ%&imNYzUyrz)e1PgE5NA~zT`LAs(gWBs3Pf%yp8Cg3XJ4$7EuWX`NYkr9c2JCt*)zzwa+}WM(XUlS-**bWaslo$nKi7^Vl} zGz?wzBPYR{!ZOLVTl@B^9z70(d@yxeXIw=Z^5yH-OBXNhsB%D)`t(K>krJE&2pHsr zPNPL;CtbiJQkY{KyLL8$^XEG4b-21L0Wu<_mR9VsEf zQL~De%9(gwgH^>d9)^)?iSUQYchf6;^kjRC&tg`Dqq8%7${Uw19kNXn@CFfKQl>Wz z^(@=aK+c3qdf_n>qe^;Ma)g;CGsvNdxk+(#-+ukts|NhlxDKNAp_bWtw#TfJWqUk5 zUEnd}gjBQTd=v1^B$vzw_wQ#EEZFW zhv=mQH*-;FJ6RmzSPq)A_B`L=CAjYQ;%hnE)fHcrK%H*)(&kR2x~?otgaZ7Yq9FUn z_hFivl`H-(puQjxC&G%QM+&fP;lfA&$d9WXe{gu|zfI4J9e%f58830t4N5S1YEec3 zRey_)iUN&!sq;2HI5<1|hv3WV$hB%ET;75vR>73-sLCqQSZ0qahRO;u^Z!}|S)AkD znVAh>ICJ=c{Bjzk4j-B{qef*XKuvRSa>At^IF-B?#+dz)SG3k>zLdGwXf-K+61Dsw z**ml{7xX|UA5uK%F}-QHx`Iw5(b~oTIaL)8YLM-aOqXov)<#0Su&85mwLbg;Iq)>@MvUpLJ?J!mrEWn=7;TLy=!g_Bt_;qGbcb1ZUz5T zF>j`)XExfAUrbwMbK{a)nG}&S<}4uBH$CN1M;C>--+ry4vb7JKN&grU;{9oj7jS_K zplz4v`^_r@!lLMNuRDJx>t%|{;&~75-d#%lN(L?*#bL_>*2f@wJb8l85L=ZN65K^J zYuA1(T?F*?$Dd7`ohQq@88zgel%h?}mB?j;Ka*=WNL-)JgMRX&n;RoPzdf|!%<^+m zRZ&qHI8Y2zy{IXMbVAjh5^vWjW$pOL3(*QU^GP*ONLWW1j8744dIl9xSO382h9^eV zLCj}I0s~R3gD#-y!`(F2)*J>OwZv?!OE#$xh*!C|6vIU6eRtdvSex`Ub2dE{KpwQ> ziH}|sM*Enm*iJG@;srZ~W8AOcdti&f&conZ{$sqOVPWfaINywu<>_7bt zvCw7Zn>3nlM%4e+700E-$jgYD8eja*3JRDn@8l}%7pGI3CxN`fQPr>Rb11~UzO~IT zp4)+f1Bp<@1fQJ|_PCa%GI}8OAxrqyEgP;^)LcU&8P7487-V1ZK&aiY-@b4mwji>2 zt(=0!L+OqS#&QExTGwve7zuSA^a>WKX4<3t{KfZEXR?ljy{hokZ=t4;y7R+}G077_ z$D!-+qQmRvz}td4(JwTQbY%$e6==S2&E(B6_mr6<{lg7c>cBlClO|mN$q+OK#68L; zh3+-%$vvOrw{E@paikDa=%;8lz}|kREO*a?&ecKhxUA?iNA zo3d^l>;E&fzw^co2fxh5!hi$u?xCcM$U!@Oy?g{n6W^Jc_71i1@$KgKkbdzdpFHf( zzgk(DnZ2*6(ZBPZIuXW@r)9C-cq6*OwZiIR*juND(_O}F!+@RFZ?_n5hFX6e2bys6 zKRKTymJ?7^0{7S9lLnkluAF}4X&0%_H_B^Zl=eT61ep&BpdoN&dHJLl9u&4PK?DrN ziqpsfr0~ELmVfreqmAdBcwfphWiHg3EI&q_O$tZD>Iq6qVI9`5-)p`NPOqZlLkAR>fD zI!X|t@iQRlCx9>tkj)%sVIRHGN=B7)mB6Aq*k^zpX?74X1z$ocMMp-!}f1;y*pSa2`_wX7pYhz;`BeQ=9`+>X5zjG(X zBR8pUjED4heh;XCU#)39ayc%65mwtb4Q>QQizN3)n2p2 zOb<^6ScFQ~6=wwZcD7O$y>YOfmZ5M`NlwpEd8|0am;)u0!uWyby+V6Lv;?9x#4 zcQDucfV6#8W=sigKw>Nk^kR$HJ9kbBs?` z2L$+}^#k^NE=R6`U{Q38;XhtEEWLTf8BjM7rRcEqwkJgHG>$6C1))rHnx7Z*+I95I zJt-HEFE;s6)B!_&xt1+S7URpErT1+&i6DZ-Kwr72bh^|R_b9cEowgvH~4~22iFoJJIC*g@0+V^&G<6w;QFsmexUl_)@N6d2j{YX zE)#P@qzqWbey>d*ie(jbD9hbn#JB3i++4x1++vArn`VjnomHE z{N%v{r+5s@ETXN|?+Fg9MXc@iSsIs_Rc)qG z-S>B0mWC2)?%cUYmnIIAzj=%azTq)ab8VCtp1`29`Yf***kcyZb)bt+V5V*#7~4k; z;wWOSbLUEc&=^{vvEtcZSIR0Y6K(ofe2*1$AG%%bPDqJI+)lE*Nm#MKhZLo9B;uQ8 zVxC3hH2{gUA{Wd;R+6V72XuqYNDpw%oOqi)3BJSDtywc#f0?%O?Evw8MMc8gn8a;3 zLe&iq?|Lv3j^l)OmG=&knAOMtS$3gEB!bAOSX!4(v9|Gr?lcF>%LR(Lqb{)?bnX{7 zAZ4I;oKecm4MRl12r`2!r=_`h;O5O|fY``<0lMTpmyg76QiX|NNyjGcAjvuXd;v%M zQ?e3B)ce+INxMX2Ch3H2x=rYY;Zc2F;5tVGhU|6tyFZwy8sVU{MYEz6Yms8{87JS( z5Lh;%@V<2E@AHk@U%TDy{<)@JRKqms!>s=E=bsAg+Qn2fWGyl>&s+^$JCMr!c=F?W z`V2waLS8IjeA_hXVf$_4$nOY5;hg2OB2SfclS5cEi-@pxlckGQ85*E4YX%DMJw6`- zRVE#G+qP-bRX`4E-iZ~D-%1Owpr2_*o70nc@dNtx+a7aVSq$EBNg43{BPleIm;uM} zA*~_o5^jb3o|goW0ND?P7fx@y4Mr=%KC2sXjR{|MyBa=sRCHKqXfLl8`hoN%p!%6t z>{N#=l03or+ax zYQ3+oyQdib|F$o>chha=W+@O(evui(Jw|LmkwkZtEzZP-rAVtZ`f-D;$xK?c+L1Q{ zv&9W1>c zl@6%5sCPNdP}w?F8=VK(CVl!ribow1cv@Hb&A3kG>lJ>rF$w?rE`b~i`V0W2bF{p- z^h=|fnESk3>ypwPP4rV_RgTW7VRZfR@uG;|!TLk7-%Pdi+~5=0X%HFD|At zhd;$Zkiwth7v~;^46ob2eRLdM2~HYPb%Z-B2pZHM2p=!*=F`~tPLOR99*&T1Ag*0r zfS6`;bLASNc)R|Pq5un6h-GgN*l8eY1lHn5B`~?1OZu>a zu_2Q;2%i_h9`*UZX%NPZoD-lxv>_VmU&D6-Z-<22ZV6M)6ZW2MHG~TB7MIA9L*RQj zCVyC;SiJHIsstJoH;YB zUP!I!k$)wqZ605APu1XV-<~~Ix-L|JnhG-GXwj$9#|8*B5Eu_V^Wc&?^I0K;E$v8dRwbEk&A zrG2k+3&c?2V1^pfAfxG_()U@wP8!Bgs~e|(XnpG^O2A`-SbgR6Z{$>0t&e zX=Q^Y!o*-CkP*L!I`0>tx=IH28>-QE|H|gb5f6!L_+(C?KVlV*p&xBd0WfygN2LTJ~{NpqTBH2K)9AeC~MagBs&nW^%me?Ou0 z5bK0d{v~Ufx@BDTBXL)BbmoeWvkr6+{!oTL>U%W~ra+n>nQThWVdk|a|-tV@UPz^dzkej)!nMw?F7b7WM zEDz+_Qu9{LXG)%^+7J;fU0?Q+#v6kWS=0A@_7e|3X@VyW!mBhGS;pN-xCD zl(>M%I`vD~jEpob>?f@sKUJXTpE}sNw>}q#M9(dtl3^RLyUxEqfF0Hw;5A04iScN_ z`@pdi=~^3|xa7Si+aL;A2a%w$!g7w;RIhmpf@=4zowBVn~W za2s_VvZeoN5z+8uxKP)342k;mY13fMa&{u;a^JbX zF^|}53PYd^!_bA%gdwA;^;Q|$_bOX}&2c?vD;Dff#AXif0CyEoRYwd$1QW82zm}J0 zZe^tx)hf)Drtk&b)*stphn&D^w44O&L(%=C`=_@f`d=CP?MH2wF0D2`{o@ZsSw*k5M#Gb| zN{X(%KR&DJ#pVN-b<&w4{*HBf13^CZkQpZ(may z80xQ`bFKdS)2gR~S3YT$qpkZ{CgtUnYb)P=T|C+2$lXbg_H11dJ{fj2lZ|jlToJB+ zfLI7$=f7%w>$--md^LLR*w)$pP&9{@hkU_!pO(|jrJ<41;7#=;`RS;6l|2S$j!V*Zb zNsOQZLg?cE@p{$o!y^0;Qx-MAoo{}7#Ea^$>_x<>?@dr*-{ZKlw_wD!OTiR6L zfBp4W{As_Vb{Yq|9b6j}e6_6Jr?7{2W^->WXD%X?jALtoE2$Zm|c1Cqr^dfDQ|$eC-99#TJys4aeaz%)=0-u=hK z+ES24i&E#F{r*opnb1*f`;k&#$~U{QdX?xmXv-=0Rhh|D%nk-Y9r) zNl8`}{VU|Z7w+>QxcRIs>QR5i;qm^W$}e9MM%Pv*-Y7{qa%x@n`HBwTTQs|aHZ5SQ zGe^~T-D5qTrJIbOQWdR*6Wvv;j~nyhqz~ zzfR~1zSR2_cJ+BR{v}nhfnoL-?kUM)Yv;AsZ4(RY6`RVj-&wa4&mabep3?5qpK=68 zIxnDQQ`^oP-g97;dOvcG-_^fN(i%i!xi9A~ER`rIdsk04=rIuAl;2Y8f)P$_;dM0h?E4ezsq9FM9Y`c3nr3A2Qigl zIWtA+nF+a`B)cg=)R+ryIB`U<8W9YBf_|w+W*# za{a0gA3_?D2)`=QB682g6$O3cJIDWNu=u>1aKr)#2*Boo^kE8JPrF7eVY3)B4TWAO zQk%5dc_2zs_+XvXeid-|B#%!lv~6tp#gVml*K=#Lr>qk#iI$F>#gyZ+u1l6ILGcd@ zVb`{87!;^Bh9#SIG|lj0oXk3HcOxp;g)t!)~sT6m|1P@e`6agUN5j z#l^&lUp6}=PyNG-vepwp3Rg?1ty=`sY+^k2ZE-c|F+%jh4jf6u-+`Z5pSm?l$^G)g zTxPEpUh<8_fQ)+?`FPk1ULL%MX|(OHr#9I#ivQark0j@s%LU`cKbNu5#9pFw0rm8c z+DnE>_f4?^N^(3r$e>MUDIz+Fv)CZYVB!9nVey*({inP^h4rQL!)^Zkjlrk2qe0&) z%pz9&vcY0wZ%_<2t?e=?0n!!*JTyOmRQqq6Wx$~KCV|MBM36on;I$xIInv_gp-rin`bfnlr15AGPf?j*6h%}z1_;7<)N|kL}0iUTUUFp!cyGF zr=GU_g?CK#-Id-&+JV{uU)BpZzdLSv`k9GTY_s0QxWgSgvdBdG6_vRv4~N<(AnW;U zYcOhb!GiS)w4wj|znbxVesslJuso(%<{NJs7iDmipc#dNsOXjVT<-~<(kDht9{tm$ z0YN7e(0w(S=-HRYcfQ$4W_YFd+-Z#n(UF}^)06+<{G@$Q%y@$M&cC0Sd!KRERBEnt zHB&M_IZ?~SzLmfhzoysga{|foc@AiSCM4=JWNi_m+WQTz4V)4C+!oy2AYIVZUDphw z7BDjKQ>S&tJ(R3@wYxGKAL`UK%O!3OCWZE+hb%t7leE0o^8UGJiloHe<`BIy*kwwa zTqKF!sOXC)8e#3T2{9`c?LT?aAw(MQDKlyja6l*hX~X(T*U_oZ2`?$w%1pS>n6k+@ zC_dEGx1mW#niUY3ot+KFWcRJ{&sqg2w1fdlo*wSHNVqCsl~E{N#@>=686{&V5FnUx zs?k7Oz$0aG(2Fjryzb)0!8mKmu~uyjRjU9X!yC8J+2-@68SE>nWQrtnx_5IT5BILV zJk+Ff?E>TB?-8 z-R7~C%rPCIo+E+83qyHge@#u89Z$rh)613?7S|jaU+3&?iwxQ-Dy9Jp$#p(5mhSST z)EVYfZRoyc33jXVF=;{XJr^?1;3!kY)fD~%g%D6)z;H2jR588dr5x7Hjlv5TVquaR za%T|r+Pd}YanYWV(3Bynu^Q4OGdCN4FUct_;lYSa^!wNN`;-0un(UICAF-B}P46fx z<}?UiMnXly+wf~@LTT&hc%KH(o*ECV0RZc%JcXai+@-yfN%cYd%4iHzGSZ{1it#;+1E)|YlI;p($7yu_gfEXEo<+P zy(ACTBo{(GI(Y8gYjx50Ho)^~)-KE*+&h}14Oy2W>&CTfNhZ&vPmX|1x%TPATJ+-Rq?4Zn1YN#)^Cr{V*HXEDs;OCZ zSBrq=zwg4arRx%CLb)I~K@qFeP51DGL=_=IRdsi<+gzvyvp!FhP)4`NCT zgoZE@$TaPeCldsfvywjL1vbZx{YU*v!3}bjNX?318=KVvMZWcnTO58Nrm6{pOIWBJ|i&I#& zw8!6yLbrNu+XIxC7oW6hc=V&@n`uWiYt^cQDs~BXJ#$QnBWA%cFea=FCqAn{1Q?hV z2cZm#i9DlJzKp?kCA%>Ys);KmfjpP;1|Q0sb@T6S2nlIt)U&qxA={r;3v3wugw7p0 z%&NsBQ23(jH!>e&^7(4YiT}zllb-}?p=8o7>A%hxOTNEyo`c!zJMAOH`9G(vKX6}T z1J39}4tuldkzQ9toNEiL^Q7Xc@fv(DgO!Wolwn1O04Uw|uvvL$Fu zCe&OviV>`p&<*56sXfWiEbeSRjyzsAj}^K(<0#A5|2YBsVv(ZZ(QV)r^=}$itQA>@ zl^PU@V>n<~?S?Rp5;MMTn+3;RlfZ4W4eQ0yQWgGbW7SEHldm`at&(|a$r$n|7;A13 z?G+WtuzIVjTNZ|>=C&T?10U|M>!$4wbgUFH7&wZ=KoC zP8_qyP}Xcw*}P>7uKZ#u5r`6k57i*YAdF@xvRi_3vgMQ9J%0|>`2Mo{6XMi>$){$_ zc+6<&Du2^rDTI%juNM;IE)v{#wa^o5c!gBodS~{cp`n|vp<$sG3Nzn(<;s;SR%Dz$ z&3s_=02z~9zINlhnE2Ji9pOB#=fb!xpoE+SA;=)2w1x*wWUBWOOI`)L8X$gyzUjW{ zmv+jm&G)LUzIrF-Nbkqpi1&l*P3^Tcv!P`0qr0;8ARWhQb~r;@qbqw0h;A47sp&rjjyk1scUd0+xL zA{5{!H_1l;a~Db=5E?R%Z+0P?dZ40Nu^pif-Hn+mU7}U)g7a#0QNKHS3bceO8cUTn z*VJ*n_cB?9pz?-*Bp7Z)6Sv%F`8efWa|`lJE>%hL_;CCz#f7)J@1=BnHL7r@sEM@dK93 ztDLc^OV_S~pGh;wU2i95dcsU<;J~95&fkgVoV#^(b)6jdlK`*?rZ-YJj*JXY7?ccX z3sy_0!F|gnts^4SA^Q4Wu;Izd<4RM3O}lWi0t3>a*O_uidNE3tJLgAF?SUHx8b>jP z6bqviy7QuCobCZ2jE)F)xq#?tdq+ zzpE~p#NSD}OwvYOb=4D$okv!615kO|x8L=>|EYmdR7C&k|NNcD>fo<&bNj9HX@>1`qD+vvwNf0Z4WoU&30!zUugD!-l_| zIs`j4!jQOC?5%`nqK%D8XdY?j2uP6i^_&>IcE)7IdMI>I|F*z5u}~~ccy%3;+bJs6 zkU0xRGmYpDT6X^kjUlcsxnICKg$VxVkM?O?m!PEX`&0?#av!Pp#VJ!JOjwFcQ;02h z>}XyLm5(1mjj&QX_S3EkPuyc^Hy63OwDYV)xr@TB--yUQ;p}NfW7yhGTjz99%vE%A zi!=D~>cG~dCk+f6Kkorh=I6Ge;Z(byW+@X)reIpwXSY?e?K^e=*9%c84=L^In)3(E zhes`EZ*u>$pI=BbRH*|yAP5(hFG-tp=?r!H1>fV)(czz)-DxOm{OT-V`Ocp0oZ*J= zGU1=l6_jlP>upko4mP!>z1kG?z>OC=@KGA<8vWfKpQ@n|DfpT~%A%+UI0rlMO)8wZ z?r8Y)Op;T0Bvg&$nSrkKWN^X<0*^C)8 zAgNN9x6Hwt8IwAZy*9mB)lmQ2bi@bH>DVI>6N-%s8GH6Tp(lBlW+_@5VEfx{EMS;C z$0>NuWsT#im;khxSdpBson)H&Q$S3+{sKO-wd8^~rym%FL z7sN`3tL+)c zE2WUym_4)MBPh$R%n5ITx*IY&*W}2aLfEqF<&{fcz7%6=={Y@k@NaR$H&<+=Pue*P zm^$62N2W`6-1wS3@vhXuTQ9-Wu1|aTm^4&7HpN0Q?A+4u^Z{o`P*xvV_ zes%-(^s14zGJPY_RjG65uM8y7Xm8t1&gCr`z5k(}h_m&u(iNCV-{(GZuxE#w=wmk)N(t8NyvVb&{W0&I`gvufm0;dH zSlVm={P5huCs*Fa?+6J`a##m9~4@ORz~zA-QMEDRs5A4spTD^LGlz{)3yC`qeCi zj>*nqg?XE47+2l8wrKrfyUFXOOHid=7t)ddnCm07>|PPz{BxODac~nB8*(AEsP5dc z&41{xh2(a;gF_!PSo6s?6YFmU*G}?icm{DPvWHwD6gcmX*wfv!EhTF}T7wg{On0~-5>6&alew>q7)MdAW@C}kbL zwPO&BM+8hB9TEslOl*f#Ypm5aDfs5H70w@ud9 z=P2Vy%q16AKX2=lq9GbCy^zQ4ueJI@9&wdOtPS6NDi zb2830PEHB=;obfovy!nns>Z36VHHF<@--b^!`C0W2yw=til?c{ID6Izs!v2xMeh`TmC2 zJGBMsEYDgUCi)!A)_1Y9qhqk2?@%83Zx5^`)CIkHu3elzXN^h*yu3M<=kA&vN&bia z+)ow>U{f_Q()nf-dk7yN9%xO)O5PSF0Xx(-X�Iy@C)c(osK!-kThgx2>mhx zY{#G#`rcJ8DlJ)C`$w~0B*$Zd+3=Ak+RqDOJ>zwOIV%a1asVii<+yR4=pxo_^tgA# zsDAR-M~iPd#z|0HL5NF=A;GDz2&vVh%Y`tjC(r30ewA?f0pm`V5KJ@&W`Nh!am2z~ z>#e4?8x5q-RU#sI14C@>%lqD^s`SsLZ+BU(N$$tiL8j9m*dEbuH?LAPG_L~_P0cX4 zC1aX`&?;~dC2lnHpj8<6s{Q5f^JfZr)}-`oc&>ApWd2W=EQBotxZOD2kXw_rQ}zAi z(lAuJ>htG4G<%?nx|9!CAqHUGe84Dp!{v8%I~3aXS-WQ{LwRlJfB`Dd3yOr_&8Owl<3?#kA{3cG8q>(GPxozh52m0mcSHi2N*oGyGf>m%&?D z0s<-YpV>7`uCqIp7qWb{%I<+m<~|dSQqs@wd#{t+2``#4{D+YvSEIA=uLsRQTO%q9 zH#fI8iTDO^I9cx+G}dRhB}e<8fBrdl%Kl;l+K4cq3MMz)e(ev=UlblTHTraaFZQ!{ za&ls9LY3`4o7{^RiDF9k%}LTs4}e1+aK&YoMac^BI(GrE%74u8>DnQ+2PTUJte1ny z$sni(Fg4WG)S7=F3C1G$6Im(6#2w}eD1v`QMK2IIivbi<>*cQA?Ob}h zjB+eT0e6R>=BGCGT+P}aCL@LV$s3-9+&|6M*t&4yhc8u}5~dKsUC-H9@C z_G4-ac+q_R^y%>Y&tB+$6@F}8fdbZiXG5J}qkg&U18i0~b?A^O5*wvIbL6WrxsOy3yNoUn~4eAlBXkD4$a?G^tf6xcf zyBwVH(i?HmxGs36Jgk$-g1FJx08@i$)vA7?Z1b(n=`J4%Tq);~RPEM$`i8B2UgQOO zkG`TV-~#eS2)HkaAlEL0?GDSNRwFM_8WIV7R(x#s);Z25g`G*s+O1dH+P~p`^tzyT zQdFhb?kIw~zhEL945Q%cD16`si$&IVPgI|mFJFf5+*t?3M5N8fZCFd-$kWO`+G1Uq zkZF1*&lcwy+ju=sb#F27V=xO621)5MjMT0>H(+_AzU2$5UeE6rs%VuqM}X5M|4N|Y z6#Wk}3+|1i2Y_&qz7*FY?6hLD3p_iB{%v63z_04x3*p;`E!RwN5A^lcN=7d^;c&BG z%XjaMw%xy|6d#}BGZvBkoHFQ1P0ZQ7R?f{&n3m3u)&MMAjYyB+^0T3wf_yW>nxdDkSUxH=#5&Y2LPQ079jm$xAV z)DIt?{**{=Ow!B=yNe){HYIuWrVSf@^L9@hrezbnVNYnAJ&ufJR$qN~zf){%tp6hV zrp?#QUv;o$=>12AX0f(II3Libicx}8oUFuwuIosMDA7>HuH?8Fu01~aS8wbe;d%D+ z=ibn&rejN|=uOlJqquCd7JaXNa_^Dx#y(vJSM=XS=hCWwINdZPfV*jaXYnYBor0lF zh6j{5YvxSl-KAjFhzs7ld-sGo0YM+n0#=!Bu=Z|?SPLtw?N`fe2RDFmXYb-;YZSbs zqQKnezR-ig$<9$7GUPr!DW+*KYx|geuRdg0=+@+(PUo)Hc5paId-)$RlT_1~7GhF;?P z@ePDez*uqq#8pqrnAELp+bTr3orD?Vl++o4+sb5HyWsF7JPlS1sE`d%*wK4rf{WEY zn`QwDwAnjUHmvtiIaCztW&r3rqM~5(EPK}RK4&#Cq$OiX?ju{BJ=qZ71`>2$&gK2s zP*t)DS}KqZee#Q+J@512S1p=1=Y@$G&_%Bf^F&F+jwK~sGnUv5qaIT*go+I3Ji(S* zD7vhOT$spdWMlw)j52Tb<5EV(glE^AOwvQdP~k+X1WKZ~mUotPdxheWRVVbLNHICT z_t2XFPNuNB%X_EV?Uei;$5M>G5YV?|^+Fp3LOfxU*zk&MCZ3^0^pC+uj;Jz(*o9UzlyK)+lclzPi1@ZY54;R$ua0K%+VdZJ# zeGW&bt%Hdl^k8(fN>!)=aR>=aM;mG zW1}4(w5dgUD`3&5v1UK=q`x z1x(>^D5^@Ze;V>kKW`>ASrMTr#h?%9lzhVKj(Ziun+^_U5&)e7k=4~YlTvr-*b#Fa z`+TQ3&6xTwK2+SLvp4jspd!V7jRz@ccly%w48NfFpFckVDqzvFRF)EKy;>L&%H&1a=4;VhY9@Cj;!y1aWQ8}vNS4ptYDq#oBvCqh_5YX7&yImX{KoGDJ z_yx$}b5p?ep%;uO)0+Z^jZr&VU}O6FH9%Knp0pDtz!GM{?fdu45?aN71(04|QgUv6 zddq)FvFLPAM9j|Y+@{SDCY|90iEyxBNg1Eo-!WBq?eK7&j?EeyTLj!+Pws@SH?F)? z+Fg4vpNpYb=9Z5-T|fti1qDCO$vx+V>dpS?sT(%3|MM3w1iZ&l!Q6xMYxBko$(Z!E zvQn6=aQp@->mIx_7fPXR&4JMkA1rg$7zi9en^l)qod>-pPsjG{MZz5-J0-L)JjPPt zp6Qvk=A;C>`t^YB4%k|H?yQ&vO2vcM(6MmF9Tc$WRc>f@4VFG!#*$v1up?P`5{(^Q zfqfeVK#k%`1zWG@Bvo2=QY9lZd=s@4A+bdW?J?k&yZcShobp&Sno%5SHM+^mY=F{l zW^UeAm9EQ?CF3D+ulzL62wZGNxm3%^jDiuKE1Zx5Q4T9szzR!vU@cviU#$3qapQjG zPZQ!E0zVjiz!KDXpL9~oXsZG?kXQ-kq2s>8wbuec5gq>LzZ+`^(IxtFi#u}CN4Jcm zs>1f)2#z16CEg~@?WKPkRY<9g48k!Ot(DWh!^?;Dt%{I32{H~lxqW~Sxe$W8^S-yj zM8zCFchYaIf>H>bQH~y?R1RCFUsx7BX3nWf+pSXkllggP%im_alohlq7}02QXa%Cl zYqORof2|T0bX0By|}BUD}8el0)(&1~_thNV+=(ws)HdKo@9s{Sr1 z@pXHN>LH^vj+UD7J~7fE)^qHhk&jUavO^QgHUM}FI>gnh0&Xr{hTsRMv)Bho5?&)? z)$6A-4#0dp`YLJ$(lKO3%suFBxdU^e@USrD>?D_zo0l&;Kp!FF`+Kv}Lb70s0S}qN zZQSGj9;t2X7m&1VZ5l4jVw@5@U5h6Oc{TxcZP_xRPkRW_{7^|&fB4{z-7v5e*@10* zLHQCwve1p^Zr&gcp`wI1`JICw<4tnKPg2m5Oslwl6sN~S&D zpLhaWPJc3G?r8+)GzkO}EF8&Figsn*B0gQuQj->PSZbhXRFgt+imoD4L)=t%)AxJ+ zq^lb3Hxkm|2R@{iIccubPM4Hyi0L?}k|2tfb7lLPzX@NR1WlW9GH0k1pdO2+0VQ9W zqu@1nUsXLGZw_>X6}M)TvTTS)%&l_bP%La5Cnw_&I=`j*m5h@o>)&|#o?iLc!_@R5 zl?nl}kO^nK-ofW~f*H>>0i7E#gn?pc(+PK%UngibmUF+`UsH`vq$d9pOZ{8?%YhKD z5?sQcGxU%=1zSfR2xlo|op?Je%or?m2Uiiw3jX(v8`c$v$AYW~)>4B-F^}tP={#?P z@kaf_vAbZK9puQ|eyZap)_dzlHT z`odWf>HHU`h3sICUZ;h{+UpgdjUxgo9j>kYp3{f7ch|Eqs%@I)tRBeH4a@-?0e!uP zl}dIaJEq@Q|38mT#!K#c;)rGYTwqo2kqxwn9qLo7{re_Y3G|r>Yj^4)G);J$+u^@R zKUN{XTZsSRaG_@%rw3K%=pywKDwy8}3kC3R$@r00{0?PulAa+nny_IPjNNZy$_zRuX84vZY9q>$=f3|;##f;2onWb7V~ zy(z;=>j(ILv2=8dtogdlh9xf>DAe+e?2)9=Kj|AJdi7Xa%DOVXn}i(tsH&DZcRnT< zxrq7ilj3fVpK~#3%?e}4HVn%pl$<(#+%9BC(g3W6f@2OHvi$E~Cw^dZw#U#AWm+3X ziXpEgQyjGR?>?x>dl;;qE|kmq(wgv7G#f6M37oNDv|^&OtJwXp02rYqDm-k}nTeV3 zso&UGTc}i>)M%EHV1y<7ey_>fRP9M5RhMf_qgx>SdocQv|L327aBZ~v?!_Zu`d=q~ z9p@ZTsAud*h^1WZG;-wr{~zkM%nsspPu!yq+%9;v0}Cbem@R60CI25N+f#eo@vM{u z=|<8;Zy`ePve}HbHI4UKrX6)ej;CmVO_r;zogHor;RsjlEv0DX(Cq(AzV^F6FzQH; z|2<_z3d>VX?{wMFax`)w@64?FN-CAzq-4bKfR5w=7?AOkH$w;NG?g0(CsiuR5yGAD zt8<^^5X;=N8>8~Y;8_Mo>1}V^`m6-i{cX3+XAA%pkpR9Pp&iwD^+BksT|wb(B}$i! z*%n=O>7V`V|4S+TKPjZY$=Orwe_r+fmlf?72D9IV=_UnQ(#K65F|V@m$Vy5O@dul% z@bGZB?RIw6+$aPf*jUM;pN~CM?Ar#QNJgf>FQ}C|1JU6dZ0TfiwS$z4rjh zvg@)1Ulnr(6hQ=3B&Y<*2!bdoS&<-7KtYrsImge0pa=*?l8FowBxe;QgAzreARr=H zB?-(rpxw9n)^y#e>f3Xt=BK)hqz;s4!5vH;NQzEG!(M! zEka?6a|xx!78;uKm~3^*#N-=zG3%NSBTH9r;+N9mGc!i*9-3Za=UY1h+1Yt|Y6{0YgvuZ^<^FAmUcE8Iu;^TnmM%ioAAf2e7*zCCa&mf4UGrVA zq#e%J9wmcjQCLUMrl7Y6>3Unbxi%~mIuoEX#1Cq8*sh`WfbtxwrF6Kj;989Eu;vz*71pn;l_lP za3DyquXvn(AqxftoMK|yY=P(;h7ESE(BE{%Q}xB~+jCGIpYG5 zbWW(psl})^aJ!(f3|UmL4s9(aqJRbv9)1jc5P@1R@F`=s${(^n@_7J~Jt!btaHxX8 z{|!(CO~di(aZvS=?led${4m=v97DLv`tnQ#9%DjfkjEkLljq(4zUsmivcJAaL%0Z^ zsR#?Gf8c$9ZmZ(dDpxcU;zwd`vK#YL$vBj*wV33ThbdD4)*mKi9$-@n(NI@stA^K< zscoL%p*Z1z3KXUl75v>-&?t&FLE*u6aAM_#Dd^$aW|IuF9X~(xFj_P`fDP9e4jaT8 zh{H}O&WJ)cJEi{?BrmFP!MwjYso6Edx85jV0OQ^o$16w3MwU}=?dISxfx+Wrfa{4X z&u1p79t?0F9IFZCGCd*NBNIDw%5Xo&vX^z@MyZL@l=qt_=d4gem9c&*`k8sG+dOrEmB zZnS^Zbj18cWF)Y)kGI#7dF5Rv=V51!MHdddtg|x-y9S$K`wizj((eEA*(q#uu-KO# z3YgSigfjtFeLp_v7w|@Ze=;;^{WjjimfcW!K=O3J<35}z)x`(+vAWRxQ2Cd@(GN!Y z0j><0>6$l~ptsxMm#`FODUxQ`RRAQ4mr-kkD@Bpg9r|i?iK^7qMa4a78YmW%&imP@ zjdmWjj_6Yy0J7N~KlOsmT|haEQ03j=fq)27s-Gwq(oGuRg?nG}(Fa^2I{b>?y~AAC z%&u}I`$*pD$4i=1FR4t?p~8VwjKBBqV@uLR*#{^UnoX+Dh_YN-whggrSI9`OLxT#`pbqvb#75!Svj4z&#p3_L&SdK{S< zUi>=tO*bHON+RN8;u4i;&q{2q5dZIcm}k*5{fYM)penub!ZrP`Vbn`jmS*Zj{1#T> zzEvJmJ#@FWUjGQ_2suA7o`9AGrZ>RMt8br_-!={92UQs&k8j6%P5}W`e?~F;_*$C^ zqB5Pd2CNSMQ@d(c#3hLKe)>EBrs)pEbW79r%X=}!kCY#=Vt+-lEoT~{qPLF0lzc(` zp!IYJ0}19}zShD!g%AWg+4H}SES|FWbC?>Sek&tYya52I+j^Lcodt9o_?N&sVx1*& z2k9JGcU4!In(qS~YeMHi?COCJjPhXuvCrpL;CK}+7#?$f(*AG7JODst6i~(5yD+BP zSHFJUI$GAQy1P}o*x24ZYkIB)z0y`z9E_NHA*l6*?rj!k&ahBqrKMCc zM8x!6rlS)Y5vW$z>8V4;rXELF@A3k7c(21_`x+nQPDlFD;F_V+-PDoR`H98s;>9?iEU(hEAp8WVNNeJrkdy4A(lRH^5|Fu==xLlH91pMGeHX>!7j%PgI!* zoj3t=-e0qMF*rDg@e0eIIU^kg!s{SUi-wS9h^T3lqQyvyXsQx=SS;~z}EiUV~m^;;UYa{3JfG(puG zC(-^J1thTKM8{^-17HHZdEg*MSb(V}6!>TzeV4KR&xH#qp_v2=d$}w~d^~NB;5p5L zgi?ITA3Hu($%|Q3#w!LQ`v(!{@~q&IFF7MKC6#^^tR5 zN2u2^9{BxmhXwrkio>BmevafyRXKFH8DGy{pb=erwRyaS)zSIvdr96q{E{Q=x+YU_ zz_yGSp^QOpfifTn-Ifwwa4V>&tOWbojdWnW7nuZub7L!yBMKy+gmBC~ysS0;=d1Kz zv3_jgAhpbXy?od5AkO>knHPY-T!Bok=-HN?s~6Q2{N^!8AlBTK^P<7FMc3xF&%zJ2 z63E^|bc;I+uYiukAFJ-;RDa;HnStTk=g-QoBLA$a!d_r`@Nay;l7$!yr7oF;SFr`Q z)!5TC*9d9Yv-ikeRPR@c5Ft||P&_Ya@%QG9`3kp}R#u8b5HorUvt1KvXCvX5{`l_Q z)5-CpYa5RvEydiXv^YCARBwDQ{lEEmjRLu@6!4C`Rq@*pg%9n-$oZfQ$0IEuuF#T8iH ze$@@sNDv{^-xdQ+;1%iLx~fV~PrE28uRSLfYMzx% zdr>j)@uhq-1;A1Z2x{Pm%0`ZR8x2$VNOSgM;Kt96*^vKa5N@n6d@~>CRRuTlfS$SK z8!tpPRT!r1kI6Z_9y5zGE`COrKkxlKw`2wNDUVZyE1)4BKeNru>(;GX^<0PfDkDz$ z$&PDNK+w^$!d{h#^|`pxU@v_pu^LktH-Xtv&3?Y&TQ&x~NSzy#yhv=8G34$QH()gQ zy*8pp3Rp>;#w!$>$lKy=`9Qp**&OM>?!YpX=cK)$o$t@`sb7L!j9B3n4fcj zoJ}hMG!G{BenmWiP573T`moG(!(30KGdNT6myv1zz7(Hp2pg^0=vYBf>;lXHhZfHm02R#&iOtgk@ zv;$4@#vCy_JNR{YDE{rf@XS8403B?H*(LHi8XB7APJq4u!_52~$N*jA=}D=(C$g;+V^#}!~n50mzPqZ(bdl5Mz(oynA*KZI8ix)+>4ePJc8g$e%=7303t+wGesqjdd=)j*ZRQ8;Fam|FJ4@;7(Q5ZB>3=~ zBdJzIc6)g?zfb^2z{ zSEK)o?OGYH6B~_0I1ZsN!ZqSI16NPYaW5}g?z^@c;*^1Jt-Z1Oww3`J*-s-Q*_aK! zC?mafnwrmvJLTq<=W&6l=1N--?a~VEkekxGc=CSK#zci_si*|bMR?3lc;I0FjfZQI zGnh`8a5#dphuWSlDJcK}*HmAhi&6){;y2E;kFWjQzy-#FU46~$d71N&l7O)B)W&oS ztqlrznZx`EdT;7J*V_z&-(;eG7IlxJM`J&{o{bF9Sw^B3!ajZybB40Fopfz)U zpkpmtG6PDyiHC~6&tC0%L`+QCeEaeu3;Q+l;!G2Bds!s%*C-+LJ9@Ps{fbrnt)kil z&~cNicKdaWI$DQZG&B2g=u76kwx=zpHjUA;V15E>jPm|bAy+WuM`Vihf@*DTz}gOPz0U=`{ntCGFydHz99+N6yU z1i(ngxo|=l_8~Y#Z6w!JFx`;Ix1RhTzaI8}l7G1J%{(em#V`SeIP>Q3Cj3RSR+xlS%>&SuOk79yuEH4FH26$!6ZU;nl`eg15^mjKYIRr_YQ~F4>9AC zCZ?uva8rs}oTt>LBEd6Ie*s-A&>oEc3Tuxmp>`PngYlhUQk~GP!vLa8fNv5-rH1o zhlnMBK?z3yq-cR|NGAjP!d!;3hF$x_vUC?*cngy&<{#0l#%Pfm@$t&-7P$w|G1*!z zjsadcjc2?he?R533Xv(`Dgx7-61=ykeM^9hAq0xeigv7^TR!GG*|1V$n96i;!Bp^% z9he|E4tJA1emXFdMidaAXthBdPqW}l4ZN^MY&iD>vm2q}%Up<gd;qi;oxo)qGzJm z3z+yj#nw~zr`m?y�)-cuV8PY>-u_=hRpLD@h+D34&GemK`;s*dBZ!7m?kQN)q=^OvW?Qx$9`Yo5VuK$){`Bj1@i}Dl zgz`rxWB%_R9?}D!l5*N#Bn%xmzKo*Qcywh~Nr8xlz=MJ(r$hJVV>>VnblnvY5<0Fzp7_n3b}|kh(Sd7 z$)BpSNM8>N+w{~_>0JRD`+GB9zQ}>Atx8uBS|i1_vtw2G^YNiFID-C;tB>O?Tz7kosfXqD^u+6DBXtZnVt$RqJgMv6{QU{<0Rit;q zBoKt7C^p%wW+X5lFjwx5ozZ;U%a=%G!sN{$h)+0ii20ey=?eqjnHR8@CvjU0Lp<-S zhe7{T{@MT;Qs{y3H|^yo-3xfGWxMHgZIw5i*Jv?%fGHy`@92#gFJ%PrGvOe+Uq<}W zmE1oLxuq{Gl`)x+Co6r9KgY={Pj5D`FUnT4tq!%St8fT%H}G)X_pCus47q64zqeUPX zD(q{*Z{t$t6rVfNyZu9%vXSDn;bP zdq76k3OIsoSQBBaY!N@FQfK^rPfJ@Hsx*9=u8PVy9;kqzAn2v_3VcT@*$RuG%-1 zoRF+Ypj44zJ*}k$(5Zf1xLpNT2EZOLlrPP{Jol5x#!ZU3H!i|n-^|XSuBA}kU(Xg- z!cKY#|9U8Q$s1NtsSB_d8?WR~%<6qyFdbLG02i1uJl@?Uprzd3t``;utjF1nx_uhO zyL)|9$+=|axe>3dy~aqSaqP>P5hMWnja~xw%|D)cF=dk;qV3!HUFA>>GP#aOWxQE{ zy|SaYbK_Nx9(@Z5FKASkW}^qQU33LspD17>0x|1^!#B#a5CDESFFWkwx*TorJGwSi zf|}y^Y+Ilvh!a^_Wr^-T<8WY}*cGs3*$RM=5h^u1U|R+V$`!xWM62Cs42Q5~5 z;oibx&`pf%BIvF#4hGC4IW&GgkH&o>r$g}}FR?5uqf7qhJi^?W-*u9+Dkx)mPtqgj zySqnT3Fd-237_#sBxn0i(zKw$s^|*20l}}tSm|zH%-=h+(2SV<`NsC%ns6kk^WU2m zA9Zo|mlUOwhkn)rLUh^BpNqqSJj6thwkTS9Ow<@_-uW@lSMt}O*!zuDVg~V+ehmmG za`u2UynXz+s7@i)^!wUcYH#V|cNj$>iTTb(Mt_Z!?~99#MOKb}(rkdWFh<|E^%nla z3}`M5o5D6w3G$)~JGV`5sJjSH#sYe?^WjklJizQc;OJ8@J7~c?V@B(SmxqZ^Qx^2SwqrQwv4=r&fxkJb=8omg)mEO_`6CHK% zm~cQgwqw|)_mQy@N;hO9Scv!|82pxzRf-2>KN5sQ6iJ#hrXY&y>|Iz7{yd_$Xponj zO))GB$k$Rj9VAfTTa+12ND*ooW8EGreViY49w2X{xO>9 zHfV|wBznE$($7Bt%}_^|#7qO;zF`(@E%EcDrBpFQBhT3`ryGsRh5`(O^{Sww35H(( zM}WATRoJQvNb$nk%#mBQr}0-n8&bUnOvHv2k&AD@j2R&mJEeE63al5k@1;qROsK`f``FqN3t-Cn}7` zKd%8uRbwZEd)YNvupO2y}zOZ+g0DWv96JQkPeqeXD^YY_Ks8eq=@)i&?C zM|Bhz@k+yLqeWS~=aZsE#*c;L&mF9i3t6~N$`$HGGV|YmCAur5(i%lM3bQ`L#r6Hf zxI!^x66u{a-=YBMeRtNMDZ>BN_xa!UK>zhcSOEXqmg~Qs?!TVye{lr-*OK~wXGy7A z<*Y-AWXCNE$e~f9=?<0(iAU{s|2T zSGBWe!-m!TWA5I)I(2qw=%!o6xdm%(>N(Sfpq(b-%3D=9hogCxJ7F}IP_Nvt_~QP;^Ny;T=prlkpz3j}JX zdZy3t!4)f%Uamaxkk`2jSYf5E?W#^W6Jc@cV03v8QXlE2?g3d zQKkB(rnMm@2^R(SD!o?`EnlSX|C6)$f8n_PPkzN`Ja6HUFKr)s+m|o_Goh9Fu7O@Nih|J^iRF59R9$oj)TZ z{SM@&8jU{a=^+e_t&9 z>m8Bp_CFVq|6hGBu_7I7J)Zz^1?M&gue4EU&gM|~g2$%wmIf6r0!9ejUWi?zCXjoK z5GkKnv=npZv%1oK3=ZmqpoqJa{b%4Z{QVOpxZdn_Uh?V15BtS;55)A z``63q3@5CK0`o2NToUZ~q5KmR5OD36*JA(_29XHqa>Jc`?^T%eo1gT9zT^0=02myT zYb@d0LcXaaE6hrSXSrO+lRj-gj~m@bt|}dhNKPI-Avyg4UBGi7bA%auFU%DI{gU|c z{wO|KhUquxIYKYOf4~Mfs@}|}rpwv=k!V|SFgdgu;EbQd^u=>C=n&lxL$Y%VAj?fE z$q>5JnLC9JwGwJXo9$D)Msk-odswMupQCs_s4alg5kcMyS_Nn{n-a7i6g$JkR#Q)p z84rIW6KOR%bZdc+WTE!PbYy1;svZS-3wghFf)^UKUrEko14hXZQK^%JZv>~z6DK4yM+DjRGe{rc{`isKeYG$YoT>oAh(VK9FeYfz8}ea7vtM9^4mEDN6*Z2?`0d zd(6)gKu$SI(H`o6@Y(Oi-h;T#;&bJ@$m44kdH2?7cR(q@v+A~3iBq$GO~z|owo%-l z+WPs2uadvtN-Bhi9B@j4od%h=1gw=O=X(k>%(r2}b$09wIzK$nY#$DkYDaD(diow1 zJi0huGyl5=ooLL0CaO1Pi0L3OK5&g_FGQEhK)opeV-Fumdh7J`{D%C<5@+b4!G4GE zO#=PHGenD%5y-|GXomtp;Ow(s`Q?}xO)`6F)!AkIcX-^cyH0UWI~ri(C9>L;jxIt zYgJ&t6!hB?FO00MjQpPo7@Y}-eoy|raOZC^8STykXh&8O`Ft(?5WX`5Y?H#A2sCL* zW;&Lym!oB~^b03>DgL`Ye$KU2?V>tV2dycX=D-smPpyIaUKneoQ4%pg3o++aY$NL& zF|bx*Q`?=79V;g9Oo!zzAr7HTEZYrJ*;eIYmQ?U1gqBJkw00*SZpi-S?}rnHh>s5d zXJz6ITik2ZZQ@@X6T|67Uf;Ze`{V?)4^R=cl^cQS0lshMqH*TT1iYCXl02-hLuUUC zQ1!vHqU3{9_u;DjS6f|S`U>sIJn-v#e3N}1bA69$-b2Fx8X|I?J4R>pyFfykZ0fI?0|+)D#F>3cUnx z^rYRnvG2OVO`0Ev;pTI>ycCTIVq#^Q#-aE4#xMaiVz?3Xd-Ed|Tgw`6%<9{16{`zX z#M~Iq{Ma@G_u44Gj9O}QEJ!= za)wCuYFlIt9t=3Hsr?pAdf99GC!Z#o^W2(Y(0Tio>aJU8S&0i zD-ds;ITJg(pUTEWUm3^@tCsYf7U)E1xC~LnfgPzdtRk=A{Y!tZ@grpDVloQ9tKyP3g{SbxLAfMqeOMk)e-?juz<&Qu)M$Pl_U&7A*Ov(4_3_ zX?%uaep!*)8Qm?n(#D0rLa@_pCoM%5tP7u;RrvR6f2`dHz%UO>QGyF?i})37PhQUX^c-;b_W93qF1ELCZDT`)~xra&}F;qG06E zeqf5)_jq2x8kyQOcFuJYZ`R1?(Ah?`_!OUO*IWML<8a0rMM%=Dl08ILZdtgTj@BlXoRSL>g@7IdwDFXC#b(( zd-iPCaN^QkO0*%QqkK5r`Gj0H+6BLj0Y-U>a{?DF6F%!jP?aeB(=O>7SdC0>KR(=< zcmz6AIq^f#0}}bMeX8(AP9IN^XqTMrY>kYJ+&##6tM~%?I}pfMGP@>S9WKT44ncek z$e)1{`k>Xyr`X8*US{r!Q>)`DI`=`N(ob{wTRk-c@8i4hgo>2kEH9Z^o2|6}+lith zT{>T{bk80;*?>S$uX55Zw+3BouWr&T+0b|WjyKH@f&N*Rfwi75!tL9D4vnf{UF6}B zkxh*D$CDn@5DEk{z-#a4fJ39EG2Y|Qm9^YoJ8x(8_V#*AJ@Ak)Mh6D|(9j>AEJ?=hRq>1PELu34cYGtr;0QqCvPi00DZ=Rf=Iv7HC zkVWZz-HVB<@jQbJCv#Gz*d8$AIEo6fF6WF2scn8R)5GK81X3JXmStz*E$-~-S0@(& znSIZM<=Kl5M5Imzy1$WfK3{qY(_G7Cn%XuFVxgJ$eMQeg;?*a(wG^mT;N|6kBOI2r z^ERFa(g?5yXkWl395abb%BdJ3BBJV0gRB{MX zmmR{9VIk3hz#wwJ84>ovT?tI9lhYIywFAzs6JkzI^+*jt$-e4#gRV39r-!Wb!^TGS zdH%y2B7Te2&8)TN=*jfGe}AjRfzqd6^puLbt%i9@p9Xa>0CW@Ko6X#Es~D46eZdPK z-q;smY~y#t`SA~T63M?u$`w4SL2!N*9D5$#3{Gh4p=lwq31Kd%@<^5p0fw|Q-z6LT zHu|^8Ub}phaA}8wmmUgv5T+RNB#Is(wp^yMAm(I2(s4SsIAXH=AEawoNffZbHW+zj%ydOIj$~q=-5hK=tec_QE=L}#GixBh=RB8!01(VTd{{6=e zEZE`9?mJ3u`t^;C?T|+(O_3{MIsMRUytW(d{fDY#*+YZ)QjocSkNgBrfN~gZ9Zd=T zCWG7$xfV@}nwnbwEkEg9$WC4+Bq%b)K#2fN2EB2}s7G_ocxH6DP-nN7!4~P_>xH_~ zDrE}C6sx#g$2s?5R2=)h7_$Qj0%jAarGmE3)TCLFSvIUbe^kr;~si6Q(2i+oi+TpAsMTZG$2Fj0*&dX z5_nX&<~JMD_vB%iddhDyWmj&OVF;jl0NX}`GLX}S3g6b7d<5k_h#hwwIycg z0i0~Y^hH-t@hST*pp^_&4jN6$MJ}HHh&O^C&y8d8xcc23N`);l>{*ay)taQGrxV%5 z*|V1!FTn)scz5Z}SLi1sy68=q{ObX>yF#KDzBdW8=#_JZaPodj2(Q5rNFz-=+6p`h zcJnPVsGcjwpWwsA$cN+RONxpfQjy*jQ`n}p3}tq2n5nxP9UH5Kxy)5HpsQUEdsZ&x z#lX(V<5{RFD%$xC&~dx1Lmbmv%ToSau|)M%?!N28op#H31mHRp2!l1B1YbH4=ppZ z1$8r=;W&JR1ka^>yjoD;0g3dz3%}-JHcZ~Rpkx7@Snb+38qfqbn$4Ch=s75zZsJ|m zXD4ZWXhx1eS}1VVL2A=Ayx%ZMkM`-U=x(&OvGLsvRQuP&goA?nl_adB$ILi!k-HiW zq3y`vUBTH*%h!+Jp;_s+$30!+KlUyX$7UalziB!Z;z}up*;8Du-2f9TbkdnIqHztsZq9hG#b?Vt6ZcGLtPtidPrXJ85;H5x&Tb3= z%6;YntRe6apY$Ro1{R+|;mVlb_+S?D!2s&FW2}no2r4>Z2`ip`XuTx=xf;8uLAl}x z8s{4tWvFRr23&tboNM}f0K%qhn?9xH8Fp#q-{{!PpPM%Aev&Hlr$@TuMK6}nRV*P> zU(D$c7jG3gt*MEDE^uBjvk8V*2I-2^=iRoF#2nBIBCLCqY0=%SH9n3KUSa4(pdEC$ z>){kHGKP5vH4hK$hMgtufbI0zv+k$}0UNj@g1_@)MDvDV&f>%J>DQ-Z%er2D4T$$C6QGKo29ql%i}@O-DrF#1=DK2;&I+47Iyb zEU3}YI&=Iy?>6W+d&wVk4G%MK-mE-hiX03&x9#Igauu-c&<|(g4zXE2raQRc&ty-X z@*nNFfqrgSTKi5F`ofBMMLC2L;?+fEBAP3*GkO@y zCZ6KJP7!Is36Ei0&MGBagGR?Z-+;Pbx%1kAtXSJ zQ=J%13CRsaqVKDv|7^%S^yG~|c`DD-*M>9#`M^M{&hrnsXpvB5d%|d{R5*hgbqqqV zwX0Vry9Yvx?2gKycgX0~QIxTm5TlML%#*8MVkVFMpqqTI_`Kht3kEH4tHWBIMn6x~ zUmJXz8`wEkUD9Gg>o#maLXfqLr|&vXclGMYYmkBwa}kUkB`$0|S>9N2L`nmUN6h|E zIMip^y(=nl{kXuErkikHhsyRiOkRivtK?3oh}A9>8_z!oK$K5}Wza{V>0ue&qd)62 zgF)2VP(h&*VzM-?gnPlZ-#=Ob&bbpR!i zxvJHLPWYp=kmTNLI2h%G&sMKxK4G=gQ;kDuQUot|{M6#h?Np^@r}RA)`A4goTdCf% zq9>P9_jiDp=kS_Ut8Stx=hiJ7hg~CF`)~g3S)u6o{89hl7A-k_{>_`BFaj&+@6Q7) z%fJ8quYd5br}SU8H1-y@t)`5ugFEUoj%=~DnTqGm!3rc{$_dRj=%Mf=akUI5By6kC zj@vvx?u&8r3qksBc=$YEhlaUnI0+Y(l;j*>F09xOUo@bHf|4E96gls*S9Y!tIfeGc!A-CL)puR8;YEXqZ^s*HWy70GMkEye-3Q~p zVUH|4If{583jQ-l+{XbDb$o9(r0~$t(M=RC+lbpKaCe(vTjux()^VRk_pCZ%Yn!?~ za7pe-Xft8NVd@Tx)KC}vfr6@P(5N;{4IbjJDeR*($3CLTRO$n*g}0AOlDWcKjzaEO8!QQR|}!)K^^38j-B9$O=|@;nW5*+35PE5g0Y9G{^Q zg{#&aa(@h5wUfvMtO-~J#_}0(lv``POkCI9eGW7NaA4!AtH7$!Lfir1>m8l`o=~L; z((80K50GW;o41&f%IrGw8u%%^G&1)K7t)c66StIBKuq@@p+V@p1my{1@oI`^8cw?u zoG+jBIsp8mmdxSVQTX=evrLq#B#oHvj|2FR+yy6(lH9tHrLZM{7Vg);$2-&oq7*JaD9P?N7RMolXsBL0K2Ufu|_FE(EXwEl@!J+ zIHV}*n~x#M^RRW;>KTPzQ;b{u1P6k_Om0?TVF$P_!T_XN24CFJ&_En0cHCPnwFwUk zzJe&o3Pi;B6$Yal#}du&jc3@Xq)?p@Za@-4?YVDKk@-iE?OHl)rF1&th@+@y+4i4C zCv46uium2v`Y1)@l$6wKOHr%x@$oUyxJ_5*J}i0)y9~>ZKG$zvanGDC!UypKJ|X+8G0N`GdQ6clkoK>V|3# z9xMn{U=2210~`e#M)Qt*BqkmYB;0`op#He9MX&H9q7_WxxO`y;?SVEcQl$ektooEo zM(i{-92RG-o964|6Oz{ef>X|bbCo z$^^E3r_JzTSo5fC>=oa55=`C$j(y*T_EQQukt9$~Wx&G^p8SufG;Nk99lvm)7ijH8 zYPivAWLg@alBhDjhro$G229X+%_;$Z4eXYK2Tv5L$g+2CrP|5Hb^)dxTg%s>xx)o5 z7MLJ&iJEw}t~k_!3OX2_f}kaggfT^xw8JZ0-uh#F zTpRY3D1Jj9?(2+zyb7S6hO+X`SsGI%%E(d@FQeZgT|%qrSKPwMG_z*DKukROg2lt7 z%4Whe4h=r(dt;r$GBGqZ785#JXyb;mfh_=S^Khlfxo_clu{CoPZEsd3I~*PsslbsF zpkycQl9RtW=I72FeBOx`hDtT8s#U93KSGNlvbx(>pK-`_tY1Ban=|-|=WyXPLBeQ1!PdG(5m@U90^R z5@gU=f^{(s2c3U#@b@lD{{)+b@AXe8or2_uoePhRjm5eGMtZp=or{z663TusGUAq< zo;l-7#XlmUHKCq@XDQbqW)oN~-?XKULSLrkk{v9ouGj`l!CzXdfJ6T9;lnsrWk*T_ zc5f(MH?oHKV8Ax%j`Xo(Z8$#~&9*Zz9K^h?z)p1d_a%LyF#87w=UDg1IT$aYR2N?X z2!H|`cRvqe1si2V2)qriH*xik+zN)WyU#dVMuQCh;1r}V@64-^I;aw8#KvE<>WU?R zl4GJv&VE7bjF2}g8yozNG_y#54_25dBk^nw1AkLkc-ZU3N=M;PCF7K>q?I;vc9rME z=V~GWkK%yXjfY404zlfJYzrYlGN~K^BA5!JT!PqEI!Xj~NyC8_lS34_>J#-kz9^V# zYSQ!5FTKKoZf*2*d}1X8!+WRThZ`v( zs}WT3t)*}-^Zw|p>EMel>}FPL45kvZS(Sc`g}Nh9I1Q0a>4spmd6pAVvw<#lus>db)4dvlLA3 zQQQUHpM5Wt<1LtmK9tr3i4$aEi2q({vt#ctD@JzcuSsf^VuxLpdv% z7KS2ZNMmUwVm`__l#j8#Sj~iGzpSvD60%TEc&coxq1AcYxSZWYC&#{u^^M!?VMH+O zz1XD9{Xx^Uds3D#+afZcWiC)(TKZbTAWHToEcIv4-iSCtPboHJv(&YSw1tA+`J@Mj zuC4nu3c1`Ux!V@18jkI_^XswEupQ+Tg;G!Vq*c({KZAOzgNc83V6XfN9;Ra`9#nV9>fH%(V!9-NW@PSGJ_&{lTLaMPRr=dwjp2EMHv}@kVS)xt9 z?grXn;Z{NB7$MjLhWN4sR~^XRzIKwWKUK*-(TT zpsg<{F$RfEuryg;xaX&Ly7vE-fUDl(`cI2A^@{J%pX#Y#o~HW@l%0!>KzHaHx&LUk(gtw%F#w z$6o3cT&7OW@nm)^2QQr8nO7zG&W zyBqmf+RX7ilo9ELQsK!Olo=qShX7+4%^zGmciM_Mmq;9;Ee7cUgz_IjU5eC8cb0?$ z8nRmB=Y92_+)$6xP166z>I*=-Az%|ZV@oI*3+tit0tUpP(3wY0Wi-z~O+D5dY=OF| zy;yTe7&lzldRHpbqKO|q130fq-!bGSpqu-sAD=Dqj8M9X{1UJVqZi66|PN5hF8~FT_X(IaygJWP=eju1#Ot^JYNGA31tdH)Knv zB9cYmWB6f!$uqDOz%0mjhR~K-URsL2Yn-K^ojc++`7^$(j=q*Ef~}32=k`R13pVeq~b|GUndhD+aenjW@faDg+(7H5VBiUHcAO%`7K{x zT^Q|uSETM8GFa;BmFj*ncqWJfU004gTT%H;U(;&$aG*n1m8`CE;Mk$gvmi(&Qngtg6VGK zws=*HyQ9XTH7SyJwm|>&((agA6rWZgtFjL4p;+!-SWet_xLzF05JV{dN(8Cp0Zq-r z^3|40Bqa;56y&?{UhLfXJe{SFAAc+jE(Fg7!{u11H*dy$csfkt1;bI;)MNen^)SI_ zqkB#n(Oi5qyATDDY~typcqE)jY=_7JbBPP-R11xWFF!i;(9yqbC5}xP{0v3jrc9XD zzVMcnwqNgLD$~bhIK(iSf;R_DecK5%bJqOipt#a6yy`O?JUro&9`0INkG~V!Dt=6t z>1TLB3E`5EXn!FRaPMAEqz*;RpL?y!_W@`mo<^VA{evxJu9d-W!Y&h3Q&QHODE-RK0(weIoxaS{!vWFFVU-ldiga3Tdu z8#YC+bUpDOXqZ*Q4xR_DzJ6k8lXupFI-rr4a=2>YU5cCmRY>$M;o%n4FambQ&`TWB zZFjeHW+6ofZ)VnAiu?z&3NPxJB8pi`lau_Vrmm_gD*K~Hj+mK5p&T=Gnt}(@C4qQX zBnETL5~KlBB!I&Q&oW4z4U?@*s;%G%QI1PzOZ$KSVp35V0(>n zq50Dt+Xx@Aq0F~)sR)Km2*X&;(nKr(oLlhZm}X`a zxXPw$89-+~Zxk^fKb2wuDeQvCD`%GMiNv=HHF`BH#B(oHF$8wvt|q{JXYFAw6q8{; z2YLxzp(tMLQ=yJBp@u_d8b5!bHh`1hTo0lIz})Fn>z;N7xK0VrHFR{4x$AezHjXGj zf7OoRb8an|(hYL{y$BzsTVa`s?c$+WZeKh(?_(7QOXJZ(+9Qk8*U{J0lhPl;Uu)-( z@U+1MjuIyW^i{iRzldsECpBA5II%%KXEml!vXhKXue+VN!NK8gi$9gunlx( z23oP=;DH26NY{SNVf7>6o&>9T+R8Aj14IUg5YLy9hK^Fjd6FQY{v@ z5!ej`MS>a2UAvgp`B$eM0*`^7jjTQNg%vUn8VnS`K+UmW@59kX_gDoB9a7khdiJfIG zrfoY!Q6{fpwgp@SiIC=(In$0Ed4TlcMf0$nO8+&AERG>`ztl-I3Y zi_kBNN(=NX8CHP|2VVFN>}wraLzNtmFX0JCMMUUg@&XQ@jt!{d2mk;22d?!v&aQre zV7SCd?2!HUhu@WOrgrCsE`3MVy4!NJ^2b!K54?N##df8KyswvwE|Vx8l3G(312z+d z-~{vze)RmkkQ9nZqEPc5FtHrelzl0=p2>8#>t~x#n2dJ%u_3_&eP^z{Nyzg!yb0I`9!Y9M} zzytW(nZJu@z8k?eWfZ@O@$H|A%kX!JMMfL&|Lm~knxwsPz1d;~@i9kf{dKm>%Vs@t5nG^ZI^{Sm|54v0=w+|NTxok}@G^P$=zJ z|9nKWHcHvHP+a&3)1T*ZxDA=`fBYl(UIJGnzvY@lp*Z?M00==o;JpzLu_!)(MQbIb zLqLpOmeq4#8`}Mk;IXmQftrX4u2-hDv9?A@?*I6)GiKMo5FPU;6V$h3Qs3syR$u^1 z;PX&a^aI8!h!*DX>{AImK*ry}@}C(QPa?Hgn9{_Z6p$l zh=`uPJ}6cIT){bsnBl>Ygdoo#Q(8kK#g%Dc7zs-j;D%2TA21m~FU$H^RNeI(H((nZ z3#^m)!~xO+kPYfJ zXMUMu8l_4d1_U{n%&2!gNf6rmeI?IK>srcLc`C}}3sA|jzuXL9G*#Ww4|LtoVH!3L zdoQUcHsO$PfwHPGcN91z=5Kd9bA$>wM`R z_sP#I14(}<#H^LAbqRI-3R=7l-(Gig=w*w+^*puP%z$?rsfJO{XxHTdpZkqcblr-h zgT3$t3Y6Fn=}`47H_S|@3nXEwlHRMQp^*tcu$wnm?bF+dd`TzGL=7FA31TS8zgtf7E zOA2KXLp=S)9(NT%Y-H9UXa&PK?tS}g>I>{)g$%Qoj{(OM0GtBX{FvQ=B2g}w*unZT zzcP5c!bUIL*^2{OiSjUeYgnp=@hhCv-!>wL*^xSOfcE1$|>|z zMbw5*fLU~U=79g6n&T;DibmN0Cy)e-qMzrh=t~6lNp^~Us~bZYGh`k?(f;Yf&UZhY z-9Wab_F!*dM)GyvWeX%eg}G;Wu{W3n7`&AX@vOeW0;yFek}9>ylWOn|XJgwd`}QMh zY_sXPQ+*EvZ1nyyabR~=vN{L-k3Bm*6BEWzac3uz@k!TFS$z!k@SU8T{6v%aOZjcI z)v$j|F@M*(p&c*SRBJO(d~bvj1HHfy^61PD<#t^Y9Nv6C=0&*L!`nxk^W0$sB{xSW zwFxt;;tMvN?I~W(EPgTAWeGA+*|Gu_pL6JVHmg9FN=C|Z2VX&B#yTCH5Pvs68mgy& zs?vYmfDZ|6^L-p)wCU?8N(&&eAJAAh@4q@69_8y&q3 zHhWM&Zb?^BRTTiliag2Z*;oIf)?(p}pNQn16Du@WY<}^&)+qkfW*Cgj{_VnN1X6Br_+T_n(7P6tMsU2z30_X2BY@NhFA~phfT*%8 z?vW-QsO^C}fCWMg@>>7BNg7BuRGS`OpL$iMk!eVeMUR@58zS&x0$$+b+)G|6yfprg6xongLU9+ zk-_A7#IlP(WX;0D!zF?9*bIBay)J3a16?1y4zV~xnDcNspq6-*Y(%>li+@U4yqbU zida;wZjSp%B?T@w7HftPG|=ZQ7}^+c(B|dSyUNe+?tIJNW%-T%#WRy>G9tJ4{`o=d z7EFS@ZoYoSTcFeN{WLjEA*be;p5Ap=H{dIWt=VfGK7cL>34NVLhX61%!bxEf;Z^FZfXp%Qh4Q}d|*%beMky8bIcL$ z1ZP>`ZTRKmiY0|ci-+3#t|Ii1aJL+RDSBu}j0u=5;}l;oFTug4M!Vq(mu9w>u%Yp0 zPv3!Es0>X`00CiR)68=zMQ;aYL10mahlQaGRqvzIveCPNkzMA~!$H9Um+qRe0k1*Y zofHWbSy#*D9L2e*x%m*)5YXeO;sP%l)!ky=;#pp@Cvtc4pv8|{$^FFrcK<t?P7O1`bKi^?emY@ zidW-FRkh8eAgUb9xCdbcPJw&rjiBAcw3bomo+Bbil+)az!NK#O?Kckcgy`rbP8u6M zU-Vy?8?8<0*aGa@J-9YH86y^&4RJ21^`)oi)heKtE-qKOmZo|-gjZPkq>M}{;&Z%3 z6uJ`dez#_q$`*U0+fgxF7U}(dJuQx(*sB$h=8Ejm#(y43NbHIjx#`9?a<7E)YO&Jy zH<^9sR(hE9^Y06{o&ibg%F;a^=;E6tT@FRItsBkX#r!9nF|Hx*msL>*@xH#Sw?2G&-Vo{se8f4FrWt0SAP9gg~N z@k`Uelt==1154W7mJZkoic$L?g^>U6556tfp=x(9w5>(1|K~Is4KJC3X^pmNIau(* zmsyg8{l*|Xhix!1HDj<3q37h_0Iz+ZNnUBM5?la}WqZ3d6}6$6u{QEPx2}oPzMr=l z?yaK_+w7%M!=fhJ0T8dWRHmQEVC+=k35gr-ENFCEheYxQxK7#3tT$Ugtjifp&m5!-P`0{!*_=ZIw~*g@L#?yV@F zQs_!0(T=vY@wY$}JO<&xYIj&G-9Pln^Xh(6!!mapG9tStp`L&7v}BZDJS{=QHJ_OQ z^i-+nY9R$aQe~r#eeQ|q#cT-F!9!t-FaZg8Z4=Mud?9ex`(|QYphOrneg9MB;@T^l z7#a8HxH>?Vk~Pr7r9qC&1=H7Hp5z-0)2|uAer7qKWJ?)6sCWM~v-{*z0Y}gRkF;r+ zDD}l{4Vx*RE*hCOZ+?EuwRxk@TU1meBmBLipkT)t--f%hk?`(}1=3^Th)J>iH;9b2 z?NRB=iA>a72Zd8Dmumv3Gt2vsf1hC}geZvxmiQhAeQ{3jDuzzsXib@az&{kid&Wo1 z{deY$vNP)Ha=|_~Zzd&q$Ns6$-o_aF$3|JK+`!1uMta=r`!G19D&cV4NcC#5_TBY$ zH74@Mvyj2-{JM0|Y3#+_3st%&-H`8_3ONji(lDl)qM*}A-)H8wJm7(h?HirGQ2q$3EjqbEvPKxvnLV-r9&@+zkp zO&UiS_Ve&a+VtM;S#MO}i<+WjNFl^3pb71<`zr&US;J2qZ5*|PK*b!RK~t6IA0CP+ zcCUlVD8wRc~o<_+Eo97 zdWa_2*8|Li_rB&wxkI!1k4oHz)^FH=Tx6chcNl$Tsj2nT_WAR3F3ppn4(*qWFHkzQ z2vES(2_e?q6$tmW3EIMYszA`F|Jq9w)LQMlJ9kQHjX=^Kjd$%npt6gNtrzu!y;<-} z2q6w&GQF?l&w3TP$HZ>?p4reQ`TP5mE!c1OyAl-8YuO5=;kjN}(PXb!WX#}*B9p&%Prboxf7|-ejk>8`>!Sc&w<3@!y z+`nzz%kV%~r$jx)SP~<@kw*my52-Sy`XV=w61qGT>lA|tRyaa5A1QF9{k$s5G@X@! zF#{j<*?9G=#EAJhm9KODA58N2K^5TUw1GB(I|FL&QiEU(PSx|;q9^M#% zuanJ5kNF+*_r-?BA=}WBF=i14MV9)ZV4ez5KNyCIU-97bOA ztzWzON)_oO68D8zXrD#V!yUt$zx5lZ?Rnmc^ybBDDAv8MU+1)FZKZPFP+(L?FLJTT z$J;xAYqtF5wf&}`+G_RDxCdb;ml?ELyd_5^Cst5Vi9@JYI|;NAv~R*C19aEa>f;Bk z%@EE|ULFD3HX@11^agFQ$A0lB@mGE7brum+zIo>r-kFUlhl=QuGDDCP2!GqgYvOmYzlWSMc!AN%A zvxS|P5F2|p^ij!92UAYXC&%vNJ{ON2e-0ls9^8F*!k3}P|5sI8Wl&hykpHhxpR4J~ zSdp?<;X3djkNM3t4j*VE|G8(*pkg3dI@Vf~*LxN%Vygvq=1kV9oIJG0rD-!Ing#%L z;r#oHA(M@r!^0LO>b?1Nf^dP?Ja|QauA&mKW03IWN_}2hI=b*fF7`O%kmHg$xHwPf zsHyqfe>>X9OMK$Ol$`vR>Z_Y+T(7Wj=+LE-IYjq_&qZK@d+AGk&2G><8xQ?BrJ?Z= zL;)nDoH>T6ZMpjOBIiji=Chc1w61-(vxKokX~6K`cATn~)?OFy)T1vI=%}88;YqPF z<{2H_gys1tXFZub%MpDC0sTX|V4xR_V*%uin3xzq z734Gs)~I(XN=r|L#HWEN?oDwMJ&JiUX01Et&j8ybH;g%+7&I*Gqt6v3q&*`5Slt zv9C3G_{YQr0^E&aR|kqCayCdxp{#tcLN_a)fg(bvG|x|%`XP4}g&0V>4gXhpSN@LG zy1!TDWGX39M3Y3uWEM$Dh*!vvvB8j;3{j>XO`=dJLo&}pZ)Q;%5E)8jR_P^~P6{D8 z_o8#I>-#r+UHgZG%_>>=HD%ARv%5V zP7ffO{rqKQ))!xC;LkOLgc_@Q0{gBxat!dSbG=<4;sv*3B;oH4Di8@RGe8ihflq_d zEFS;Bs~T!T0-lF6?835AoN>pkWJ(6wc3O>pzA)c0^S3`?qJ8;NSHrt=CwI|JZ2B5E z*#?7m+PzTj?jZYW5lS2w8}NoQz3z9)a#eJ|OlC@oR&@Qt=rJA0sJ+;ObKDE!7}g*t zi&(ZQbUeRG6}m-c(Phq5uL^kKJ*~`5d}Mypm^$+B&ae=e>5LaYg2RMxrn4dX)HSS| z`Wh??Y>0E}UPFzsn|OE@z!!HG>MJW(W6hzN6lHi0yf^`16#n6d1+2bN|A1Z3emva2 z2TF_(MfS_RxtlFL@kA1jQb zeMs%tF(Cngy^H{;-p7oLv~{jCPs3^gNB%Brk$ij``I(rQEGO)}(P#3+ZY5;5{7at* z$hwjA^~p_tk-ZmUUcUsiNeb(*f#HY7;_LImuECh2<&3^NF5_2?EgM3hj{%*gLP}=dl<7cr|VVwH;xGO@3Qmn=b zZOAizv*Oa!)?x0pDrT3Ky!G7Nzj0t48^Dy}@GH59MiW?zD4Xo25BKcmtLMS%9_E7b zzVeD|Il3#`0=TzWPG)lxrZ)fu9c)9mtI4zpNbRAscy627*{5)VbiMUM(Bt8CiqP0) zK_x_k&8lpBqIUSg?$IzIYOerX(sFXMAPE2tJ+24`BdDc{w?nT<)W5g1`sAdsy2T^g_Af>gePKfFgq& z;T%U?m&zy@Cq{arW9F+HLb&C0xpMOI;B=5KxiK0?0m^sblK2+Ffp$7U4SY_h{L|a$ zzia36YtcwRg+MyK5UT}O@iru7ad4!`9?j`|0MPDAwS`T#EIvV89GBS(b=dlifv6Xh?veD%{1@4^W2l{tqym6mmQav z5o}O@T_-)#(R!1bzwMfE+xSK9LbT|e50wKEGkWJ25FFt!!KoL9AaTHunVxZl zcrE=^{Ziz_ALRGi?)i+$s~khQQ*VojibnZ^$Poo$s_5B z)|!Kj&llnmKd3YCYK*v-gMuJOv7m*+6M^I?b>Hdxqbl7%wsxco_xi1%Zf77FZCTgP z00H!Mb*ZRz@O_Z%+Wr2JhldAFYB(tQ<_+0zaYe4<+~%XY@ozmNx;pQ}2-e|X6rT$x z7UDyy<=s1GMx_u&{!@XM=g#U_?9b24O7Dqn`(ITCng8npq^Lh)wS_m0-F{NXP01?( zA9ySfh}3-tXYBDuxk7H_oA!hw7h(Q8n6`2cW0 zJ$r^WNZMUTgYVjHk=iP0>GOqChqAmtP2yPTl(XB67boty{rT-p3l&Iw;Add6uO3P< zHLfQRBP4gpY+gfs1%yE0=-Bg6pC1nup-#4SfpO(sV0!hbu=w8)3XVUrJ}NjtFUC8c zg3KaJj8GfE>Utz8P~q|~B4gXq#{W9c$KFZKU{eRqdjLjOi-lN+pwCmmqQ9BRf@(Mg zXB=B>>B34&H<&di(W=@5cEz>eiXe92LXs0r3o;e#SG(r3sipsZhF6bwpv9WQvbN_*1UJ@6v*|nNzQbo1) z&=V9%)M|8hrU~kyXkO}TFml|jLTqY-;^|u+(YCM%I4CG7S$GcsQm^0QTKx6vS4^q_ zi&s)w>V+eVI<(#H$#j=J)fHDGwt1iV^nb6W65|If2SA7F^!-A;87Y$#rZHD`H7i1= zu1BbLhm}b6Z%3KsQ~TSODSF3F@B5g@&US~)!$@5hyU!|kYQL_xk{4%Zx;1cIybZED za}P0I-iyZ1P3k;xT#l3r6pcWRA!&5{`1VWuRgZzFaieqOg8yC{BK6+Ja+<%6h})1N z&!kmH4_)iG_we`P`vXI-1T0Hkr>3nb$BYKC@#+PbXrgVJ;>2&|n3n05kD-bA^70Mw?EX?ukcXv2 zbuH;R;pF7Wu}+S8tV#}Ir0=a;V_tTPAb?54-qV9uWXKxZKG za7}W;`fJCRx--=3bxn6j7ngv;EJ^xwTs{o^!9GKf^U52Mu#Xu-3s@^rtI_KEe%on3 zvHu)k30d@rT#JAp?ffa~>fw}cQ_u!>7rrT~$2JZ{HAyGF`-RCF_Wo#H`itzNe~N>1 z@Hm48RFiB#?V!09>nt6mbu>X6yL(H?@IJ{sov+4y3}6St@=y6rGNzv_53CM64YE?h z*oD{a4)5!xf0FV2UmdPF{P+8#5o?-RfW{w4rl9R~Zb_dmwJaHJ*uNtAl8?iGfLAy5 zJAeyg?*a7ZFzANYY`ge%2QBmxx7hx3h|<&I`VC^(-ru~$DgNgQl629!q~ovTbst!e zG1qS-P1^OFKrt%j`wZG5kn8cWoP_M!rMJ8YX`le1x%v^UJXr&NdgHFQ>Dt@eZb!#k zE5pqTr}8*AFjK4ajsLd7%)0Q^MaE-zYm!qs$y6dKw)I#q8Wx5a=MfYkJ<^sf0~NWg zspliT{{x?C_rrUoDV_J_YA$vgZY95-@kSms#f6+=%ez3Lf+X+7#ANw&-oPCOt!L{4 zy8@Gmr!-5KhlZM3Sl_BgC^Td2GR*U%MU`FQCyA+;Xyl%n35>=@4OsKK`d%faMU=8q zO8)3S-{nG_I{Fjq%yzkdPJWA_Y&u+vC`O@^-6&lJ(VN{3k}T{QuzFf87`Np#x)=@V z84bwh3mkmV(rd(!&2^-MQzfu1Tp&(by$%N)zA4I`_O$<@V9OhGcfN&E=PyuXT2T^3 z5dy*Rt`(d;Y;#;&DO-e-W;s!|p6)bWekKzXxO_+r@6TZ!Vh9C^$-VmpSXPYTGHLIuHbQPK3ZL=dFT^uB^70e{MrU?bn&-QS zPM|n->L^g=Dsee-+Qp?n(g;A-1r{toOgQs&9?x|`9vkAUZGAv{Vru<>xtpYFa;o^9CUwnPL zd(}Bn%g7IyBmT~aF_N>LxKx122c77NQodtsP92N6{-=kIp*9b^Rk?nXNwE@#W%|1y=Q91tLLN{Ls&H83IpFHHHNSaNXgdLX?|8Q+&oZz8 zU91JN+9l0RO>-=1i~}_K5Uqp*z2nkmR|AWsE-uwntL}Wnyo-|t2IRQE`!9i9e!^zo zUCvz1HmB^k(a*RFIu#t8XEuN%1Fg2nioVEUih)poaGVIBZ#gH4;^CGgn53t6ZG!V% zSl;QQL1oalJucA4j$$=H>Irz{u)Ql{!k4GRS5ZhpM7yI$BLXgOe-po-%-U;j2Lv*W z?RgKSel<1vPbFMap8i&f=f7Mx$d+ORR^8RJQ5{$QjU;|q(jSml4wZ%p31^0mOwHji zBMonJmHn`Z864=a`ip0h0CTxtz;*`Ur_>39$H0pl$pW4{j9^w7Jx7AO9{@V59n*qq z64@OQO=Xf0)9v@%;dMwUBlNj;16ojOc6>hM2FAG#kUx%ES`i=BRfqs>yu=BX{hNSG z(VoO_l{>HENj}0;@sQHWyG0j6W%;gM6ArsQm+0LAaG^E0vbND|oQI7K!AXvKEa=Lq zt=u1wRHPptisUQ3^3$jr9qU!HAhDEACFx>^&fSpkMQ9}>tPd*dIZx6AlcB@QY!-j- zo{sdJgF!B3 z!8ppUUkRNzu#|G1@FBle6LO3aW*x1Ck01t${hnpho@h4!(EACEFF4@ShA~i*}k4U;of>@X;N9F;x8_we|EI%B;9twT2bn2JB&p~y{-SX|G zvP#Z<3Vao;`mO7-1Szspt>;0&$7^SAXFwtL=+Y+Q;Rc-4&yISZafL4g^O)|?U@0%rALu$_!Cbl$0DokQz*xq0AyvRtq3LLWAQxqOjKRMa&&n+@0%59oX6$ zhHWKdo{>KXWAknow*hc$3b2rzTtE31gzbIN2WTPyw{<1G{KQS{gee20I z&xc|8cG;#kKru%gluuM==rk`e;8SaKb+ml#XVwVnBKvF>ADilWf&IVtqONDwV#)Bc zh~r3}xf}!ZA#n?L+@YZG8{3IAZD5IAvR8|a4kKHx=atvLeWlmO-`n^Zlga^+5@Ckt z7;iQ87~^KQJ3aq`3$;05PC^Ov`tdH|tw;ocMD#DQ`gbmj47Z z-Ngn`@xZv9*SFsER`K>1kZ>(k<4B`q@|D|8A9ZTXv2OGaHi)%vwGGs2H#i+QR#;@4 zH*7S_T@WO(R*!BjO`1a~Dox<&ZZR`ujW_8c;fLVP>{!w#Rq8c4lh9 zuS!u7+^1v5S<-L3t-R#bLzkVb3@WocqUySkjMWYdkB&Y;^ZE6Y$AN?i;J`53LNj;0 zkhOT1I_$`&EjAo2gF-2WtThUi2b?@Iy^ptdoCM~)f zds&jMu+{jQjE{}Q7c`?$6Hi;*OuRgVK6Ft}Pcn{yZY4@v^j%#3jOV_bFM|!M=)*&S zVDngthDN#1>?A%UXa)&kEV(aBU6L@LY~blBciF@&yPv*nXRq`|DuF%PLp{RsaVNsgkRvH7a=}1f>YWxiV!#H{v06{x z?T(6z>uG7(Yu_%+Gq0(kfpqT&fH+d>3q0GeOIUfShHQVoi`~uv&|^hK1!#{mUZdDa zDRHvlFode>c1Xevw&$wT)Xw*^%=(&f4$>x=GYZvtGObC+y446c-OaHh0xQX@{d4&w zuq;uN@Sttp%FU=>j*zerDLiUhF{0h#>b;%^7OpF0`iaR^vLCu9z1e(4kf z(Jr_~wJX8WL(n7y{vQ*#W=8J69{6rl@x%UZBbl^?pWw1<kpliv7%{mc6}*Hu~VBABF#S+4Pxj=sU`ThwC_MMH1pj%;L{4wC7d zSdNuLXKyQVxapU(+QnTF+)a^=9RrF9DC2|Q8I@fa>H)1^o2wy}&#UzTsVYh_Yyjx^ zGt^UMEB&#}GmhSVxJR@H7l;!R@dTISy1E+{X)7>K4SE*o zPOYcNaZHSzp7jA*ptIF#l1fnyPSPxmyZp96K9t0}a7=336^?n%!!c3gd1jDGNmf-= zg#=-@zIO(6HnM--7JIfE9k5dU9?YK7MDLu z=h!qvwI1&7UyG)I(&Nk#Ihu-Jg6~4~wd%L5rcEpc1hKkST}AoC)2IEk^G7av{Z!1Y z(b1nmH3;P55A;7gEZ2k^JS!H+JVnT|Z*5iV>g{zruju!55n4WDgNNprOo}zw(h~NX zUDXxH2+TG%*4B1DWvelqg@lywyVge=m~BFj>)}XdNYZ*|ySEtI_F57BjNY#+s%uVW zocWw0P!Ek-=0eLT<_4nK?8*{q*&Hh4_;xRg@@iib3@&x=2rvA0bOo`wnuCE((k~1$ z1}bDWm}>;LLNvE|Bj}JPIZw-VT5qq$u zo9CD0=TG1OMXd&7_^>+}pX*d|38gTbC`)$MH_V_Q4-CYn0vn?nfn3@OL2i(ioIg(; zkJL6Jg=&~Yal*o)zpE=tAh>@5Y*caU@SDa)5n*A|DxX=Lw7GfWNf_`7nH?qslhW79 z%F6Wg^!$8hFE2m-8b_h9dbiDmwbMeNJX(XR%`}-xLwBo&g{Pndx=XY*et5&Uo)zR?S zu?DmZ5ccm>{0-s@iHQ|EJXR5!8$HL;)VjL6F(CiUIYr_W`}5`7)rbNkME2aKW+Mm3`R8;2i;T;+Wv{8TGyFVI6@Yv}F%z7$X3d&9szXWlCJd*CGuK@n)jJN; zIZ%9$u9NFEO>y~8$;&<^n75phO8$rD5fo&9fBxV7`_#75Q^kA&dhJEz9Z)|)QOP@W H>hga8hffyG literal 117040 zcmeFZby$_#+b)U=6G2p31XK`|NlG^=2olmv8U&<6x}&7yoo}w?l9=nA?>ojbo^e0-eLurf@`Vr<#w`pqG&HQ|!UEE0 zXqTB#e=h$6KjB`xtPX!&)D#sGKs!bK^SLr52!3+qwXmWE8X6rr>d!gbBtC02v^!|e z1s==VMlFxpY2fvau5U!D-2C)~qIpOon3m=)jq4pcSua=oS`pPW(fXMiSNnv#{ge8V z3O@-+Av6o|(=?W{Q{^6O<1|;jgoS+A0Vzta&~t$0^C;{a>?fT7-9h47`^82d$@$3kR)r_{+7mL z1UXb}I$r6pTfSE1FxwiAkk1?_w=oqI6kNy5y~eadm^z`t8f{5K8qyL<-|ubE@`*M% z!Ij2G4wtIrrL?j#@zOln{q^?qXrkxQ6~()weCm3)SjmTf+!pU1NJOJa&&Zg*|JvhI%}?yK-tcR#B?;^PKN>xRp7^%N|$Y zy)cL9s7b7GT3lQ-x3Jh2iFMi;Oo_2?Zn8x~&6kS1&F?^!LeSFU1;2>q?9CNMb2mHt z)mfasF7m{oGT@{uo&E?@_TcAqQ;@wN%z7&}Iw93kBKdA=#bSEKR(u)EX+k=NwMOPY zH7kDxB3@ofDh|o4{rx%>`MK*2QdiJk-}t>q-lX>S_AcOAt&R*f{rl&k@hAUk=c4bs zi?)Y-I|L1__s@#?UdJQJ&+>0S3I6!;=F)Yvqf4lvH2CwG+6JBRf|*az*2&nZ&!MIN zSz`fd&x0uc4k}vednO#TJx5-3Rn<|5>>`uVh>(y%-Hw=%kr4=PIeGa5$Ew-3$YSH+ zB8S~o)pF~Vu}X((=VSZr#ooB59wj9u0}Uz)3MH@}W?Di`hl^<0*mmnYaW*zK=Av!X zc2`Fow&ocjt{=Ny++OIWk|($u5)#5?vpQ0s-~Aqoc=H$P}cYWYMJFiZ$^K>-KPh;YvcL464m4MTE;X|rIjkhj4Q)AJ=0|uH}@SOoM0T3 z;77Rf@g%N_NMv_hEDSTBBYOV&Sx=PNOrN|(!kH-|(5aSJW15F+65Zl2TOj>08EMFv8ZBBQ~T z;&IXyVIB?+yXN4B#H>cC85#M6-+q4c*#4AfG1qQ!S`{C!xwAaTW5304Gi7|O8ls!c zbnG_9JDLW4Nh_=EMlu)2?Or7Dco>Y{@%lGxiCA7*#QSJ2n?+i~lcW8-PnyN>iK8~- zPS18)_xAQ+*&B_P_3qzkX=#bIoxDGdpOB>B%C=V0l zYuXC)IT!14@+0nPGJ(M^zu>!#tgr}=tOzN=7GI$xj8N>(Jblb%3=!XRM$!rjd*$QD z?RzPTq_z`pkB*KkmTrtNT)F7hHzk{1Y-4^syT^-7_!!6Q9?9B3u2z#68be2KxTlww z7ZH2nY?+PuK0la02cb%1${Gm&$6Sm< zwqm|cGTSUVHn+wMXLXEgxaT(yY^wS1ZEZZe{uj`>-rjxsetKp`(UXad4N2c_A!MrV zxFIMl{qYVd4)PU@T2AGT5(K(GNb^Xk1+CxqXqTF%myuXo(Xqk$MD3jXgT1)% zHB*N7_1*+*ggabo6$u182ir@uCOG0r7rT_ZiA^guM)+V=5OG?jmc9}4yRE38pvO4G z6cQRL5y?u+JJxknfPN8k;LA(5x>O^)Z=*T~TMKim6t2ExWMnxu=O3DPWG5zSL$oCq zCw9!0?+h8XSxxO=$@UP9FG~ITB6pV>hl=EqU-PS$PYcJ|usbIsi()uKu^GwGBek3| zC&w7yi2K2YV>T&ZvBYk@JTTShAFCMY6z(~&vty0@HAK~nT$VlVLw)*G@2K&z!gDlV zcTpxBSpTL~`^h7NveMGhReO_HEj9>S#inOxt=GmzHKV2)d?9v%3htiL;$k>$bqe)0 zUV4emvn44g_%6h@r&VnJouv-K<4Iig$#xDt+k}=skB)sJV!%>YEd=%gSkw5`{^s@8#datAb4fHq zDK*`7KgX0EiR(*Xa}X?lW{oK;OFYgh-1bdAFjXwd@-{nlD6MkxZjg8+Yq&z2JzbgO zYYj}Ji0xc2(MB}u%kQ47Ri9SXKkvAC^JdlQ$>9MfY<#IdhKG4BBdzPnrKjEFsftK) zR!zvwu+A~FnzV}H5)kYz^-G8dIc9H6HAdP>b$;jh0V_*EKH%ZQhl7KIH`(+B1?wS4 zX}=@rgFKZ}eKKSzOxGrM{-3w7?u7^693O0RnN7NTviqup^!D}LGBTSwi%q`M{f?x} z!*G-8N>pIrUBr;xui5aiHxbEjficJ{ zd9GBi;r*=38=p30~+bP1c(hqe6!@>K(UljHlGW)Tq)OlP)w_iWYj2wRJh|MAR>OmRBs zf)$9s*jQ7?^jB`5=+#Y3i2M5b)Erg{&E3*M0|KrGneKdem^W-o&LpLvFi_>>polO} zuB)qyin{Ig@;gatDn}Jh5InJg6iZC2`w|`5GBLXH9RKep{^#wREuU?wSjYILcCpm% zVXmlfN!|MGRO=@kp%^4NV6QnpOja`*+wax{g{*%cXwE&TcA%D4hs*rJJ{0qyc@j~X=GMU+qkD{N4sM*8S}q z7ao@rM=pb^&1S@X-ljxnQ&XI6q{;@4*Hun6?=?3xy;c?G$nG+$rF%ObP+{3G=QiTg ztEoszN~)=;K{=nb)m%+M zDJiKt*Drf0$;ny4+@J#IJ+TRc^m718Q1yr#bwDHnq-LxPJD%ailjHqdu%cj?Iqva9FK4@hG`ENy=>thzef1G4EjtIunGd_h%#FFCm}qxnFpActrmBsi_Yp7f~SQ*IWnvg9q&J zL8_{%$95Hoi4^qorW=#>65JaC1_lOoHK>e`8ZmG!eT6kUrY$W!UE~W>zo@vl6Xe8V zqd{pE6_s&cq`W*nE-sB~*;b$s>2nbgFNG%9%5N}|Dx%|sG#0-+TLClsgHa<6`*)l$ zX#$<{IZ&{(X?NVkl%fYPW+SP?^5I%FJvDWDTH2KyQy2qybiR`f|Cit16QxblNVUx- zDw(bg7`;f(+AHnhj_Z+0pPGS!dfGxtXELva4#z#>7Z{|IB$+T7f{Cm$IUWbyMIfmept;!V+`EAweGDW5)lx|K-{*@`>C zQd3h?Q89dDVEOZq$<$)2K;4>$&GLX5ls-3fpI^J^2DnC4Obl0cX7`Z1U5?i9bNuEW ztJv8ZtcVVOy*=Z$#rQ>F=N08vodKqX2XG4?Vt?q3mTg}mbG*LM1(nn&`7@sn2BObG z!X>kcZD^R{hP+}$+i*m}3`ppK*4Zq*&ve)M(6sKujagpn;E<5}CCuU?B9Hd=3sYC$ z^6m_1z2&d54S;~&IXs@^grb3@*Q+C%3n{5=ZoUb7cYL~JcL8Lx57h>}DH3E4u}{kH zF)>=qwx(tqR`a+TP;d;F4ft>H}KJrBJP%EiMp9;CJx*O9lAIs=wM%E=Ms ztj~8QKy~kmL0-jr_toe4y*+uE?Jsgn)Z$~$g;u2=BA9+Iws=@5-p&x7*4DZAUJEUf zdw)7;Qm$$tInu`_F-}r%titXhTQYq_tNTHvQ&`<&+pq&f_VShcV#j{St81*C7tf(> zk9-UdW773g3vj!HUGykvLE@4{T1kVpBMJ`;$54-#bLLn-OkWtfpW5~gj%K)sa+QR)NU zs$N+hqh248pwRFD2U(FOv6AD>pEP}q)HgXkg@0HfthshW=um=pKhZP)8`Kfxyaa?g z6`}Ig#n?gYm$7AB>O*+q^yn6B3)fAw=&qst7zqk5fvMPX_1Up>$bKl3JTG_B;d0U~ zjP-2wZ9`+D>0n;HWq>z6?alsb({WxmxhrbO<-z=v(nkD65)N|#1~&_TQXb5{sj*h~ zkkE+!OhxkSk?#}VCgcWz;7D-#Fe|oJb(sBm^Af3Tjb+pHDnU?H_1jndsBE zVG+w%7*u1(&@%n>y7^tbm}VzD09$y2)2mRJ7YcbQLy}zNOuLM;xjbxMD+k zKOmhv2;k_5qhmOhBNU z^d1PaE6GldtEF?y;`!3m9dm|#nS;O=(AhFE$G^Ku@F^r@A;kG;qY>&sMpe78@wL;< z7WxY=cbx58?%)lzFcEj7Fk1)nk8TM*07U%Vd=kRK*SW*>raQkv;;RgjJv})Vzl7fh z8Ml(05#Xcd45h73u~aSKZaG!eEF`CH`|VmBmuD3~SlSD^rV%Dex;SRczRb{(9h(hr zxs>B4ch74d)}71Auh?y`Bj-~OGG{%rfYTauY|LBC-$k&td)8Kr<4?RY9G{pW8;9rZ z< zV6gD9NI16uy65AL6P=%v+7OCTSpj&rFjAUdF9Hb9ORllmd!2=qaks{+r zwFMs{rc7C9{93CXplNqjhINz7|1E0Z_fV{7_DuZRhgv2JX$hRo2R;Js9lDvOEvSlF z_FVU&Qp-Y;;&m*uQp0s|xsfRB`0#0{`q3nTD_UlMj?nQ&))}Q`7p6-`R>3LnDg2J{ zjU|**{SIu5cklkJy+jtA7YwVU1j>ZIC8_^uIDm#NzR0!JogyKcrruou#h7SX`s2y9 zrvgd9+5m9#S6k>;ccDGmhs~P!Xcy3pgeD_Q|h=GpI5Dlf1 zP8WeiFmm5B%;n}GlpMxpXuEA}G@$W_X8UaAe0_Iy8xrsokP-F|MfW@X zofDBD5%?iI?^vO??g{zZzMhsI;p$|yrOl16@vS$#-Yl#!Z186h> zTK9E~tBnFySl#yLyPJrL-7$x4FQAdBY)v;{4(!Lf%MVw}lR8SM_Z;Ojb;t{QL3_C0 zXT6kFyoi^jko&cHmDBmiw!0du+ab4yN`Kio8HjmUtO_|j%}eC}z7lkFl7pKNN6yt_ zNzM#}nD3rU#(K}mp~%wAmY%R*um(PGSj^7j`I7NfL6VaG)D`#iQl*naf3~VL{tcYI zKPB#roLZUV`l5oMSRmsYm55{rN|$Z~o(fGQ18iHKg@bi{avt#Tj2bA+U5}at zeUAam6k$}5*JE{7T@V`!C&=8vgaSmX{I-|@yum~vfmdo12PIXRg~ z&nOS<*3AVg45j^=x9GEr1J>bp%_7Cs|;$O5_y^R$}Qt}e^%zA zV2(6*H$SWDx3C|u`9L*o26D%ZQ*-$5Pd?&D`D0m`f4ucbq0i}*EYIl+>njbH`16c1_-aKP67ucs;&YhUsAt* z0EP{dW;|o;tjZ9IfkIQ4lk2T@y99b1lyH?G*(@(FLwc5%m91k<2dK(L=L|!&?e!vt zdvKyUG$iB-FSZ;KIk%3?2huZ%uYmMvczAf%QpJ3{_mU}dFn?66(@XM+4>*tC=1Yp}+ z1LDP6KvU_?^>t~Tc!-9sC9&tvI{^<;KSHK#Q;A)$5FcW6u@9SYbC|U@`uD(v1fcUR zFbC)xVm6cI{+w7(o1ZB9=Npl7TF+x5B-$ECbLL#Y3aPzdv{;4JSNGlChx{m=OyXQ)M5(#~Z1e)&)m^xJE z>gnlmK0Y`GJR$wlvF}b~%on}xWM8$wF)o~RC-g66Wt@F?zf+VTj8W>%wwH*gXcB$< zom#3swm?S7Ub7VxNw#||pXft4La-m$Hx_^JvVXYEW zwal!n5WG0Nm_cLNI|E^^Ld+`SgMUH6l~8Qb&qIVYoEs(@LX-`D1SY{ND=W#%UKtio z%=8;Yb^hTezlrfqrz6H`%x;cnZ^8{kAWtjy8<$Pwl{ynWSBK5t@_(*%K^pU3@)!5h z7kYa2Vr}k_eVnAQ=_PM}e+e>|M@NG<45QH7WGwtk@nHacKXGh9OB*Qe^C!?$Ql`?@%>pd9TS_i=(xAh6)37C zs7u6H#Z99BkhORmaU}&)+e$*{X!anaUBtR&d3wAn>Zm;n{1J{AfkvRX*5k*8_8s-9 ztj}LP!1c1a{Ah54BJ*>I7R!xK8Y-GHH|fN>nJe#Ec!Xh~GWdd=n!z2GlrMUK{ZZ4$ z~8nx1|$c*v|Ts03@YYglyd6CUy>D&qUIzKNrKXa*4<;OW=QOqz#<_wV25IoX?n zEzutCeZ$f;=Iz6kT zk&aBm?_2EY_Lc5aDKk}5dhaE9?jkDOQ0odXb=ZzWq+Pk2ZnY5FZ@u`{m)1<2Ly3iErOWR6CWQB_67nq+c*&J`<5JkwXu0%lhLs=tkl4r z+eUpJN^M{c^)q!!M{)TxYUw0;q~(rpI3`EC{GtV#iAE|bD+O0oHx!~JA#*mzKEpx_ z25QuC@Kvbbb`TIFs`d*>1nQ1vU{&abS63IxB9N)b6nU>ls~gwL)!k!^$FQ~x77<9D zqL(vnxsK%@lWAN(K*>AJvh znu3N0C_`5!O7~@Ppzu+>6#2I&+od*+!*|ZmnfX;Zvd^D^QNIkSOmv&hLp+~%t-8_P zVT!wGvONklKk3`?m(ac!!n8m^;dwfnUA_vUKH|Xx+r_jLy2>r-q;}mtvOM~ys3@vsv8U@ua$ z8MT6n-~hN6KT;k}my;t9C<#wnYv`Rft~R!t!DQ?oJ3mGYZ@owl8sV+NlR=Rb)FEfn zK^Dt)Oi^9~B52mp$Z%!ln_}ch6^@tanMhb+1h~+(>sJRK9|B>xI#LRIhTl6}yxK#o zkS_4Wv+v&ZBD^r zfjgTG4OrXtUE8*VIa_#H_GC5~@gp?o|qlrbT7xBJ>{c8!@i-;`oL(J4i<(toY!zNR3m zPgw)AId6TBth-{`BRg2Z4oT?g7y+ZUTfmOcPe0}1>%f^up0NK%K;g| zrEXmgw8Xa8^1x-@Sd{CbvfRiU6f6%tjJ~L@wsUJ&fVQz z*|gFMNE+8*R4GDosPU-WR{#tTKM*%9OS325Ze-!5lN3=4;VG-|@{7B+)&YU?(8&zS zT$bbEXT!s6LwMNv=6_eNZk9@^bdKKqkGOB|v4Zk&y)A^iz~ZKBju@$SsUEAqLRC!@ z9zgZ~K;&s*_NO}Tj@pj}64!Lq-45inBbOgLacLA&M5C!Wrl-t3D!Az*pj^^}O3GeZtevb+l zy7J{mmGL16L&_(l)0r zs*F1yW{v#pbiHtO%d5ecm}>7QFdZq#E%>1CSb4b*X=sAE7;ZY!Ezd@pek%E_cg3V^ zW@ZMDfS^Tn1d#T5QxaA1lFg>e{cG$)LG0r>TK{IB1REtb47%%Jl;c-Z6Tu7+lC~DQ zYu|6Jjw<&_w@Iu{~_DO^EWo?jUX9S;1Rc87v3LD$4A;X*nyyJNxzMDtuU83}O!Qg7EcND`Ktafp6 z^CzREq(rF>=AlXd)K==_=(L8#At?yc*gr$z2SR8UBIM+{$Asd<^t3iY{U2mpC3ik! zrPsxedXsgYSTWa5ma0!gC#9V?gJS3Lz_BNy5`YHJ6wPS`2Ecb}3$PR2HGJ&a76v7& z;X_^X`o99LPs^nT0M+R>50CAWK#d73$sEkrRo*W}*gJ5QXrlP^zmtNhdy$p^(w-{{ z$jOC>{(v(!c#77;O&CPP(gT5h=zzl(cP?O{8 z)0-NJVJE!Rel8(lx;_r&7wyKOmyZz782~M#bq%24dl_y{{yu#_^N$RvE zwG?uj+x9hxR`yBYXLG2#1(nK+$7vH64GWURBk_B}(aZpRn7DY!_y;@bAMUKUoF0yE zi$LLI;B*6D)p4U9N`*c|G`m@R{SC*;)BV`fPQ+qYlJ|CLwVWP(hmlxL{9ElC+~$S$ z+XjlFH^eTkOt%SG6MLe@$kymJ)ZqAQPI?hLKb~SQgbeMzq(c6!?}kwsB)eo1qt?;| zTtX$={gmK$A$2)2^A7ntgEN0AHSP?+b@qZN%b$WB@I0WiZgFaso}BDfn~s!pieN<~ zUx~p2CZQq_kpzCnGv1|Yqk-67Mo{n->_4tHm=_FxT7xvCROMJ2a?7=L0*L<$F6%(= z4~QH~?;W4O7O9kD2>=gFZ11;|j+WF~0fB**LA?C_1(4HS}j(u29D&BsX0+Z|(KXfZw!7N1LLG}`gh+5AC;z1>6 zeo!~I@R9uGi*Cgu=H7MMwgUYs7ATf}A+{PGdeY(g#U;CqdV&i{C@6h9X|Kb{5gP{#{h6zkL9}yz#S>dQ2*l_Hs1(P9h*5mQTm1Ll3tD1b!qvDXVDk?^tAx>a)h52ra)k`sNRE&2{xk(S5EU)ocCvts#YOt3*bk7=6mba!8v#E5rIQD2TF+AE)ZwO zk5_GG4Xi=U^g?8pd={u!ZMC%s0%`MS(638Y-=wl!LuEVj?*9GdGVv*Yy9$)gC%SdPVJ;k;3fQT zv54es0fNnwF1-S8;JXQ8CjW`w|N~)CT73qIB#d@Eit## z{v|V6QE(Z2w`&j+ct^FcG9VEd#m@rcyasL#M&f>#*P^EC5`A|@Xc5_)SLy{xOrJb) zl|V z>M6Z9pQtWVP;#nI4Jb6P7#l5oU2bkxAZF-0t4&rVy~#= z3P8T6aRIgIb&&;XM#G{O-x_+Ncqm{(9zPx^9<^3BF);xnW?=gHSbmji=gL}Jl}>PD z@PHMkAa{WX_V+Pq*V@l}#d30Tt`-7NRe_<=!9ogB+lzHo45+A?+_W!Aqy*R4nC!sS(uN-2B1c$^|T=4G19SQF2nr*Hrlt+Da!LMYq?*nJAI6 z?LJ8k{+Mz6!8x?3=TYIWyMiQm2Q}Pp=u(t`7tF`95zJ~)yiR2kqKa6kWHY*5l0!+DYz*m9}>m!sp zktA4oGp*KAt#nL7T1nRZh5EvSN^3=o^~0apUE zk7y{4NJlxX^<&z_^i+5U-nY8rJxd-T;<2{`FIinW+#$fxJPViA-NS9(c|GlVpiDfT z-*zv5g+e{6<`_n{62DY_Y`-UE|@va$p4hh)fS9eg7@ z`2iAZttpHKtyCtTY(d!mG(fOg1wk>hzA!#u+Rt@V?G#o4xW9g45yCw*Hv?AX1nI7J)hroENg{ul zXx-r@ki?b>`_+ak>?}Z&J-*EA$d8AM+ZxNK&d|LZ4k+{`H!B!I5Uk0w%g%**o%hHy zUMHg*54GvqqZD1irgxAdAq<;F2_17wBc;DUhORUk%mW1vDJ$C(I}2t#NJ>Bvfm3QH za{Q>_`=BlqCyaJ4<6|blaf5h-11`%bcE(A3z25X*h);+>8E}|Y-*>B>fOR9Eqjn7I zor03`S*C!gfIa@d&8%97*z0`_oJTnL;^B|(Pp(e?+J|@@2lfJ3YcM+=jD1c{o(1zg zs?P_~(Y7TVJTCn-6v_1zZWY2wSi&41c4uZQF`nsXj!e#z_( zQ=Bb&=}fk}Ct{2N=aSZwCr_lL0yC}Hgf>PgTWP~RK{5{y*Wc9vkoKikmp60QYti5I zThEz>GaP=!x8;&UK=_x`q9XbA%2(bdU~80opnabyt~8~%Kk?dE)q+Wb7|F$l@URi` z($ZfEzMQiiQ9nIEZXA70-d-NG015!&07RpL1n1a}eyFIyus8l){r!`>Q@!Aq$x*Ma zLP;`Hn=HmdmQd_YHePSXlM8rx7Q1(GO$pgwPe3_X*Uj=?u>2gAL<|ZQ4H>Bv8FnQ$ zL7Q2^sJ9r(5CPcf76AcO5-ZDaOA>MSHBiyO{N!hatDEpPv1B&F5R-S<79U497TSG^ z4g1^c@+dTm10USI`w}1nD0@4!@jxbk-Hg@TI^gTS_BL+V+wN44pF)2KU~mchHYlH9 z&DvzeD#PkN)W-fgnm6ecE7`MV8x$0T!bc^bCIeX&(Q<$>VmsvvtR|KO(KyJRZodk` zUc*Y_ffaTW;p6YGUTU7?*}AU?ElQ=p?gLGwBqEEY^hKiPqyib|vLfI~Iuf?5X4!{MR*9oC&b+&841B1l|)q^rEproV(x*q_E<Ar_*o4t0MJMoNCeUK?koZH zg~A^0T36;68n;A0(UgK`%P4*PJm6wzuP`?^_i^+_P=jT&xv7bfy)#zeFZC^_RRd_a zr^4of4?CRjdig?htZx)r^~>p784!;FoOC*jIFo^l&Jf>?(85v^54<8PkMpM3(v85 z0{ShoPxB$upnOP!_GxKp5Iig-x|nRE@q*qIV|~y^20qzO3(#MwW*a+R!qy(-PBrKvdy z`zba~?0mogf|~1Z?}6P37mn`F&Bqv3On0TA>H{|bjrC;|_XT*YJ+p7phH|kqsW|k} zWt%B4gw>PI1f@peS=W?@=lH##NdS!TyFWe1Sa*Mc=9dF&1&qL0&M|Sol0u{w;A@<7y-v~)sO#%?`l!23>qeBcWp+0Ven3z?}p7{g(E5%wjNukLK<28^{m z{r$m3YVh*qPhYk%y|Rz6dyb#%6hkhGVtDz)h_CbKUmV7A6G$}{(8}Rbr?5+bCB$%Y z4ki-v%E|EfiB5Oq2a|=Bq_eD%%^vq)XhTWD1no`vZBEO1)VK|J6dCj`E~Lbc6`RHe zMj$g40)vAoQrm>{RB3QAfVXMh3+`qcdHoFtL+ClBq3i#w!LSG6CB)_V6TA@n0Kw&C zW!Z7G#RwfQR*ymNAEiW$(Q9;Yc29GZJmj{#|iZWkivSvI7{&qLz@18&3E(#8ff}*W7`D(6c7fOs6rg1 zeJ2o(h@*t`Ai)72X|?P%Oj}vG^|(Y?Ud7_u6~Qz=win&ZILa7kBXoqAI=Z^_Q1C&` z3n>jsfSli*n?UOPR!BUsh*_a^5!Hez#e)IZe!B^L@UUw_%QHLl^cL1%!n!7!)N z8d5220(qpFTuujDK%9b)CnP#LIwS-}6B;U^895rdNFhyu)j-91@D&je5q@kYa~81N zAbNr#3sQ+V_|0JffM#&)>;fZ1Up5~f0|gp{7Wkndn}Yev6!3_ct7R8J5$AO`GG>J> z=zj+3BeynQgP{a=AZWFKu47a~DtHC}D?mL8hBXWL1_GZGDn7V@0@%OW2egvY(+vOs zDk>@hH8BdQ67COWxrL4c4>_>Q(v?iOf^hq8H(n20j&ZFJiOELk^Z9LNMp{}^N5^=X zl_B8P7cbi1qQ|q2V*m95T!PgJzTR92FPL@M%>H~2h7fpYK%8x@tw#OX(HX@Q<-Rl# z$zXQ})9Vas(>F0$h3CI|^(y*XekjSIy9q_%RlA%*=O;AjB*MDRy`@Mro&Be5VY!G} zE^qnoK)Rf14gugh1o9j_1sFR)R_#LRT;0&$zz#tO{iB~~l{v{G%k3RJM+zrV8F(H= zNT6wOS=f}_Kok(1_0tzkf}{V>>%YP|0cV}*XV3G-Vvo` z>_4sNsOSEFJm8_5qVF8qYYz0vGVoX>mnG1-KmE zZ=jJvSWfO9emjL`7gaSi(qUUPdVL@bj_Vzbjg4U?8cm(6NQ8|E96gz*(mAY3Nq{2xPbEye!P7OuClMem~UvDtE=HX@I5sDU|!TB z#MYe8Tr#T>g$ZX6=q`|afV=eIIjB7V_0x^ z5;;}nR8Pl4Lck@(`o31U|EHsi<`b37gx@!+M+2+#jbpXTQeE03(c5=^uhwT6Uko{ji2dDm(hyER9*}IJ{s>34}jcTTa zra~w9Kl0z0`bJf z!8(ug`1#u_@o$V68l2U~`TC4woyPkK`|0S^`rjNL=j?8eEcI6ym#F$zs?j(7KKJUn zpZ4!XbXn-p?*pvd$^V>c^)(RSF6#AD`1i3wZ(dXU-nRMKKmOkQ?%e+G%l!A){C^~F zre8UnyWInYCb06Apn^czjbizL^)lAen+I|idTifg5MS zqWcgCl^v*_Pf`7GnVCNInoypT0$u#!2Du;SVk#Jm!I3E@ehIZ=_}#T#m-j#-0ZOSB zT$*?HpPp5@T8+@&)h$f~&PO<*;}pzmk4XJfc(k5A{RSoyI7z4iih=JQ@ar#d3s9Wb zY391Ry5@KAI&>vIfA{X4en;UN#Z6D>AF>1xoU5?xdXM0OkaNUF&+mpJ!*FxN18K z=LP#+-%`!o0XWy{1iB7TmI5%5WoKorzyUnK?+W?evVx920%$s8)5%9Mb#P45hk8vo zcWVDDLDd(wr)SZiEyx`xtnGkxTVQc%Nw+Pc5Sqmbgn*K4aKD1X+4BmBI<|2~i(3}a zcC+E*dkt)y1yWN$>qG;^26UxO{{&cbwvs~ChJeRq?vqhhKkdzNwgR;bp1B#3bDPiE z@s?X+7SsfBad)SE4h!|!OwtEBgIDAN(j)1Xcq}EIi;%Uo8Neva+^K~gV33uUvoBqv zfKmvwsWjaE6@({U;asCj*J{E?0A$~3qpRK93DPE?SW-)RBUH=O&l%Gh|j z8%QCjU2VBZ{Ttyn4>tT=9HEi1`k*%lnrp(jhoWu9N*jrAJnP^D5!^w^+y0Hf(Kx~R z1h*|(8DV1Dx`Ez-BMVNWEZW2QTuwkmC7&7rJrL+YsY46ka-TkIxJheLx!nh?_=#gD z(3@vuVBl4+3DP+ki-D}i?Ac~E&rN}IeiK?e1*pL*xR-N!kh4?Fd)t0Kj_;t;{{{C( zov;&}yaEloCN2%tM>F(IrpF!dn7{;@c~|(pF4IdDD|?wIm_ha|~3N@uOL` zECd9HOtM%hh=|UR5_rK)1*X$^IB26=<^{+7t_{!zUP2Li7%P|$RXL4PLF&F83<62n z!P%{SmVp)e1jZH`3J1#Ivut6wXJ%IRxpQr~o#DVlaC&k{yTDO!!wVt86mX^@@xvD& zhd@GDkqCuT7J$Dl9uXKaTIfoGl{cUo`u(Ec4f1E);MmZOwvvY&21f%%?rPtLsYa@p z)dS5x1_IG1XvPgOCPjuUgDK3!nf<3b&NZ&(FS2E*w1H;%;^UPkws2|k5O2D&)NO~Y z6~i&t>km($BhE0T1%d};^1d=@B_(?}&oJeYDiDP9!1oDnKYFUZUlGk! zFal;{rNCu6Q0QI=STGWuFLyz*xEBJgT2)n5yrnbXk{COfVd+=tK6w@ZRHG`i8q(53 zS9#}2u54DvM@~qDU@IR|=Rkb|KNVH@9e3eJozS5M9KtnUN#ItS@E{LZ7Y~0s^B+DNxU05Uf!l4j>}T#lC@-KY5gQHqB4Bm6n# zz?}8!2vHj5ZT2q-Zm?{HD>@xZEhBx^?PfxRXTaF7I`1PyVkMh+v$U>U5jqWog#7g8 zVmv{r!fq>mWw|zXY!Q1nqW0n}&HNw|hAV!|(Pf7<#l`s@_5$({VB1%-H(+nUP4gjS zj89;qjBSyH90&*3JVZH$X6!(`O!K+DuLAA1qdNJpR{?>_%BKz{Bj`6v!@PEOvrUCI za`f5);2;DSSX1R~iv6(<(_FccE6@oIT)ec{)Z{#DYGCkQ9xBYRG6U{95Q_}dF*xhz zq-V1eoDDo`EE|n{C%M}#AnX(mE<-oE>9r>pftxiMDe=oDLw(L?i#%P|WBz-AVQi*q ziF?o%UDnnBJwTqa2Rkc~WAEKS5fP%!G7ZsV1&e+kJ?fC0hK2^~29$LH9E>NQLV?X+ zg0@}rd{iry!k5qc`(S|@7%i1UT_5d`r0IOLss&9h5J`RYu)mKQvwSGHT?!+NY4ICp#7W9 zogwF%6VXSHQ{KH%if~e!wkBA-P#p~@8muf?6u>k zC%dQ|X+2~FXKP9?0OM|-0mPk`EH5N2R%JEIPCf_M|!jz;lg7F0r9YX3sQsm$|(O8$P8c$ zK^@VFl861j&Cbp`@0O3FI);Myf`uti=c>)lfxEOtKc^yL40W;<^miY#qCBcY9qxLx zRCC`HG9M0S+>wK$9_M>A49~#C_P#qTN_Zqi70lZjN-i#N+h9RKczeG^ABNL=B3AC# zoI|Yem7Je%rNCKcbB4i!lbFCEl6$*%p;uIYuVH^gf8R6bC3}ryI)G=# zt8ogJ30TvFg;E@5!*wAGYvw9Iihv`|#yeMkueS@R=)ne|YSu&Go|L*eoalNCGG(?x z?&L1q7Hl#fhfh~+s<|L%b#N|aPGjFUWf69mQkId~ig_dZ(Q``{iR_4E%h|VsvxZj^ zANu#C>>4$5&!Jzu4PqkkR8 z$-3njbzDM@NnR?1C9R^v)2B~iQ@8F%zXS(~992}foHTcX5H2GVG`d~$7S5o`*``-_ zR(yjA3ctP+gB4hIN&R0>p!F4I7~bGucuqO5GPz;veD;C^xd5#=w{y(Fi8H5r_4LlU z(Agv00;Y`U*I%!IBIwx@6y*8-{rfHaprf%LRpq_L0MXm{bTMJaw;>Rxy6FiXR8(hR z;JYkf{{iBIq1YBQxGFe~Q6h{XEW}i1bz3<+~{=U8Uzx#Oo@gDD5 zi|6?b_kG>hb)M&SUX1NilCwtGYI8}R0;Pou5s{IRSuO5eI;TZNMP(B{y?@`aQ@!LF z>Xr|scZUv@z^(7ihkPQ&D6cM9%7f#*U9jgY5^_5W=sb#9X|_k#3U#e|bHDg2f(RV% zBy zpxg_+V|cAyycq*7h}qZ6%WLeOVKL(3gi{{{Ww`cJ%d1ggFfUPtk?LvV=vHYKYRgZz zPK}PDCBS>@PPd}LyxBpt0i`Cu`D_ZsfY3?#dcl$Ai zS&*GwAEN5+KvVhtD=ZD<7FLu9MDf2e&V|Pt(Qx;dZO!}POwzq$7m!p;HnB~6_2Ka} z)YosJqqDf0KnmjV7SP$)Svvlcq*<&viIvU`#aocWOs`SeG_f-C>qb5Z@;YYzFv&}a zKWx|FpvZi$g6;REynB-u-kbXL^tAh;BXai}Eze;AE5TXHFAgy+a-8rf9N_RY@BFxz z)CUhY)INlnFsyE}r>9}oR$hK>58DgmcDZ{y(MDlpnl63~LV)=6)98d29DKcs+?fDv z>B?Evk>OK_pYpaTP-TcH8;pMW$6H=tud-U6o%N~i3wSx(iy^ z3SQk}qvL$z(T~_a$>Zgng%PK*!LH3GS<{hEc9Iw4ex2uQx1bC#qNR}=oqGMAGM$&E z^h&qtiopHKMLg`Jsl-7mVt@PnF@iS?qYL4Ph$dQxY(M=~v)i*qV8&%BVt+q_ zh#ikwtuud2Ax}+!77v3sacA$Q+ zHQPw{A|!fn!qGP=4`nI=lm2r?fRF>cgd|-LTt30+#R!?g;qk!%NR;c)JlH;Ghngt8 zF6rgVm*#~@H$T5Qe#7aiq2UZFl#e4OP?plKS0P`yVj@`Qw*A5BFFjbNC=}J17&_5l zBP+j-s83o`MPS0P#}~4^D65Z!q*oJ`MCoKNLcQ@iCf=;t0ng!>NT5mCUZXbenij}7 zK8@r6jX}swZFfK*MpM8w>j1m1rFVY9f~4jUT6q~;<-xsIJ^$~vJXo`J04}l^c^NWO zA7#-9>Cr*WncBz9MZ_1u!`tui<93MkJij0=a+}i@qKU47`jK1!x30$k`iLq%972q2 z>&)F#N$pao4QvL_IprW5JMYpBHnXCxK_$ha9D}y-qed4-+&^r_QKx`~fX3RmxVSw# zVZ5m-FK??^fSqsy3ZZ@(oJhzLp+UE7>}oit8FW}%5=BD)7YOH?z8TRONU>0pj+xO> z__BB>u2z_Mv+(Rojyut1Z~3voRWut_uvHGDD>k*zaP>>IbAX- zVujPAFSbHyJGj4CBCJEz=G6~Xq%gMsLqs_QTAZC$LcvljaO_USahFeyE8*!*gljKb z^dng#R@erPA;k|GtlLPWH@)KCbJ~It)c6dIOA5vwO~9vk(Ad z1Jx1qhm!)q*YDK!TZMRYLz&&dQu6?INYCSB({Xn8ZWKYcBCoihZUJzZJU#6tdr!+z!bn5?6haTBB*$jVbqm4KPcn$4*|pe7Wxu zY(<5UkHdxB{HA+0PR<147EoD@yi`v6*h!>S{>f`i#G1j=W zwq73MuXK6#Wq1llivkj62+8Ig7rGslg@UibT>}6^8&0p*8o96{NT9l_Ll&pLdK`iQ z^?W%s8be9NgR&^%__?P$tUEpNM1gjxsvbo~GPbG|VH2yAO+GLKrwinRa3s0{6KsTd zgyx;70RUaXq-$X163_U|+w_m4YIRLbIhb>2DS#OHMna~yNJVi1r6s%p!On2 zGQJL?V^VoVvH@y7pKCJ?5!eJ;_>eHC!TRvnvGkObF_fi?h3vw&U>XbWOueJtc+H44 z*~o#Oh7hSMO3;djJMS^R6fC4_n%#O#%lp!ef_wJGR8233GJa#6U^=E%_lBxzd%^dB zUDtpD5j8)e8ZlRE3I}clcbM%^jJ~ATesx}2x)en9?cs>xUqVfPD4;wr zy3Xn;^?lwSh$5=zMlu7SGjLbfGCQj|U3LzrM#Q|XK<%#Ouipi{0L1~OV|X?nMjN6K zU?ZT|QEd?k34?y>Hv$ALZ!ly^b@WPkEDJoG&hMv#-PI(B9KYAU!P11-f=fcdca z>#&uOhzNAs3rNAL&?$gE21fdB@JF+tumwJveP>-(nH0Rf0koA68a#X*Bzpu2DDFxK z&|^0~4Q2r^r~-rykUiebMf}S{!NH#Eb*~=(4Cbq20Dhq)Y(xkS;Pu&!;I+-I7X7Wd=pgIOzHNTXw>5tcr)pR$*CTb5jwFMH@ja0LT;( z_zpld)wQmnMpiyrzDBgpfheAV6l9%IRm z5&^t$asz+($vc5&wbFzV>n}r>2y^;beO&==G49{OJ0G3g;4(KTD#$`J`*@k}(Xpl7 zS|*b9!C5yFeGK~;CloI zwXSaqqnc9yl+T@eyad)F+ctlKX$((`iVA*X+u@Pk#saXpy}sTDO#dZ%kH|<;iI@3U zFjPD_(hoMHyJp?^cK_dhNTUufpF9VS5B2WS)nUcb(bA^oyoik*;o({?Bz3~F zvRaPhtd6%5$`i>ukcS$#v;7*XE&&1g(Z5!c0{qe^l-7V~lKGedzO1^w6v()>FDYjqJW^Ap))GAT@Nf;kO){D zw|}uX737=i0+(*CI3npxJNi%VaEF>Y`)6w$M#W%3IN*%`x< z|1|`H^GGRHe$F*Qc+$Mf8dL5){G3;>UX?PA20$p)1&Hl`en<|-i2r6URVv<`R0Mob znu8t!gkJiNNAv{USMkEN)+|x3o!gnQgnm8Y9s*4(!=0v05%{Jj{Kcd#@QiRpamaqJat?S|VwLVt4B{I2-eKiH zUKj(SIaM0*`#puDY+nlarmaV)Gt9_A@&v? zt)?a>4&cWuab}sy7q^ux1iL_vM?k^~|HDkKtfViHXeD9_sSiNVcN~(r)`5hj2e&J^ zitp}76PQfn1d1|E*a06s(}e3m^_?7|N9Oey$b9e z!IsVBQ=E9^&>WYvR+KS7yV+G6p0x*IP#`55zGGVBmx6CYWlwiH7h@STz9jh6xI%a=*zLu%Xl|z z_*}5bqZr+)z5{1<&O@(=u0>7sP^Y)qTm!O&hk?C|AwqbpQ|!XSE=s1| zdg;T2+$WHB1I5&2dp{k=3TrK*ZlC#(j!AC!kb)e^hmMQPi^bXNWtUzEk&h|7DB*x+ zY4>^QrG~?Q(HJ-%KrEqMQG3jrGxe|FjXb_&q4spA06=|`Okr1mib!ql0BUTI?0^vz z?cnwgyb_0Ar?ixRFykxf`-bflOZp2S5(75gs)=_mVko z;LDq}+kx3;R?ZN)!-SwbnBDPK(MpinuZroHzjb|?822y)k>Z@t&yk$?Oz$jkPxh^Z zSO<7IAqedQ8AR&&Wzb|vpR+=1XDR*$+gOs5NZLk6MwEMJ+ZX5CON%g3AhLE6I-!f< zSE`pQ;FW&PI#&pAT}H1T=qXbSIuQ++teFb|)pl&YgMhBZ!;=tXR0NiahZO-{_3; zmz>hol16Pg{6%@o4@eRZs43G_KU|r>`^6+t&a{G*ATrkr!6;>R`Rffz#1L_H8#fbK z@92*R0{QZZf$0eM3JD2$C$scfPAR&0*iFU4bTQ#cmZXze`XCWFLE^c$O8x9v+87@{ zzsRQL7SEFVxI*xct}0$UcXSAgbuiMQRQyG}I_u9vXVZB)FBk2H{A|i`?dk zD%gFYiLqP~6R()iz~>_X98}H(YYLLVvM~?bD`A*S?4el%+pch{mPl-nHb2<1*rmC^ zTD1ICC&*LVhHMX_1NC!h#_bD`99UTn5HS?uB73F-%qPQzdnfZIb34C4?cqDKX6X?v zUE^ktVq)tcH4OK^+<~-@K(_m@FneZzRYM-w`i+k$4qbVKvHM638O{f^8FJQ0zU6oE zXtSCW8^k)0@jkgo@_LAeK{L+5Omc1>#&cwz8q_spN^9k2dAOrv5?TazBl^H?@Lt&( z^{WD#Ly!F2p@$CbOP=U!zz$R+m1KAx6x@Uvk9lwt+dRGfSz6iz5%iEdS=uzKAk&oA zWnQ|QU3Zea<)FVMz1J{i!mCzzJ_JbLE3xLra3wTH2;T6dJ1e;7BIH!KC@Jke`%p9> zDr3Kj6zDB&1t&c$SdDk!c;9}_L?f3uJm}Ke&tEzH?MUG8BX^(sMp-ywZ5WaXyXk{2h%p= zy8)N=+BiIBH7iUL`fV-^9y!$3Xx^iUgdNIcxu9$;W0N*A7jF96%;3Kd{kYpS=bLKkCLu0QK`5J#nzJcfK4l3S5@7>DGx6;GH&j;O-e|J zX0N(T1o!^^*J1Gj2U(=ihmGf90YOY%Fg>ECrbbNN!4*ld^jmmLejHj3Uid_+Qj0&* zd@jTfLePukYo+M>{&9%7);hmwYtsl-^iS84k}CN*E*X=~-3G^ciPez7)YP!{zkkfx z(5kz;oy9Isj8Xw^8T;`g`fQw^^4>+7-M~Fw+YQe_2hl@*b@W9-nA&v*kVC;K=Nm6RsJY84O>h8Xe@=Rmdr$abT zoZYm2`~Jx#9RT@|hTnt!!r}pwS(>|)x#8cPNIjwd`)xcWq>o)~lz;o|g4L>_04M2s z!*T4&Eo+@WG5)rqfMeqh!*#qinU9t8Lp#$p4J(L^^xWZq`5oOSY5?1K@mVn3#+jI3dp2uyG?MAHFoCrTmhjaDX6PD8jE9F0ze zi^Kc(icgk_Jp5LP)VHcaNOOSr>2+#FBqe1ZhkcZlRfc?2T&IAaFP6(#erMbAIgH=` zz^t$T1-3STEBET307(gBzZArI9Qg1sH%PsZdg0RNBrI~GkFGdqXlp@jGPHbJ;IFTF z#`9o2s|Ywx?sjEPUzl>{g5t;7wDrJ+F=QKvTY`dujF~1d+l0+7PFP?cXTLdtr2mv< zUY=vL9O#jGmpzK-c?F&yp791d=;^0Xo58sSe}7JI9*E=utowkNsl=$%S^_Fm4=7qn zg>Vf{)}6h?>5LeFJ%OM5bqLTP@A2cTNBM+uT>2>uQJq?L8RlbjAl!&jgEw?vVZ;C?p=O0-fV2=mcHG7_2d-RrVM;qfxk|9WJ-oq?IM+aY zLV!iwDmZ5ahP?xFW`m!m0lp&s8^UtQH=WXMexgWc>Z0(GBcy*P?8isr{8Ymll+h|a zz`Ee1qLzBKs}&I!>I~fafeR_yP}bmA%ME0GdV%4hF5I|&{dKtYBNZFB$@NWJV%Kry zPKR}ROFdh|%^ zPS!gdHW)xf3{^$rp$BokcdvFCT*5at`L7T9tCy*2!-fq!@OFvUYV$IN zfKPe3pI(3lIP(_PwBAkROueG7uaAo@sjlA1rF9~}c&~36a&kQEQA9Vi?bx8;o1dSD zSB(3`Ol&c9hCthZHNt6HfUQoz+_p5zcHr_|ALIg{#LWv*RmOVzu^vy3;qmcQ(M#I< z&%fLyD5(DAl%%9Ef-3aE3kwUrYWes8A}2$odzRC8tQ8oIs@^Ti?LJ^Xsn5*Eciv|^ z-_3$m=1}Dvl==OSKa3R9#jt2GH}vs0oD?7p;+{Tz8nJe~x2_wfd+oPEoYUY$3}QGb zpX77$UX?hSB{W^%LEQMxj^&~?#p@4**O<7{IDO0 z?T;)@Q7+{rA6@}=O6@kOIo6W@cz4JfjF|R8$ zG!)O*FW&djBTP3wWpHrdVaXS$3%9bOyXmE9D>~`U_`ol-WtBPQ)i(qR1^wkKgOLFY z1`Y^guzp2-s21)jALZumZUj^9vF%Y{9>L3kb>9W5^@d6Z`kWCJf95-5Eb!dZnhZGa@5{ z4~C@pZ@4S~-=>%%=Pilm5eVoTe-~LH`zTnWtD^&39C6r3>d+TTE?MxU^SfOA3pFCV zC7oCt92}-6Y;0zrCzR0yOd~T(1=yc-zJ2G8L@7MDt}9Lg z#|mTN;(GsYE8?PW5Bb~9&J+++#E>3REWb<5#l_u_6Qiufd5V8z#yv=s5~F&X+|>RX z?Rl4c%=+p}TYiPCXwD!PY7BU<#R@?GnU<%wGqOA&a6$h59P?xOeK-m4a7fF`qwDPP zSvQ>V2QV;f3)EL`st0}@HHr-aC^Vu~Vu@uKD=Vr6O$=U%ReFApejj>|z5wUJBS2SQ z;u8-U9{?)e!Y{a>xJLGIKCuT2-Wwz9)}9m-dvT7Ezc^7_m>561zScQx*{2km=V}5s zpcMc`OyF_bqr$=q2y9rc5qo@Pbg`Uah1iVPgam2T>eaI|GpfTk?v?;tee?D$74dSz z27wN(jA5(x#atWnH+TOE zZ@>M9Mjd6&@_tSrb^1CwFrzkvYz`UY(VT#jI)IH(H_%P}+CN$=1!&GnARULew+1>p z6bjs{@nlfY#*andnWVIH0mwzn#%a=?ZCULf=IQAPb^T%6YRVJ$cdZhq{W3Jx;asDzYaA*L*Rx%0O@flGvN~fGo zJ3X=IHAwpgTT*4;9T%d7buUUuuu+TXQ*X!PTHZwbXp6S9n?vmd-zu3?oW5l^6H-w| zA%jJpMzvwX#Q1mws?6n|XaSvmxh=G`=3v4Rg-wh)3{a5e(`^cIuNyo{LBv{uvKiMm=o1 zO)gLc6}}f48CIwWQFP?mO(%_Ag1`Z=a}JQRgoFgurahD|r}h54>N|eR#S1$XwRX*f zU<~oQ%7elmMLRSm>M<{-&h-Iq$H4$S=gj~kl!z0F&vTC?I z@b@?t-Hu%@WL;aGvusfsP~(?jH*FH|*p>0*^BMrjm+Cow?Ohw4tA9a@A@1{|G($BG zKJMo*v8uv<77VxV=nVioK&7xQB2?qbw?FdnNr4kIPaoy4wN@bm1P&0!kqNFEPb>oX zI`R;juJu;6f6JoKYeCu(V2n1tVSq?r(z+q9M}L*NqT&zq*rZ*p5fd0ePkcpX?1G&SO2C?5LK`kYuBzt;#$7_B`R$0QPRH!PXzSZah&#% z(Zv;`vlc~T_*V?w(w=$u>)8Y#rGNBjlM**@xsS%r`@n_X8Cx(scdijkmMQ3eylsn{ zH?3+vq2iKcAYfsLaBju0VX6(FrrJ1RzW0=Oti_0Rk2T(A^_A*vC!mOi=~sUlXiG*Y z2Z=apw7l7DJvVhLz*4h1NH9H6wg_YIK#A^N3s1Vi_I%@d3(7S`uf+4ay{oXW@V*zi z>mX_P_?vW7ovq9KY~IjlDb%5FauMobQV`=+`e?kfWs{Ys^&aN%XF z98aH)MS-MOO-<+FQt?&?CEVuCn^CNq7)jFs2cTmG5SW&n%%eAmr_Mq3{P}bDfLQ<( zuGGOlWsj%`ovsJ{1=b81h}#=r7-)_>cJ%1cW5>=RM`}YtAuf&F!aZOLX*kY3sZpd6 z3_Q8$(G2UvR(&T&IWeAbKbUE=+h>3-GNd{h4%51CxiDTrVCjdCZwd{7r?j-5B_<|D zMMdGfk5Qp}G1%K{@VcSGFEDVw4Ei1(1aR0lAqCjD(F11_BTs8X!&x7aPVoHegnN`s za&#@V zMMcFU#xx>Aw64)5FR9->kl5LQp~oyTohWRPM$2weB`Po0_p^Yo0*;QPRB zs>Pn$yHrBg2LD};6Eh-o__5p?-BwP~WjP!ENb3)*EHsZ7)KRmxq#5laC1ZIAcqEeY z7_?jMVtb5=uXsH<>jZp9QC^+gPnQg?A zPW$MohNKITHaR(2mgKEK%c=tTlPiYt=~8lXKHor^^5*qGf3u4UCz{dRuPhO_SQm({ z0A?!U#9!pL^;~+|-Cb+eI$uHWMi>_xn;y&xuzKw*x+pbzDZQc49FO83n&p(%PPOV_`4CSebJk6+tmZawdcL3sV+!D))Z891dZES6y{_Cst9^tDaWVb4r;7q^=lqDr6GxF%kSy)UU ztdY)`?(TCle#$ZH*R4}0EvYs(;Bza~^8wzY;DB)CCeV-fev~!B~SE*u;>g;@Sg`T!@~y?2j+4aEkM zlBDb3n(4M}JCB^Uh5G03IdO^wZ+tW(M#1-V`Yf0fG|G$`EI4n3-3{Jv9+%|rzm5JQHE^Z%8#g|V6Zm=g&t??Ma(@G8bP-aecQ;Oh zzlBA1q{_%s%8hH8+iknV3XDP0FAKteW>|F~>Oy0s+e~=`&$2$Rx;{V&H{rz#)V!NvMtft(ElM-L0v;!b%YF5M48Dx)GCbii+femKjQ{Hys8%P&i?H7dm z9l&W36oCcm`dJI@vn{a{+16f}u;nTFwW_{ml2|YNAoA)d9E; z$Ot(ww+SU>TEY1oEHI9aRCvqa+AikVHBYGx4i17Iz;K-$Qlbg)^Q#%#()j>ZlK~*L zFAxCty0?!(Kp~e!p}-YMYLtB7YB0*L)xi{6*uEdpqu{nHd{t8AO>6td(Kv`gu5-!32>UM7NLbhEPftzV zr#ATK`F4B=ZEGkKBjdF>Gs;I*sIm&s*yK6@D1xdr)oSZ!q&y@gKyQMnsp*02qzD~7 zJy&Y&s!-HV)U2pEx$~m$+<6N*9+fvL?h8?M^!dLI$ZwwcJfU^Hq!Z!BC%%5)^AJcN z&jqcZn@g>SdAXZd!=mWRI{W%KWzZ^cO}Q2I%C@|U@^VsyO7EjwmewjztGFycnP3o; zEkY3>J32aWziQc!Vzx6eRr*J$aDs=S@)lW~s|%;aFv3GJv3lJU%;Coa&rF`f0Dh2| zZsTuy`}R2i612erNZGJ%T|W@gv6{a}BqSwOQ@@cZm*UcwFNYqc0XwcWHG(AnLi~rR ztl;3_uuk0QJB44{Sjd9=gRn^_aymKwKgj4FCZ>5fBCK4wG9x?tv2}$fieF^ZSjtEb ziTn-b`aX-l+3VlCaBbx?XY%Jp zWO?Y)?;+l}c)_-dk*B7*TEVBVsEA%OJvv&-$7i~nvi+TOOX~tkN=pNd+othqVi*pB z)2G(feVT6?8q9H2!b}`t+A~iOs}g8s*}0e;EGHK)Y+Ar_DttA?#ixAi5H67z5`S*GXhYRY==(=9<&j4V7=lxMmH!?Ohho0f^Vo3-m!M7>+#p?!R7JEiU#x^z- z0)U!nA-|8xVXLfrpSl$Yyw z#3#i_(UMd$o$x+58hz~noEU_A;{iJ$?vCRSnNbA|fWd!f4Pb)w0|nJi0W%KN{k#>W zrOn{laK4coxpxclaU8-=Q!OdqBDV|A2uXJs3omayXtT383k*Qru35Vl-ijIYG$Pm| z+@q);^3WXw&<`~<9wlVW01zQSBLkkww~H9J384&lM+qD&xLi;jpsH0;#uH?$A16@{ z^J;MI;bd+Zj_$}R8&rg=*Kbp-TH!9~?dPY80=mi{sJxW%XUgXkFrZ8fkBD%g2BFMY zZ*FF`g%z`j@G&en(O}rHa`oz`0>e=2zD!R~l;v4>y2h{WcXfQkPlaZO({49YUF&WwfytU8J0Ack(*f8`lJ#lU?TI(-h^4N(JPM)k! zjvCpZ=#Gw#mNEXt9FuC{k%J8!W6T-rb4|M+au~pGhpJEYUQo~_oEOMeen3*I!pFzO z1%1P1q+j@qeflT}29OAtgP4Xi=KPH)%2jSFs+wRGH17kmcHylKRLOdu=B~#Q?8pnr z1}JTJ@c785u!4>W3eI9LHiA4i?^o5(2)=XYB)$@{9F2Hxh@$d?MwIg`_7H$IMDQ&z zg58g|ceuAjp9hYTQa;dzG{@5Fb`B2ifF~CN1Lve9rs4@u4MP z(evKx*RRpsM3)%RUq{^SFhzju(zHTh zAcF=01Eg5B>10;WYcbzYPpb(|%HJu91y=!pKv4I+$KW1`ss~Hcr|qxHoJda%>e!5p zhfvu`wGZG4o;Y!WRrb6LDo3V;#{>J?aGd>%r`)9TU2f&7Rq_P=Oh@tX#3seyF9n5alyT5V%dF<`ErTu0)10sREg0g|)ke9bXBQrghB+gKPm$gk zhdHZ&A&rcipF z6aY4`wX!-Nd(p&X1VPsvbuMrUgf7KRD{&_{L3ok=gE>Nhh_jeEmGb_SO)S`eE5phJ zLDdlp*yLUiA6!XXXzod4`56L~QjUSP6+-FLS!^&S`HPjx!%&t;GzFBb20!tC9AXg> zaRinM7#}*cO}Xd+3xrLDpC1v_dKDHI>jR3$$_UHz8OD@O;^GQO9AL0(n+$3HIDKH+ z=vzm}CUERp1uGz$8C|R9tC8r4mQA*HMkaBp0bKsA(q2#Jr{q(8P&Bb|2+tEYN6zBCa0?5DGbA37$V?BK2M(Rt zhpIyk&UIkt-gsi66aQ4uYQ`M@q4#-@$vIZh>NS}?fvUp@*IB=~6TOZs*{4s$U7U<0tAUWcn8sP5#^dvMsuMVZ0<8~iz3+})3ud!q{s zNFx(u$ygr%$Izh~S92BfiU1LkMpa0%?BE!KvVbjKEjBv32gTCfX(+1!)3)SLFsl=i z+#)_z9vgx_SC*10eS$8VMA1(mTDf%kQE(zrhXfbbyfyDcAZNtJ~Y#i;5&- zRMy`9fjk5>7z{`IaqQF%LlZZJE`-3Kpz=eH0|Mx2X!elC24OHmCV)^q1K_^wyg;}b7Wob_zY?C#iw>{+!tDNmB3d9wc%?YAMptZ$wxbcS0Y}f z=14My2T%x#9seAeoNS8J9crWN*RLb-;7s;`%_8DHn!iwMcN)qHNkGJ5q{w>s@GzJq zI_DibcEG8-0dWHRZfI~YK^YmHvsmcOTel3_a;5?0V6-n8?Chck>ts^4cRjA_A19b7 zQ!%(!=#hp|wMiyoXv9 zstyxN%k)0g5PHb(jz*85!`j6QZ+yRcnp}(3CU-UTI$>`}SYvD|x?K5b0GP1N_c-D> z>`J+eT1&sepMaik6%!j}EpKpu(uSuew;XC%C<|X*DRMVg9ir@=~z zuen;LmZ>5sDOp;he0$de#$ylrm4DuXP;Tsd19@do@>rro9fmlBJOXbP;bj!-9pE04 z4)Cg}7X|>gL2%yH)c|$4f`Y=}%A^~J8CE@ zYWWlUA)uQFOkFh+J>1=Colz6T{;*gZq0En30(%zH=Gq_l14I)LBf9cxS!OYx%Ms$M zpByRw5x&>f)^?dSMq~dZV(I=|IWmhDUBo2AnO3J>c^Mt&teQlhQ(PSNW|;DVbkFuy ziSKn5`wT!~a1gYEY3Ag}3#GUQyrSgSlN~$xZl3Ugkf0Fr&PsYAb;8*{i!+MqEwWXl zSQ!;6&F+f26g>I+Q@|( zNwqED0$EKQ;tMdQ>w0iZNS2eEyB1aVT+q*&@&xTE{V)N7#lwOg@f|f>SAYMtJFcW_ z?bJ5kHS5>ITP#xAExMr(v0iiw?3_*ujDYSvmvC{jGl4?${1E)|^Yb}!K<2Rm)5Nt~e-`gfoP)i5mA$p#PzYiAfR%=I|xc_k)odBfyo*W$kA^Db7UycV=i; z?}zxOJy#wemfk;DOt&!kn2&>_#NQXF)Ot<7(TcmOaq~#dW%C>`JC=!w$z5&9F&Pg( zHYxUFfYsEG%P2z-aiHgQ4@t$cNBja%*9~nGqel9$xfwR6_E-?Y_9zs z!W4kG{q|~zG~7FPqHJtN%qne!Ni&9MqY zmt$eSHx&S$=FFG6b!!+FYrEGgSsY63U6Y-d)M9L;3;Z&u5+TH!uyIxisRnMjO-9O z<4$TL}Yz|oYZ|f$?$!Js*3{O(N6Wcuan!wvv*x&>l?SS>6qKTb;Jr9NkkT{nd zG!?xa9lIJG%8<{~?LV(*!juw<6k2_zpCeZoa)O4OtlDc?L+AzjRzhkVR@N?@OYaT| zBZuVn2q1NRuQ>xO=+cJQslG#98^NyYLUM}lA*F`VPZp_0>t6vzNOJs5EVkn04@F&6 ze8b)Sd#~u9+cin2^?QVJX~>}xsj=f0K<7;cR$5KmUvN7YuR7XZ&_K8IPzOC56dO@> zR6B*|q=(RbWdkY)Xej}?&AR|`RR!>L<6OiEuby&MDL|Vjh;VeEfDg!;N*0f*Gw*r- znv38y;^KEN&h9;hr3)V!iOJ(o6+pNQpk2CH7VOlioex;%nK*LGvhOO#JU~h9?%tYf zYw27bs}c*jUmmRXYSV#Q0Z~&L8An%GMO$VJfUsjAmPU&05KVE~r8QUcI4zo4W$_6L zW@qq~=dRmUUL|kWwK0|(U3E|AP4AVN-h9S0%!?CuZd$D2^^jzNO<>S;zHeXok0j*| z`aKH8OBVcnZkcz9aKG>-!mNDDIT2JpA92?5F^8oPeb^o)$bu2p$ zhZO=J9>KfP>$85um2e!&jtxq%aQ&W1_+#Naj?tF%lpNS5YJl# zC&+X?TwSSi0ZQ)Jx^)twnG3NW&YWtwb$p54v!+J504D8_T2gq$w;!YzJbbAA@zITC z*R{5toOv0ps{XpP9F*s)SFaGAkRj(=4PSv)P4f9Ib8{o)n+Sr)4OOZlwvu*cRJf&$ z2xealuKv8dY8K!SD0Gkng>kX4=-|NBbG&`=p(CsU^1-8yHHA!%cAx96y4&LgnH==X z2k^Lj0s^Lia6Z;Z-!+1=y<56^`x@ON8!Lp}m0GsoEzwpfb8G=Y1E+J(m@bGsMxneG z-2~UI&~S0-2axml(m_+ z5*793Qw7Xxh42B8pQ>TjmTt~-?=9WO(a1RE5dzKLSC>qvxW^5JSAt9uQ_OSzG zF=djq_d@&xmNoDtHxG||Xw`PD!E%HMfXGU4{#ZLcgw&IHV5>~OuvJ0x;5)B{Z=z@Y zyuC*|M17|OH@$oLUBvBW8it22Ok25jc6XQO{^@_>dCiaRb=)R5Z*mFU#jtj_x9@+G z#ezbFi#P-hrkwvGLv_v)Fm+&sDglO3j&ETF+xH<)?HC)|xAH^zMEJHI=R!M-)<`Jr7uU-bEv^ySnkrT?N{ZgLBijbHp9BAcl3U9 zSc4q9-t+?pUWkZeUd3&GwbkGB9W2y!DSV%GPk$06E6ivZKT*Jg#$jK z{fM#cGVh&k-->(#!D3Om_*g@trX%%M3tXCT|B? ziOrlOp9ct8CrK+f0K3UW`3iRx$9PM7io9z{b~UDbrN5Q)x|B`xI0|!o_cq)SD)ius z4R|d!m>6x6a4~IFt_EpY!f!mDPVn}wLrXUv=aqK`HUI^vSwY@>yRNh;`~b?BL!*8+ zBs`)1^tEeE)D-Fc_NVB13}OPNefdj&|15fbh`&SUyG%$=h-(?727n(AFqtA_N6rCK z@lz5b4rlV?Btx3aw)X0Os!g`( zIZ8@MNFPc%>NUoBAI1FBbQKvHSB@CX{5)&f_5#ri^9Yu;wy^;Soep3Uq&<#QT!?~{)F$`gi3v1F|HHALlQRqd5dyMcv*rS5 zt)MbCz7t{*10)&xWiW=CGpbn61l%a4@n+z?x=SWOGyg`LGUUUwtbWHUrK9TX;R%BU z56u;lV*x$9xO<0)4+qX`-^?emiT8=5#Xw69T91XUHUc5ADtk7udHi4$2a6_2K3K|3F(&c_X8|Fi{Z)S);Cw4w4CE zknF9aw>k>`u1)NR9_{ke%YZ#mpd7N_(StKRisvV>_)O+iZ^Q4bOATt6HE(n$ixiTq zu&93}+PW45sFV*%O%SNS5T!&`1GwzQPNecizKUb8U)l{%%@)uwqTcybL*L5@4Tf-Z z=Qti;5{vu;WJcxq^0VW>a-&y8i;w^h#<)R(8 zm%RhI>qesY_KA+>P%8c+{g0?Gx_u!w{sx8_c$(}!zo#?+64S>?ICV)dPkP&>(Q18ZQ?Ziw{o` z+Wf~%GyV$|$i97og0@6c#Kp|aEFh5erhA1PtNq*+yaj;B;S%Coh0xNEu7a|`?~6Fz zFG1V3R8YPAUhQ=C$Qj3upF2;BG!X!+53h6qXn;QAW*dn`7+gpj7Yx?Nc%zGuG~b4? z2ne)*ww_Z1Xm!L+?K2Ne1XyL^+3!4WiB6gL^(QE&^{#Hj8}?7n-nBq*KB!Bpw+425!%|`Pg2)q%M zaD15s8iS@l-s`Wfx8-EMS-s0lpcQ4Dj3zvnF1!q-K>fb#3i{0Z_rJichP{0DY!?Ry zfv`P=KWQCxmmIA+&dC6;sAXRO!66@Ots3;F?LQmA{eRZ1__5|DUq(-!c>I=-USZ%5e1h6jC>-b}DQZ#KV2bc@abu z=3`}LrNSp`^ZDE9}QXD;*9F&$XtD% z98P5XU)m*}uKp_%!oxnJN6@u~y%{EE7J|WCVGCF3??v ztcgk=U|}!XUpPnOF&Pm_6j&qVGI%O^85vDey5lzUI3Bty0=|C!Tmz008U*ftkeHtx ztI4^D)JMYQumUx}D;F<>E_%(eMeU)gw_&lfiyqZ))|UwEU&|8BaWM2*#7jG-(7CL5Tz6$?Q zVxm{IqPkdfLZI8O&3IE{!nL-*>f)9b8|a&yy-6N173=CGA4M9lK8NGbLB-3)Iaz^P zZTt4^YuSP40djWr@HjN+iRa~f_wJfJT5KkCm4$K~pkIFvr84cDHPGJMZ@FASpdRFl zC6G8K4AzJ&&Uu3YeuT7S9zY_fJtXP-?1*`o%o)mBttjmb+3;8kc_GrkOjO36=gufA zV@@BrB4@E0)a4tP1h5}#(GQ3^7{|%Gckqws8=nF93C#%lByj33VxkeTv%uw-nj<&f z2?FKzp=crCax0|`B-!5WJa$S#!Z&6ROcDmhWa}>?+|e^K5+acMfU*p<6Sq6zbF(=| zLg@w?6hhGB<@p#+ABfvgr=P0w*+Ci&uUT}xG~grza1CiP*EVEiWVXz;#)Dsf^YHdQ zQ+i6&rxaN4P-`~3cj=4xc*ra+mPLV?-A+sE>*+bXKNF`m(p?#cSjcILs1|=NrxRkz z@@y)cXJIFipYQluKeec)f1DlNMYq1(<&annA`*{7$&cFE-TgF->(oL}VIhe+WXD&C z?uoJ#F&s;ON`vroVWUAY_bwDQkM6KnqXDW+xSrxTVHDi~drUgIiBCn4-9lhkB(U*h zR2{L*@2CbQl%AG$u{z9s#gHAi|3n-?K|fQw{XAvi zd}E(iTZc#vu*U`g;q;}ectc2~l2h85CnqPjvLM0SUwH>a5)BI&zlg+Z+S+@hfH14h z6qkqp$Y%1|1|$(=(S!U>YF@+ot5||4|E`Qb3JM}l8@EMJ0MB+!@tc{Nl6IChyU|MO z;InZJfd9^Cnnd7jPuo)T9cR2ujz#HTH!^}e3mskwO3x)-QcD#sqv}I4Gt~6zc@Iu= zXa6ypcT3X!!!O6;jEep{A(1g4bw;~9WfgcC4XoqPXmg+ zHiy{(#PVD1@mOC9ud6Mv%ius%o_=3B#tu$ztJZJZ1oabsAYuc$>MTY^qk_K{;^KOV z`|&$!O9{5Wx%tbL=x}FV6oxh(F%wd5D^MR-4#X*P(82o{AWH2}ud&{{L}4Pu!gg>R zyz@?73zTUJaLtGpap*FX#@5;!av%lBbF=SAGY)fL!yTaFu%Zyp=!E?qmFi$WLX6~0ldB;DHF&o$Aj?R_xoS<~ z7l%iCzAOvNl1JmEPc>!jD&FuLue$4$o<0dl6{zTIT-$@eiDw46j5o0Xl7M<0`YkP+_=7zWDPts79Fwt#E_-sbn?nR3h=neB$ro^%_) z(?7>}pKiL!iVAWf?b5N__4C;}(VrjF`9hz0aS%Gpjt+D!{}E%mxg9ChpWc53$dLyG zt__-%vX39LGgc!6bNb7XVHdbqaD4ki17B-dVMNIPpzTeddR*W3@Als2Ss7!KRA?X- zg$x@T96p{)_WTtj96dAq^WC$r5L?Kj2rmew{L}pSUV=|T0|8vou{jB$S*ZQw_ zt+%zF=eO71^&Rf}y3gS_kK;HQv^E$NA}Qc_)gn*Jf^n3%MDMw~YZ-!Zmc(S0c*7vl zb>%2(f=w6MI3t`nFBgDGw{F_B&&PGQx~5Cj)rf}uBa#GTMeCi-qD7y?UXokp{W?2A z@)J9Yf-88qPM1;L0>#|j2-D*^+d2^ziT3HIPe&g-SXx{hnk2@#5IrU( z)W4ejtuwkpKJg!FQz@#1*{-gR zlP9mh*Y)QQDjkzYYIXNzUzNPC&UiYiMEl8i4o#Ulbx%+NoijDwNsBk8G@E3o{$$HMEIuJlW#6UX&ZU@8v06PhMn4!QU}Wd;%85?np+ z)G5DTGInwNBbO)=1L*;tb7-0*N0f{2sS(#jJA_6K5I{)aq1W4dmELy5XVn^)BK&r5 zoc)*BdMLlWrM!Ydm|4urYgbFWVMETJf7IGG{nRMwV<$X36-0gzoKWQfiBR$0!CR9OG+nE(#uIIhoE$Jo&IMyu6Zd=1)mU{BwP8 z?7(;D!UG)#6RWIm_PSrT)V%4ANvl_jL1YbNlb0`FQbz6>v`|e~w<6U_=+!`9fZ9Bs zoI4BU3sbsL2}Lu0S!naOewAo-1kfo4Pok^X+;VAO+Cf-Jg1`B6IJbB>T?42U#bMyX z*etIq>B7jVF`r?YQwyi(^0jMkd46DvE0j#}0}?_-c;oTo)iATT-0huiw%GB@KbQA( z9?9w8RIh%vwj_;o9mnS4%H(Ei0@4sML?!N_RKa(71kTtBgX9Iw|^{^l9V8zI)8OsH`)q zV`!UdQ9adw*aAqG9<7;T(d1G`1%;W~owC2aA!(>t?67`V05zHFSdVEn^%xL;W~Nc1 zeNKsYgoUeiC+-`J1Yk)8d3h9BpNK1b9vEoPeaPLAJ*(OG-Of-tm~AHVZ;ABeZ#BEW zh|?a3Y@vY9GBpPpjznbfmF_$tk%O>2#+p25amJ~)$Yo}zae)QzYa8N!yeHx6G%)-b6 zAWE#x>IeWMD7o_*tuaa{!0?v}=L1KA_zNwCQ|Rq(1`;H!bh#Mey1SD?hsCGT=OX#Y zbcjN}4Dhjn@2*kvya@X~$mGJkWboh)*DqeUAoS~*m!(V4kSVy3c)r-I3NAp}!NP*u z2aOE;^zTlcUcP%bt=M7Y7vJq+XBc_xaJK#C5+a@4$YEb z>qacHP>Y_e-HFn0Yh>g!gHK<-vISnO6da>@o2x=lWYW>GRR#@_VAncG&wTtLU_F}l zKDxTc16B})J9X%QeA;l%9ZlqrLDe(T&Yt~|QS(_itufNavFG}oJ0}Bn5hKs>BzoVK z-_Fx9rMXg8$7#{9D!L9|ea5Tk>f`Mn)=u18&PvhF+% zHe0~o;dGw_U5uzwaPtUCPnMxlq5nc@OgBB@!aS-kfD+|9TKewSBfPx4u#J<2uEy1K zas;ThQYCCOGlMs2{sgzLZy(&{lg&0YHon4Z-n%2!E7@8Ia!C%Cr~XYVz<+xC=8eT& zzu@3&R0Zo>cDcjNBEEE721#%gRHg$qaTa%t-II2OTtdesh;$c(eu+oL!tn$k5-icR zAyk~ZPAJ!X9oy-R*6a_c=+>d{6zEICcP`Q_-$WO{qaj8M#RUNY0id3{_6N)QM{F&m zuy2?}DOc>BYPvDI#5>a*he7h}i_NAR>%zncJ0Gqg(%}xv+;IY6Y|{Vpp>u1Aeeh3} zm6Y~fO`!E2@8J=DZ)YF*kfwn@;8*%b6LVc-=S)#Wnbty5&h9I##2+~*S8Sdx>KhTt z*QSP~jk7B*0Drua`=g0A9||5ogFu+Loy*cvQ=7^V4d(oQiJ;U~-xqJ|WscboVdGBq zk9P3ihcABPux&eEx%b=gH!aju7Jn|YGnx^3d@L3`N`2nh^{l%%Bbo}bopJ>SR?$~} zjwM-*4d;OiBE!O{8v9gyt=JS6kaEp*zx5e>dMO$xJo@#sy1&4BI)k1LDvj1;wivRx zbBjhs-f!;@n9#BA^!mlmrZu|qOq@@i!wUVL+Rzn1Q(awMn|&mabExcsHoNG=sVOkB zZtsM@=nK@yuCCM;s%mOb8a@l2Bow4g8J8RC3%eEu$Bf$B_tR27JFTAywR#yQKjMO< z`cpIaI@niIfZJKX-lOgau7G5|Bct<7Tn?B!?HaZ!P3Z|?o55Sm@|aOOvjRYaU(O*5 zS*e8pqkt0#4k;vDF(X-dQ6TP|1VSamz@TYoMNnmMKG7f*S_i%UxT$x)?F~9HzkOZ! z7%{6I&X!&87Z%b(U8%m-?iJZ?V5E>`1B;x0@L;kmJpTS51@F`|aAYXc(iuw-49k%4 zek%iPp}ccB^N%b*Ogv4{_B*djqigS|0`j0eYHHmbi!}=}%v=I=)NF0c%IbGTMK;Cf zY#?6@^wn*sSu(lj;M6Io|KBr@1-9vMooEgd7zSrQyP1D7$?|vM$X=PO73fL&_P+$3 z^tR-KwJ%5@*b542ZK)9b!F;={r!FpiA3Y*$k43wrqXi@3>fWU`V^Qz zUIieBIa7c4JVu9#Ru?tj?v-wa10bBi^P9I;w>2a~8W4WhQOR0g?xjGP-*@}`!X%>) zN3ub95K2aS#3ccxDz1kFumx?v_{%UNLA*P?psUawKSsI&@eLYx>*%#)iN0?y)mVm2 z3zojVqs2$wS7xQ=q7yN4eLm%C^(N9Om z=F&*cE`=q{dT4nJr#r|&@(zs;RJIyGbHK%G0Atx;<;UVc@x7<2@x9+ri)dBvg-Qx= zB8!i>KwD{Fd~haLkwQb9doF;6gR+Lk98`n^s=gnSd(S+lA-}%qqOw!8_7;y%%TB-+R0`a@IXqfnCXmAu z8u$eheFi^*yn3IGi>G8=KtMG?7C43IaQ)h~_SJ?sk2})+wkPUV$xm49m&N zU41O!D=v8X_U*hH%VxF*mZ)udl)7+iS%;c`ff#Uy8Gq-{3CDSGZU%FG|Pr_na;NXlT%~MK;GoJ*c7rhwaMf*Xe0#1V6zi z+N4@{c=!2>(9sn+-Q{mfN>o1~i0HDO5~J=+Fo&?%ihF{S%rY`3GjlqziwBrl-}ciQ zH+Jdw8#W98>Pt~ysR}I!p{*c3HJpx^r@YrK8>U2$PR-xDpc{y8jcYU8?OCXcYk*K2 z;FNJxWjR)AD`7p8zZAPanW}d3rgaz}Bi%a!!O&M%@%OV0qM$_qBHAco%eem3S=idn0 zzWuK7!hqR=Y7>q;jpU9alGkc%BvVe;uEGWdu())-F`IetKD}(vojL8u9{2pjadL%= zG90Q4OukM|&G1R}9bQ6t!PCywNhjyJ&YDHZO8J;BWZx8bK(xBLx-?&jiSxL;guF=% z&j=%65%8qqy3`XMu0MD%1Pv)l0{@ku5<>9v!Ju)31+?>c%9$=NsL1qub#K^~WR1qa z5xE4l;Nq|Eran)AJIk3WeIH*0mbnWHsAyA#xO)FF4zSp!dk5o+=VzF>F)k49{qC_n=UTq-mYBAzBux298w6UnJWEs(hV^o8 zz7l6EVzkW?>5+<6rgJ&NqLrc}K<2yn2s9>XaSyKM=C)|sR4l7n(52(Nho|!%3+tWG z!|Ho=$M2@>KFf)!dzIL}Gv1dbKHR44({Y9@r(~^fN&e^|1I;gwJ22&2-;C=`#S6T?msnX_-xS}(^O1M#;*daE z8oVa5<{r)c`3P=38Zy*0-}F&KGxJH~^wA4$7_r~FnqHg6niJ%?;475{qwi4&pgF(n zL^_H&%gFKjYrhsl@fOePPvOp-tR-|NSV`F>?d~1@{`_3T0zwfpE2o3`w{sHy72l0X zFqa+2&+wI#!AQ|e&=&sPwJWYAXF0vz6Hg>3yVE)@{8yfC-q3K$fxOW4tsCMm&;CR* zBohc9EWrHecT&4y9fo_A6Ze_m7?TQV>NQ(+y7ZqBU^>|*p#Zo5?trd)*sTy({X_f; z*4YYLo-E+zfqeURDuhH}Bmey&fgaLrR1(Aj<`@|)NdRWC`Kr9o$49tzQ`$v)7T1Qj z>P&CyD{&;`c5K+Q=aHaea_Z>7O$v>9Prmxg;$oHQt*^vi_Oz@Ec5*u+rt}rE5C-rM zK%6TkPE-#AE}`Vz5fiNHVj-bPa@v0*t)n6#T&AHNcGal5KIA>g$crbS*;-Z0KQxnj zNiP~NptspRRpMmc0Gx$Up;Gov={;-%EDxERnF+&TXm{K|1{Ltn zXkEzI)a=}s=Kan*<>=2>FXB1?qA=H&@R+p;V>Z z<$|-eaBl|0KiD@E&S|@Lo6kHGv2}urz)0lCRU5Jqw87m6 z4m=kctK-KnmsyXLw^CzdbcP4t<}np>*I$Y*h8bcv4fPXpm|5!jOlH^BAE*$%$>9ly zu7m6!zWe&J|XvYEk z)VRuzv9nQD7T&gWPq@UY9v;NP6ex5eZ$&+lBG!kD7L6`a0t(Sv)MsGKl z9>-DzyZ!^R)D)=s&~2)Jl-b1XW}74^H)6%T>6>lh7I}L&YaxD^#m)e>W|T!gXI|JN zp6pB+c=Fh>4fz>TGJ6iYpMFNpqi^8>*#+W!EgTm|Nc>$<@TRw5}VaZ(_Zh%n|Ocx!+d(?3pvb zGA~(PLj!lvk*PQpD66H^XKv|WwDV_Pht#pDf}HY((}wi7NR@bw#^)mQGmb`QC$Teu zN>zQD6o%y@EEdDL5Y~;wD*%A#;FmH}<>I#9r)Q?PL$p`HWEAq z+kk?iBcvekUBf|xXc2ROH{8L6=?K_R`E+3F6wf(xCR1#K8HrtzKqIs*e1Bw=6q*Q56ngJNoWE!K1K?SA~$Z$|JX)0pfLy zrOUT9VynX--P?(y;UvKb?5OF$o|P%o=8Wt3JM%}9yO={?r03HwHZsCKYylo`3;vaF zh=*;%41cGm6eAtahQH#Q3BqPWQyS-M)^|^5gN$9XJ|*K;F^55ty^P0d(~>7rU4PZ( z7>_+zN7D?r)CMG6!E>pCM zB>~P_muBaO@R4O62QBw_Xm|Qu-)LT?duW(N%b>J9XPl#Lj7{ggPS$~~GQ*v9_A{Xi zjH{JJ+KumB^Wyb5Q`7#V9;wd+m1N)2w)&}2l9C{Vs_^XwjCw?LZ6YHo@7#Z+_od;! z&r|gjgP*1}MKBf=GNM6?Mr)jV&*(8<4mRNM?-k&S)LiaoG$#E4If-UVR0Vuq7`@>A z)K?6lz_t$^>h;SY4ALD^Ci;%cVGQEvvkp$_djoYrcJ}hBPwpNbWxrgVM4F%S>QCB` zSBQY=z_Wi`uE!{6oY7~+g-@>aDQ>>M%D{nlTKJ6N4qU+9MLPme%WLuCfj*BI2O1Tz zUZ^Z8ru@y0U;(L9uw6MWJ}C7Bj>{iX8+$XonMMCYD@&6rxWrJBdAJ*XWn~X+Pa%B$ z(8%;3L7_eEHJ$cJ!1u>4!9<`KL5V+UXFq8`6MvF|tciTZZYSsY^ZS{Qrrp=2MQwG~ z@8#s=1Vm|ior1Z6Q1J87L&>nb6a@Jx29&g7?GmhF$TZoDESEBOKrV}4&?@Bmlv>S> z9C1jF0=r{$bfqg&UIxnYKAE7FOM)R%RVtY6HTi(NE)%fWo@x zRYnRThRT0Ae#=cy%qvqD9x9LFcColL9!AeUSAW@!*N@L{Q-4!N6SC|{1ZkeQ&Ej`r$_D=7MrL^RId_cUa&zkzIe8{ zdGj6&e7=(6qWyeH{-QpF2GwZB%42?gI!%m&YSg(bXrzDEXv{>O&I(5s%%F3}iI+Sc z!B!^oVXT^N48O%FLM+X=5J;iHyVxBtZrL_LSaf`Q6iQ3PE~tIQjWK5|K``c5AhYyeLHxUGTG1+~s0t{H9>#o>`cp)^% zLWf0(X|`IBEhvWlKY;$sSS+DZVOz@$odHe(@Xt)lSo=oaR`HgFTJ?_~YyABiOb6*d zdh|VT>u61;KtevqdK7W_?krJE5I|;n2LZ*Okb%sdJ+PD za0cOr`|aphwUCybw9jLO<*z!roH*WG#w;l-x;;13$H<$89cSl{j7tr@w)Ps&DItP?}ml{9$Y|jGMZ6Vkq>36p(!=o!o520$|&Tb zK1(q_EWEtcP{Id)jqXKvOe%#?5&Rr~f%6=Euxacf**GBHd(4J{t@zW!I9Q5-N~b_y3(;{$LEp$+x%ECFtZ$+PjxEZf|l(-n#v zQ;oFKr<=$quMNNUVXu?XgAW6wmoEnv8OgYIZR zPOr5v%kH@kULPUy!3lSSl#Iy0&;3VTp;83(1e&zBzr$c6=aWq?ExXv;>AiUFpKt|T zkGNI$i`E<3JIu^T77@|MQ3A58-R~6^YO)#R+ck*GmTc~#MqLDi2-~UsVa(0?V~4fYW?rBx2O34sTNba3GUpRBznpw-sIOyaqY}>uDB%oR2z74z)_cCVtu3g_B zUb;<`%_$F^cC_PJsX>U{gf1iKVXRX^0SkGqK>)j^|HKd?qx28sqKmqFKW@h%#(eZ{Maj>rlUDVnR_bn%1S)sukIpRcA`Igo0=Xw#M{Vy%` zl_GI$B=zBHdU|s!;uM9_ZhCHq$E0WB2udb0?m=*86GcggAqDHE(6?yRqlaS0p;DHtW# zJFXIM3}QFGikpF-Y^B&$hLOrjT385mfNYL63yL8w>$M_Nc}7*lFcn?`vERsnMuomp z!-R>fmZMaSTic1PjTyeR!TOK2rv?%VX0Y;;wrr8AMYi(wh~BhNkj=Ue$G>Pz=2m=r zwr=$zEmL1WSYbN|_94{QxP|HK>$h&*8jzNM2s2alxjXAQKFGAMM8g!XrNkCEGl>q# zBOg|z@dDpDUR_==icuZjiA@hR)ys_B&a{@ChexP|us{QEUEcmPlbn{+{|jcJOoAtx z$t>g2fNM9RdMVt1_!De=AkQtn_+F#EtE=Lib$WzkF?0_L3E|u-CcA2Jxtg|UaoZ!s zeKyI zSm*j%{Wn@gbSqkLgGf}s<17Wz%zsWH&g??4CkT3sXzUtZkw2FG@%renQw*;t7Fo}3 zw3-H(riSmejO>QPMDHKVx-_KI1lWVZvPlRZmt7>1-siY0_hUuV0!kGiwprVHO~cOQ zh=pXDJHm&9{D3gUa|M%-&{4wJmPiRy11cy4je@^7`vGuVw>E!QKOx1KY*rJL5o>yb*Og?wMz{?XmN_YGNisd`of{y@Rux+ zMIHQ*qz9>J^pum-Y}^FqU|O#MG=!L&#wPjLjPL#G-e<&G?T936%+^6Mm|$_3o3?6o zzUTe^5L@m!KJ(_y%W)jsv*$%bNN=>Hk8drnrVzFU{Uk~UxHlgl zGeR(6FB9wnK_Y^#$g;RY`9P=KkU>BmsHR~4pFYh7ryyGwP3eYcH{^x3q@=L$MGS_t ze0tV>Q@@co}kMu3%Y?tHN$^?juHbb*~${9(ECpThkrxxp|G?0~< zJu)ddKSavha<;@Rx%vcSF30GE z0>u`M@|q_)WlZ}tpzho68|=WQ=PZ5UanIk=qhPye+k5GBzpQ|g{+(KYd4aZwXM=I- zvLGD^-1hTk-JcWAyW6&-IH#Kt>6emfSE@$ye_bvd1OIB#W#AiVv|=cc!COK7h`dVV@DP|$y-abe(X_x0&0y^)S6_LO+` zPO0p%RW5o{s>i+{HYOSfYoiTcC(d(PS-y7K(SDWPu-F9rIfLH|2nB?{6$xHMG4Th&Qq$$KYLOAeMoRX^O-Z2;s5XH*3fU*= zVD>)CcWolW)zfrv+~`XY7M;4kY}>hWpX_YA$3pZgC{!RKD%a|+qg-}0508H_Do-0d zn}`j%5je?3C@p)Pc#5Z7CA-LOGPW&BOdVoXq#PiZ9nTH*pSl*q9gVo1ahjI~{V_yI z$(anjR)|U&SbeXoY}mLl4Z{PbGjK2O+<|kU9%jbwFNbHG5VIJYP*<}!LS3om#NALu zjf$Q>?`bNPoqorV@Cd#I42CMrN(53AtoI<|H%&k0RRj(Ii^`=Nl{~fl&R>qmy<#Bq zvOHG1|dzmblJreY{M~IpL_wC;y0@LO1iz)!x$m9 zSy`CQ)xqkTjAeqSwZhw}GK>@++`k``;`kZOR%0UoUFF~3^<(m}V}q&S;fZ#Ahq)uU z0K#UMepXF342$(r}9(`$6!bxaf_^y9*3#H*XHRrD71?kz9E3u|`r}+4c zpCY~8+6oHRO@9xur>+`2m}d7B<8O++C?IDbdqzHxn@8^7np4vL@H_m8Gu!7H=Vk>^ zwu1~gI58O(Y&puDi`2wa& z@!f1b8^ky=?4`3+2eBkdCwzE+V0cJmB#uc!1Gh73z1gRc>#l|b{>h-4drZ$^wLqUz zE%Wq+rS{`jQM?`a;KI)3_ZUa)W-uNg0X=eNf|P1=$~wYJGvE`?xd4YQWYOOM7{!#; zr@Z{>I@8+#M>3szf2#n76Rr^e7#H+^Exe-!a;F0X zb>OTp_(D^K0SP>NC~rkWSK>3--bp&e@rQUE<0i*iL`PWc(+2w^B4+O*B~fCw%v<4H zPd_iQ2YeF0Sg0tmtK@dHt{1$>IS>1tNyRvH(Eq>V&_QBl_^+SlE|WrBaYtDosoS&X zsE1+F!5%TlWVqPa3|P|)%x!8Qgl`zuSFf7nhe_W+E~ZDhnC4E$#S#QX$7et4*nRu< z5f0tyI}aYIpAOlBtn~D0evC6^`e>xPsbPcz)%&Y|rl!jg}&h4x81@^sB*=50KtmD^rIK2H|jSZJz5&5tu#dHQZ zd|23}_Zy`bvue>og{w<0FvfD}Q zRJj7PZRrid!ZMvH&2C)3z8Zvvi}0RUM3gJ?1W;m_J4bb>^(6m;h`GFKYgQSZ22N(; z7Zn7iLg9qX(b|j1M?yo}(N*W=1b5a|V~?Og>y|CG@_&@tPMKeKA^cwKWKnUS@Pb#1 zSd{}-IhnBl9J*)bVrI-~#f@ruP})H?CPJ`NwhH4dRO``WFvH5D^b-bht;C*2aEhR5 zbExux#SQws%dahZr{Ald7vbzqn?PwijFBp+v_QgvPBm8g0Pr#{7tEyiv)&<3cL#3R z(8TED;}!2C_G4WzpH#(P{h*Ds_C|b0if;Fuw4y80;vxs zZ#^;p$>SD2!3p$V3{s?LEcP^I5bUTi+PmTO%%=#p)e76f-#~gb!dlOBT^a&f|LA~= zqogB}q(@-%S5TlUCQL+^9a^cf!$Qze(Vhe4Z5_zcDN% zKEgXm$JaF2xaZP&Sd>kg6mdoYxU^GHrxuMSv_r7C1*zMscT#e)olOk?#tVpn!0aq$ zbi!t#)5M>EJIX3X2>`t`;c>5Vt!OTfSaL!;$73#mrtj-tVxch2GmJo}33`V>0Wxi9 zV1x8QDAtgPOBIf+lxqgYE(h+cmrt+Cth2a*w2_>4(`*K(E;JM z+2z{X=rkX)f6#Ozq@gOhHUA_EH?`keewVRw;b#EU7Wy$vJlg~ygE%;3o-$kwFu5!9 z^e`44UH{Z+?|JxeijgcVOx3hkiBhHu*dOYOM+WQ`LDA2k)$&jm1FxqPNewFnF%r4W z@=#6qeVc&eYqf?6}O$s4eGESc~(URy$skm#`0{{>{ z+NSxKzdc!5F)m_=G)o!b!32i(T~yC!P`JuIO=xA)?L-o%8hueuL&Gyy69j7bHs!91 z&LqS}&~yrEz4?|NdWrxwsZ*wXyAF{7jSullDB5TSg4q|J`i{#5XXJ8~x`jF-OKM42 zePBi9%wymcP(`dMe)TYrM&C?8-chbMocf~&~T8p!G9=0%83iAPnZq50CX;It)^TqjvRm`52=tO zi7fBFpUEyWNvkA<&@q)rXl7rp_I>kc#gtH=n%dey21*osZ#*U7zk=eTHK~Y^>SSh_!($3BO z+S*rt_3^uxr+0EK9eVzGO~;Deua{>`Q+spg%<0GPzmERR_Wb)g1NUgOU`I z#sS7qBToddz*yj%6UU+D1nO-|GRpIru+| zzb@Ou!ambag1QU&J}SD>hYyhDGL8amK?-3K<9#^Q+>Z3&qTMMz<4R7B2B0p;AuR@i zfnoLFLDvanfPtP53lk>x%L{h6(6*OCd*;*HNYClEx&&Wgr7A8Tx`f@~!)rlbX@jZy zVH?p#F(4#DGq&a*KEM1>{v8sb*qKt04)P17>m{o%gDsy*SM+vIDt1cO6+(6Siwq% z&>#$lF4IeV?B#t+y`4BT3sck57-|H)`?J*BXF%_EW1`aiQV|GNR>qHgIN!Z}&@S;W zZhH(E?&Q^#?-Dgx&RO)5BNsLQ+%%+VCi{aXnnvZh@mVq*{%jTdM~j*Nm?7{#clM7i z&t4>~e%3GH@w20cyZ!p#7Ms_+zj7tlO)tpvkEHf$3jW9-O=R41u^!h%cf@rGPDc*@BmU6c*OmG`D*8vn zI&lwu28X@u>)dzsxw4LHGS6$rb;GG7YVruJ4;6M9AKu^kyfM$M_(k(SO>2TrojJ36 z{#E0RyLajk_HprM7Y?67Ep^@*A( zmOE?f!3Dp+wIkXb=F+Jb)K+VODU7kzl}=-!}G(IpXYYM>M||1;!%ijVSf*fYa7zE98YA=!4bVRG$s=o8H4vrQmy+-zlPWM z4&S?b_ZfOM9^%5(6L4gM?-tIpuo=2|q5M&D3S+i2?($u_tia57{153JJv10Dk-rE& z-x2S<86F<%w8O$60HP%)KEHVX`fl0RuXiYDUH1p)SAu^E6Luo=7=4@J+7Vt&psw6M zw<_J8j0A&#eyB%${pT9A$@n?535bNF^=;Gt#WPxOG7!DGf z7K|2k6bHPq4x?CLA=3-!N{I#NQuQ=6NK8%KB|3<87-(3a=l)1{<+ML~GhI->K8kg) z7ihB>$IV`DG=6*@VU|%~ymjwC|N4uSU_Yv>Y3vzt^5hT+9<4ypYy7BV-2w75eu-^N z)a2ONJ1jPI?9_?1P`PIedWxTmWkaI` ztgoNLm%d5v-FOHiuwS_v3&RoXCIa`k1#) zc|nTrJuOMQ^7SSK`+9hVyDx2@7@KUNR{TJfarXoh36hl4a}EB>eZqrh|FW1z=q&Ke)2+Fzyj!+`({@*;2KpVN>DGCWkLC74Q5BPXC3@JJ~ zYM&wf6@!_+^E{Cuw`IJhNqHo#m6Y3Od}r^^()mz+!I!>Fxe}JxoTZ?7kg6vDb?0eGzjgDa-mNULDxBNhvz|dGr}+2ly}Hl7=_!tbGh-8X zBCm?G(5GL&?JxK|DQS-*DY1J#08~&X!Y%(`a6$c&Pr1$OdevWFzaPJktlXD; z2g~y(4~d8GOZ>5SpQYEk?PQ^L7>U*6gLftH+}bxV!h-c%&Ex7n?WC+!mLpYw(oZWwrRrANn02sK}p=HMyb65w!@gu(&uzj>B>wYoR3K)tXfBnHDzJLFIhJVmqCJ;f~EtJ+| z;_{Tj*n50S23Z@_r6cQR*uX;Vf2pvLO%6?$?>lgy{Zj{Jz&+Z;sCeljE4Kb4B#_yf z-SX&#>;k6tWN!cViOh?Z3yn}myR(Exfcjl#G4ch{>DX7^=EL+)2&#&wJ2(_FJyd+* zFmk`O#ZEm_lSdgp-p;4}0BKpgWJ$+*&zpV8Z9n8*Ldl|Tin#%8{BBm{KH1chLvf#4 zMPn7}lGhQlBLUyG7#~PwWeN!d_XE|tU>~bN17+4f?I0jsl+kB}9qHP=d+nXc^MwrV z-4E&OI1l6NVCrwG!&%@G7G@|kE=S>)Jqoys%mdjlcTq?TtS<`qQwQ`o?z0nDd^NvMpEPS_wVrlXcG>fE!fu z-1MNI!4E%C{boG}WhJNeU>4KaWw6KNI|yqc@HY$yc;j&k&rW+nJ;MEj=s!{q1dj zS)&<+tMuvJJIS|8t0KmugQmpsl_R9j?5EXaheg2J zwWcy|-uF|_lqj+Knc~$y>G@RHAX`;FHXS=4a#?BTtj_l#2b4aMuDsu6o*WQHtxAWL zJhETrUo?W5WG-VIe|zb69s?Cqb93E{*yG2sF+VU4e6I46v-XbPYf{78YDZuUOQCp> zD)GY4JQ&!M%{tpuWXa=VaG+4lLi+Dvr_UCZPgL7y*_xbaFMZ|ne{!)QEs(7a_M`Gb zPNNyE@Qn7_BXg>H7_^%6dI(#b6YWLEq$0qJHi z8=2ZTI(l3W<{}SRwTzXQq@UGOv86I)9G`g5S87<=T6Ma@fuV_kAn zlLb`c0xVH_7gSePOmO(m{hKw~QjNWw#Ac4XT2p#y4&Yg6;|zJg7Nh&8Hx(@bSsudp zfX9W5Crv*JWh%n-*SLI{$Y+&0N*}3kq(Ton@D=r8{~s&UxFH}|ARK~ytqe^8`q3A# zyo8KA1awIIEIm=8t;Tw5>((|4%dn|2J-6@P)cO$Cqkl*s{8(I8D%GqnHCqx{w%Gy<3Oo-1)T6gMs-QQ(t%Qb z@QZ2izO(_RfNW9$s7yxASVR86#MyX!04^Q|ba zU%Y=`3lf`Cf#d&ho~V}v33nkWot}N8TV+FL3a1Ub0@fm0oMe{>of$ZE;&P+Wqest6 zldzBT(A&FSpdv_E{uTcf@A*NI|-xxuN?RF!WqhY^)nq0cX3mIK-;> zl;CsX!_wii^xTfn65R{{C`_%BPp^m_>S3jDF@4#<3J}NamOp>Z&XQ-(%9)0c{rBH` z&9+qv(T37hk+as|BV9(++ySx5gY=q@+cN;G>=zm_(IESBW(M2^LV)OZ?qp1TcpbqR zA)y?+`+9BYVh4gN_%Pzen;(``kYTcX*z%vI)-h^^~0_!C?ezlpuWw_^8|0Wp8eV<-Gua$dqX!UO0@r>oIt-Zc~nU`qK z2Ym!xMJB_n9ydJ37NeI;>;=hS`PpfaLUvelP5RW%b6O1+LraRECyZ}ch?T_RGyXXK zNT`*XAaZdK5q60ct5@bZX2PN8rWwwze|NX7T|ITSp}?eUz%s!t#WBa;0Lm=QH{!zr zCai!~y&{)lbnJM_wEk^7Hy%8@h$~Bm{!~!`m+RD0&FShxhpwVRfmCnE<$W~qcw5$g zn=M3M_`*{9%cQ^7@380;didZE ztuDPUjlTPu#R;b%gYL4ApsEt)zA3C-Pe+ zp}x%11?>U3v4cabb#I(aI4Ix=B#q8(+U&DW7;~!WE(OB~?Vm&~rk2U05~;0#+<@K; zZhIAp71uCuiYs|&A|&s%q$6A*s;1O;uMdMgGyW)ba+)^n93yAQE8D}v%^tH6n;$WM zU~S*x#hYRFZQ8Ub)@s3YAO9r_m-8fD>uw%v>+|*t7$uZJpV*#V*(ct;ZQC92sHDsi9~N!I*3ye65Zq|#wz)QJ+A|EOl4mz#1g1##jj zCI)n5UbvXe3=l_vb)wj=_4+e_=apGt1-gXNjT`Sf+1SWdzVznyoj9S_LjrHywr(<> z3DarM#%=~)&hYBUMx{@1Lp;g!fm`^mpsFn;d3$G=DdDgD3 zyLEad1og#7mJ;1zgF7sK&xm3;PU)||{MER}o897HK0LQ-awJ0Z#A#>mv+iy4YgWXP zFV5YgM+0ZUh^F{aop+~?=JYXCJd}>q+WlMNpo5(mNP{D4ruhDKZ`l&n(z&5O#gjB3 zk&PQR6g@HrYBBvx?{-YvNtBFO=%2#pemy~;q1-?ieREjLi=MPW+}l!yKR3km4-uY2 z^34fWLxlkrbb>4|>?unq4_oco4`wLo;3r}np5K(0}Ln)NyrpO zGHrEr55D=p_)cxxmg7ikb|E03LFJ;+r;*sj@X$ACuwxw+n$R6!7g5LcY&^HFkN10? z?p+e}DhEWoFm`L68_h^)fY^J;Dy`4@tZVA5>k6qT{{toNm*J!3wE24(Le4`;&d0iv|jiQO)L(iw?%t&QH+No4etg0JyMfC z1{K{n8Ct((D^@%>;YNk-wER_!2zGjgl)^nN)RcSngrt$^iR}kJr^ZXMO0nC4yxz-P zFL3OQQ+@rS7x3%sNvZW2k*~AC`{@ra^aa&UnFb1bI9IFglzxLdT zM~htxCQcuvQuk-UmpIeooR}Wu8LtIJP&Vy`$NK%gw_t>u9-IGUSk4OnHFP4q)zxJx z5Mvg{YIM)eYF$)UeEBu%qpyGWQw$>d;AU7hI>`_?6fAB#eE4uv8)7)U!m`O;Dx5bO zz2)$OzZMv zWF51Zk7P-<6&v6gRa`_pOt;U^_w|-Ay)j|2|9J7MnI$S0P9JiB|7Ip*bLeErll=Qmr8;hKi&ktwM#G(X;+V0G_EtmPrWDpFbba{v0d z6D8MKO{!awL+pLWLFT92cfRg{TZaCsi12W=d)^r=+#cAs?>n~P3T)lXuH@*Mj_ul+ z$m3M)*gpO#eD|Nd<2@TMJq{I26jBz|xqeG%`3#rX0S5Z{j`i`4B_i#i=AS{MCdNI&7$4;B}m{{vnu>a1-tbppg#<~DN7P70upN|=; zik6xMy_A{6ll*A92j=R$*Mh~1Pc9ccqq8`K%2<<`Mx$hZR2rjhF6BOjm72wPU)|bc zi{Zx&c%guq;asB_%sBzeG95RLI`wFEIDJN6E)=a>ShtN+8LydY)^xHTR*ke5^Zl_s z@jK#dux8f0o08bN20F&!(psH%$OZvDNMgtf%F2^7!qS)tg$PWhTA(1OG*ny*^M%R7TuX z(Rz9(uUyih(l65j$5xqkgqwE2IDrlDj@*$&6{X`UC$mi3oD+@ZfN;JX+ijVOw)V~Z z{Nq*k95IF__aF?B0XajJus{C1kg|#?RN{xmv8Rd`=1{xT3k|xiXNqv=+*g7von}H# zGq{wMXg!d=&r%etVkzk7-YWJT<`QnDX0cv5MfpkSIhviHhs9gxS!wBFB0gStJc(xg zPBU&0i$bTRrKjh-XbE#tc)JuZ-J4Y8j$YGasdxzCEkN6W?lb@ONUHsZ$7i=5vQ20^x;Yw3LV=qmEjnqBko^p! zgnM%t8P(DL9r;ui&7}Ud&9_#w4lwZ}D)wye`n@q19 z0A>P5OHmq0{x5&DXjEY$f7t8E%KBJ>nrzJ5LW-2++#kaPN?SF+gT(L--heAW-I zyxcwpPb(hV1VdFb`O3{!uH>QJD%153HM*EAP(pCS3{)NjP|<-w{(&Fwn%Rs=);$EG zo}TZh-`-}dnXn2wP_6ord8@?JryXQh_io+V-Daw_wUY0NC{Z)YyeUQ1!!EAc*D}W- z+tU)iu4BULw(8R)S{oX!Un;0PCIowMM(Ne--$lMEVP*v!08T9z0RhmL_sqwh>~$ZV z$SRyT{yHkX?y^6N&N;VAGn>Xl>Jaoy@(qpLMV>(9c1G5bTF{gbal z!x-ByGLdH>VYhk~9!+B1;!bEIJ=N9Y?K8UVk;!IM*(BP-v&*c0@a*Zgl^Ok;HEF_L zipA)5n1XbYxIrx)fZRXTz6KuXaJYh-ZYHDZzG@W)$cmB?X2`)TS_lSA*N%qm+O+~b zW4;TyYVO|rt+#V#tCh9Qx?vT=2Ge)*E$!GNaHGR;SF|Jt@|gaXU#c5f-85n1CIlmT z_t-~H{g&7v@6{q6cv%3tsIX~=ZPj73|V>QUqN@%XC}BrPsFV%P94pE`_YU)!e5n#ojv zNro>d8cit8b#mc709tg%-S+s5E-xW%^@pdKvMhp9uUyS40t^0(g?i;*zs`QWz0sBA z)l1GDK0KFHEu5VYM!@f(#cfa5o6vq;>+WLxG1x3q1N0@7dxfzQRoP3JSHH$^Tt(2W z0Seqpo6&R%K7)!VLs-gUcM9OX8n5{69kqJ*jy-3;c<~oVzbel_9Ow8LH|)CifQ1_K zXxhG#va-Q$H}{bi6*G+He1bB?1>49C5^W-j9_@D4ePh4nFEHEQrouDBS;MREXr9~Q zQe%8<_}Gx0&AmahNPSUNQCxje$o6)7SRe!|(e9LR;scb2H-GRMdO*xeY*uOA9#Ygx zG<{_I41d)LpBHTe0=6x>Evs|92_qlkM&Qs;4r+_Ptu zkPA;}b|BAT%9NE5+!?P`;fP!HF8#fVzIs?T*Fo{dF}&X4sDuQ7wDFm4)&6)=JC%E0 z)A;1q9G+@#dZOB@yBR9o+ftYcqve!Zg^PJjhiwA9_!M_2@;=o=VskA5HM~8MJIQtP zrb@%(u4ZrpQRS+<&?oz&X;o8GyW)D-EYH6S7^XP;ZQH`Wd3mbF9!>n&hMeRP6%$_`3AnL6JCs1!@38C2!l8lX`0|J zoWJghiXJsu%m_l>tIleLNfq~kYxCHD#j|e=1;jh=&AWG-@Q=G3A!gohF1(Z-Lv`DmIU}=dofYo1Y)1E+lgB9smR5EG&TM66R^$?s#EX z13Xn~iM{a|2YFo}PK(6wAE;PUIgGT;@qK&u?!6%>s0x?cLAihbdb<%b6}onNsND&x z#i<49eAwO0N`TnWbbF+K?RI1M! z{xAGRnB~~I;~?iZjv*{@WJ))zfhHx|KZq@&dNqV0YI>U6{4*3u6}wz)s9)A4m`kcz z816kfw`#?%4j6gNV=i`H3bf!5jOn@mUcfamVK={vw~C%y`K6dzLxNI zxe0VhT#{`nX#W?-e&@p7EtL2Pa!Gx72~Zc)BD{jvrxBpHsxV_e`J01oZFJtHi0WQ8 z`aoXc{v*}912Kue|C@#%s|2bLWD^&v0_^yk7_l!;UONIK#ce7A9E@cV(Hm>2HIlO( z#V{A>Rfb&oK`WnifbNc!;PFk1>{vgT!^E1t0pd)kPsBoB1 z9!Y1-gQ@b~ZPEpo+r`^2{gBB;wPzO_H+Ce*V%v_sf~VHQJnIPxix{SFNq zH4^jUFENOWC%r@9w;hz+gp~8*;dY{=7 zQr!klUvMznwrI5Z5zk>o#T=Yx($fVgoUs?mIW4WTa7SpPiIifw0v{Q)wCpt#Lw5TW zK5bo>@#N$@l)QEJ=eY?qmM8*W!=tZmrxrjd6l;6!f)LbPxpKvER{hM!db0l#J&(Mo z%P@oSgLB#IjrR@MT_R1ARlTY}sYlJ>hA?x%V_J9CxpZf34Z=b(1m$5%t0!5+27MD8 zcrPEHM<9xffamHB7K+Wo8N;9ndjFNEWH!O{nER@iJ15&QJT z3$Y&_IdTHnJNVbvD+Di$oboeHgVOIgGI|b+zq(e$W2LgZHsU9Cz1xQvx?uJ4yZViA+p^^Xk^T(AO$uIM-wAFMxan)Jd);DLhjpD!bb z0P!Eqe^tEf`ECn3RK^{rtaQLTx7$jLSVwdd4i1C71CpiFz3&-FDT;JyG`66DklqRw z4~QUoWcgbXgH{eCT&F)(qFDuOoFPk!nxHIE$pZ04F4iNubN#!HBmOeeO3=e3Cuz@+ z1r1235`((#m(I81+y2j4RL?0SBNaB5hiv`NSdWCYcI39u&}bV|^X@pAXlacz8UCkO zmUKn>27Zl3<+_Lg8J%Rv3$Yp&3f0>uTSidBx2tD+%6$Qqq8&v>GVI&azf5<8hYtjK z2N#c4?SZI8%@n!Sf8Tk!c;~hqJ9g~eyA7H(K>C;sw`&-&A=9 z$U-c|{I|=+iwf8-%T#oA|3fY<{O757s5`M|3^WG^IQON5HC8MDL=!WsXvOILqV69T z?X`KUzu3mTF}9w7nv|k8G9G1_N#yzs8#nG^$U=ecz9TYn80qJ`(~{SBu042=ZmN(l zpqg|%X--^P9VMsrX11OooWi5M$(#B(-UZSNn&QK62i*Xh<7Z&m*u${Tc3G-1xQBux z%J$}S>l1L7wi&w=cuIwD_bxSzV0i4?)zhryPF{4m(BrUU3ftIrsI?yY$r{ixRvNs? zCAC#kXtf{YM<}4i;poqRhJZghrT%6LD#QPiYCV}sfYQzpH5fcQ!khHQ-r&SXNHBz)PLLkzmu#B8>bJFvfck2 z%CE0ylE@`>|4rNcpHuvwoNxgR-hDl$UZUd%iMtI9)@h5Rjzg}{^v4bhJe}ILYbWNF zKW7l90I?7{{2%t-JSxYwZ5zKb6>dU^lu$|oktU@wgwmurQl^sTq|#isITVdF51I#Q zPIE{Dl~O5pl9??2z&de(aAzFgOJp67Aw$G&gdwr@KK z{?REoSy#9G>w8=~@Kg6l(x(tfXD8H~#QzpRBzVQRY-I_*O?%H50@2*e!qNgy`z@LO zdfbL3UpN@h4Mcj8j~uz79-nS}8zpi-vVPzK5cA1OOB0|Iw$N4qf1V=6SIO11eV!bv zzyqcxCt-J^b60)jVI*k4VbD}z8Sr~aeK@~7SPr-_x@tklG=!-e8X5w$hO~2&f=CwePlv7j z2EHe}r@=d)8rQ>Hk&8pk3#Ow?>m~JvxO41U4-6FJm~i5|PdZ){U;-35ig0=R$Uehb zJepnAEWa=MP#;~eTrTEKbw1h&WTEJMjOOX~1O*O*CYXm=k7CzIy$7HxEqY>;W}k33x+<=I*xzg>IwxFb4^?DjcH zj6IObgBZ3#Ne75|IUOAmBf)FL?-)1|G85SAYS9@wloTzZnf!f!(TroOQ|7*sOaeI zslwS{Xq6|fRu?b}|D!Wk(@}yIzkORij9!1VVkaZ_K;Idl&FGKBO91c@NEc6)T^T6k zk*Hxcs-G*pBCrP?U?>MWE!EW3$1u2#=-=Mz$!}m}Bo6pH%N_85a{*z(@a6m*r4yoZ@_Zc55)RE1cv*7$sl?lQ5emHvY9C`zNk z05l<;3AX?B68Rx0wx1YIE9`h3vQ!AtpoWZ#swc`tW?5B0HnGqFoIfAxhm@^gZtegN zz=S@a%!z;I6}WV)88-R^J%@LQULO2Rd)#;a>ZyKKg7@UBg0<_V(K9g*u)cw+;F%() z-VL*bb$d>yNb&pbt;2BuD~<8)x_1I_y&*hNJeRkh-y}>EpTclZ0L=b-a-UI9pvEF| z@z9#P6~eo3Z}Em$y?(>`FKve}7pq7Br&8zk>1_U!ZmpIs)O~eDpb~uiy5q-=xv@&N z9^b&WV+Wi>)MTE*Ffhcua1I83NRVL`E`t2z^HyQ)RY)(|Hg%_e(up73yc8=K0|YTG zn+fVZ0T>mHKhIAlx5{`T+(CUCuo0%8-_aDpz8rkg z#gE~SwSexx-&zv+3Vdg=6>vXl?^nq@{hW3689ScR!^wbcFf^9-1l_1%$6ShRT<#n| zl2jS5Zg(>SjMRW|_w3*h;uHEQVmj?U=0!lAMkLOTKYmA#_I9M0PIHs`GW<|iiq#6v zicCn99WJ@D7q&almz>wu7kG4SB3ZeGaM(%~v z+~m5rAv^2#5zIP!R$Xi80m|*$oOI|b7{9UKy#&<+*nM?}-Sb=Hz2T(S_0BMusPG7@ zJ)3k6{kV7+|5SU#i0j)iNXWMfe7vj!yGqXt$s~A+4d$Q8N;^ZVB z53+SRx!n0taPqP0@fD~4;BL%;F4s7i^-uUij99(9a0)IAc+xw=meQU;Wr(4}(nlsM zWg)fR>nM!Bzx9El?9x0L5T6`saqA>0$X~Qh1a8k!_Oi z!l18s^sulV_!XB7V7J}&?V$w0c{8HwIxWXZbmkb7TNlCv@7+;k5~{hzNNDirzdym` zaN@}~UVuU4nP6NdO@3EtE^G{Y{eCvTOl8L`ru3uQll|2iqdDC%pP*`BcU`J=poMc@ zr=qIr2|FS`W}ROueh0V!F{uqedCgL|GazJ{e7w0+$L7mYpEys}*XWA(6p;7Kq2 z`!Yi3fCN46mnFUdpTmAZTgbkgbwWsbXx4jyOB;&bjH7pFK`(LSBq9VMq!vg6(RDd} z^xlHN0+qaizd)JgkJi}2pbvu@f5v?`PwG128rYG zjoDW5?2w6P8XTkB-c}I{s~O+jFe|zyqufQsz<|XhbO~#oJ`LdlXqGc-vr{nda*8Z@ zPNqZ6F~V#Yv|hT=A83L(;D41`AOeU6VMvyq=Kz{CQw)^olt9GEKsmHq3z9~8PvFjp zH9Y4qqzD9Dt>GXF1oiBST7*`lHQc_5b$?6)+9#GA+>cPWcI(!B=Xs}(=Ex{eYvRyJ zQL08l0okbxfKK|)G0aOm6*;~=l6Zi%*TM_K54WGxW3_j`J>^#7ej2EJn`jNL&$>%I$^uk;bq7}-k|IFYo~g`DQVXJJFk^vRc9Oy zZ!62#fg?YPQ$1YiOVZX=PvPhXQ*k6n(6Y;WA*SKb-+I8}4fN^V-x2P{$C}J!Um;CB zDO_{dk#sggdhr0#OVVbdW|fS77&tb-dlS-cR<+S9w~vJVY%7=t;}dW9umc$ddhpbC zt%tJ7?cu|;7$aG%n?MZad28e^uy(j$lS?9+^78X~)@qr})AdllWE~r~j|*qqg?*9A zWw?YL^N&`F@H^$VpPFEO{Ptnl5~jWT=1)v7=smzMwg_Ml-yg+CtNnjad~6U|JvmVL zb$;cO`I479NlA0Q&^dxBA>3p}jyDFxKxnGXi<(9US`^+(=fiU+=@f<;KUEiKL6}O|F zHf}Z3+LF~z8y-KcKQ6V3ZdE<)w<3lkqXRA-BEJmA$4e^uFYAwsjQQqOwX!6AI@dPa zd|h(-!kxUkj?SzUyIZ+Ifh4Iwfs;4*b_-Vr&@<<$XlJ|113!3mawjlezUtTgRr2!k z5L#tH-ZMXNS28WBgiql5ux}uqM9lvVXeJqcV)BSzRBdWE?;q3G?yH`IsDB2 z;fPtKr9OnnP7Wj6@PCs!i-OiXD#@RM0L}d(xPnVS2|_Z3nH3ru1^|{OcLok z?EVS~9OFe-4!KT=J3XiU{rz)skvC~o=CeY@9+Y&np8KW*uxIG*761&Y!jDc@Us3f7 z%`DgV+r`Is4y6VFS12iJf31es?sx6$Ep=lruwlB|?x7&n*4EAg9{W0ItH(vu3#ixL z*;QCN!!|U~&C=bCJf66cG}Lv0&oZozq_v zQY-C1Z>8oOSub9Uc^1mYYZf29Q#1e0s`>x}nQ+r0f@X%Myu-(=tO(cCcGdUFFv3j> zDxTE?)SZ$Yeej8^G&?^sJkk$?^fUh4PgvsG4_651{F0!tWI#8)!e)cKM9YnEu@2ye z^kcp^s=JV=NE5X_Ws`BgBP{TlAx%RHL6b@BZu51nZ`d9ktjQKf zK{--etlzAQ zsAuR2uK6EwY1}+KsDFMqq49?Jie&D`bo#GQP32>Bou2C@sj0+m#5=V&>g3CF$Jp0x zhAY3d3QHx@IV{F?u2L&jte6|(o9B1D3s~C_#C{pur?b~8@Fn?ehrS{7T|qr_oQIpc z5*;KZTkT1vQf3c*<10aG|C`INs2p!sb@B{x1A*>Kz_IOFhzTwj@E4i!by`2jY9zH< zC88t|TVEh27UaM)Z;xi33a+h>2o{vs1jL<-hex(eAB1cfeNuLJ98Sbc`y_8oULh#D z-|flawcQ(ONWJWD+T+{|9?}t^q3!p1o)fEb6p`I zp3@;A!;3N3_5uhWn8O|e7~2$_tZ9rI2V5B$=qQX2g<&9`xw4yx?}qj3$)-U5S9TMx zF9z@;Ca5^o!j+G{BG$gIo&rKbs52w1rlSH(xp|F$RFDSZZ}!^nQI@o%?({6an2cN0 zi^XE#n1vDoQy%-Ngnj7r&nUfcc>yL&zQE5+>v;Yrp-qoUw9cH_;UUetaoB^Ws}fRs zZ+@b9tn_uo;T-u;4z}i3GOS2D=?*K3I;my{dGmt}n^8gygcXww( zpP?*nrWm#heWq6VOJZtUr8@)!ja|}s{OxDzQke{w`>^uZvuYT&ME#Xf>>?M@e-Qib znRfkrCblL)aZO=ORl(AG8Y5r>HFXdh*@7u+AC-`bC*!VZ4wV?T6fR$q_wjncbc?qK zupXd)`@DXT{e|6bI#dc5YjP08r;B4#WkeT4< zG@&QG4aQHXDCdWr-plQX!FNBn1FoBdlJt^HH`7p4t9#@;)8SnNKi41K>T6(YB%`&B zSPiWmFZkvu>&c3I#7lC1vZ_h^8lGe>LI-@!m50vTg;9fGDWBdA9V0k4qMj&Y!^wf5 z9v>Gc+N{!w!HIa+l8(V|MP|;^P0@iCCl!2gQUbKA%@)UQ^A5O>*7IoY=OY~OP%8lu zoN*WX)c_Y-M@PpV;>HLFMG`d^PO_c-s5nRDbg1`fTg0pLN$Ve#pkh){Q&ZE{CWM=? zprDVh?`pJ0<7h{{ZdxN-3Akwf=LyMdBnw`&^voiAL4F~<(6%VsiA}m26QbDH!QKoq z-_ua+fgMxfIPfd0Lo|PbR5XDt$);jo2b|0gpyZvZY@lCIHk{JZY7!cP6dFg7IE$na z5J?SfE42(BDvc`=XuU^SRlXV^!4^WIP&4B zaEql1vXeWCu(WUnquw%2Ek%Cb$sRCNz+*tORzgfn76eYtW2qrlk9Y3yD1{Km2ImVo z0I*`_kqc#;sxcewL3swMQSO5haIaOiiv>&n$tSF9iIm_JN z62;P^`H4s5RF)+EO_1%2558fzmVReyYRY-`le0;S&WrPhH|p>I3j?8W;^tw=iP@N5 zy*h}8ObiJ-+{N}xr!Q=n$UQIpKcd!mtPuRfT=5qYLvjn}Iwa>VL7(#S%!ZN_R92+< z6%)f8fP6v#E!J=iX9hWYAgF}T%xXqr=aHV4Cbh!@VFwr*SB?x$D+Ia}oDL+u0tf>5 ziON)icOw~}N|bJR9rSP-=F~5e{j&LqD^A#E^Vh3RNGf7lDGsAiByc1PIw845yx4KP z<jFvR z%WKE3j3(12s7BGL(`xE_PihAOj>g%m#mEOFkVn0iAHsU>JnuvO=7)5?N6EeE7{rRt zYT=tj2(Ux9!-|!U94x>sR70v^oh348Ha}*Dt#Ts$@HiBsRdXA`m=Vl7Odjz56ZlXgO+H{swEJiN(1)HW~{lI*OZ{8@RPn^zR{yKe_OZ zuma5+DMBaPC^mc9#SCh~apFEsPrZFxs2}{n@mrLfal?!4jsw{}&)=D5pd==C$&U!- z(fre`>C41k|`u1;O}6iWteO%CdtP?UEqOa?e4QoewW@Ix%UDCxQ$tF;accU{I-yKrL=HK|9(l}tHAdbpa6x0g@5RBQ?ECa@twTi1e72a zzd!Fo&P)G=JMiCs;s0ZI_@58L!~SnuzyI9bf9~#oaY+1UN&QbODTNF9jFgeTAg;N6 zJO7d{HzpL>FSk4b+7ZT3`5K3#F77K)8)1hiqxGCP&da0uPY!XSHnnjc-Bw&YsY4UA z*6ny6FhlP)8whb$u2?aYzR6|J*K5bOu_3!Em+JI(4UR;E&G+w)LwPIs)ikp>+hju- zPGZ97yLZFnH)qd=^zZzz{P#zk_G_cJ_tfO=oIN(Kgi&<;J0A43J7{x|yzz`(J^8B$0r+5=Ct!WFw3C+%jo9%e? z7L`h)EQc>yzDD(>iFc{`jc8+%uLyHUx*>;J^Eo?Y$m{{Hc2oPp*?@-=9*U->Mwxc&Rk{ZE|B|2Hp* z-rGi%6}j-HgDuL-=4*>Djnw2-KkE?McLBxJ!L3ytb{3{%#k1unS$3}~5v8UDF2UR$ z_hzPAZcgef4H}p=m@Oa5Tehu#M24CK{AY59|C{glf6hSuc^7iS|M$%7pZoIPcVCVc zHo;zD!54t?&r+xE_zB^?mUPqY9lg5QV8vbVQN!;ltyhNNDf?v0sC%7RXja zgf5ss42(wFWFX;dyTn!M>)S165Q1H2U*`vn0Gi~7@^+A$ZMTrNy)9axHzz3 zM$iYIXig0ay8yr&J)Gr)(jT|LCpbVeDrD9Qh>{hIE;Ditp!i!bz!g$jkW487 zsddit%nKk%ocqQp*;T6oNSD>7{cqVl zFTa`1b(#V1=~Qe6DRdM9aCG@`(gW#3Px<6`2!V*DDFKj(I23?{SbDHJQlm%WW12l< ztAv|RVfsrkJNc+J6Nhx9zpQQ;u>joPYwUX^75<;VZ}?vaF}S_~g}aeg^Reenq5lHJAZAo{cX#6-llj_QoJo+D7y_8Z{nIJo177bm^)X~_ zEVH0OR}CFUk~3fE&2suO*c1YK$;V4f8&f&XY#yanpR}KR+;Ejw znd4_VxJbaCPn54dtNz)BmQ+PQ{++fjva)Odtv=DVZp37d8GHt5$yJ=|M$ZqY+*4?^ zT~_P#U@B zl825Ps4qUFH*BlZ#24V++rGQb575tlXlQs^RuBnxI$at!4a~;%?s{s6&6)!#(e_tew+R&^wIdn*mfl4mZMF_F z-`3={{-k{!TZf&V_(h^)=&pS^h<`6uaNT2AUf=`ghcPo6FG+LakpxI=_VT+gbW5Ya z6HTfheoKUDhnI6D@cA>sm4GoZuTOV~I)g@fWA7myksW$BS`CPzQ4q{4faaG!!yoY5 zn!*48E-FF%6X1l?a)!}rsp!G z#RO$@;k|Y6F{8V*U+8thVJaU7wCy!{?C~BV>n#4Wj(Uo)*(NK(37?P1*c6#X0uLF93#Hiz*3Pk6BY7 zadz#>`g)(oUF1K!`AJ1O=wSD7b9dLWqchjEycA4w&2?f>(lmy-bNqgjSsm`OP7Or| z7$716S8m=j22BE(P5-hP@e)~K3@pABBKOx+Z-FyHnxR_WOqGT}t5L}BR`!_x+ z5fi(1fAz2ZgXmMt9%at~bvxS_GTW$>Pwj#$iF!;sbc6#7BdiTujf)K;oxWc7u1|V| z(?{P}c{_N}rVL?|&)#M4!MP|p!Ai2w`nnNmwBo6T_&3nv$#(K>N>7z8w%yJEB2ivj zy9GK5sPt`7?b6>5Qk~N=Gr%;PYw`;yKIl*&MeN3A%oaQXg)%r$aWr*; zx0GF7i?&s8>9Qf_n5Af<;oy&{&DIYHVeBG3K;HZIqz>hqrri<={EO6pIP7%2h!*~R zkdI;;7L0v1GGRlER6GbqOYva!;0%Z-MckXI3G8JpVX`UE0cB}gO}_49cEk;HDe|Q7 zQ!Wh`ij;sj^ik-2Bdh&$%P>OG^SHP(1x}8gUTt8O`s%wLNlabAS2g)~S>j8z2>MKj z7N#{Cw;3J17wQ-PjR3KJIM>U*%M$5&FkRA{^uVqkzXxbuVyj~?l zGu|tV-bC47-0G0+yOV2?&--!{wHUJZ2P)!rq7|xj9n!IBaAkQ(7AHm-W3E z6~PP5IJg<;2xj3;F;9{Z_>1>^>W7ktOpzxB_eEEQq4zS8G)5bLPmPTD=V5wXTQ;tt z@R$#Ef7^NHB(bi&p6^uU(MNw_sAI@rF<+kfc`CBxkoD-E>Z2h;XV_Hi8=n1qBnuZn+o2T@*{W0M(t!5|Im zw+j`9c*kh^`wOtgqr28@^~{Q;_Sj9vo`flcA*ecq3EO$_~5IXOPOh zdd2486i}v}GVHXCFG7WU`*%|Hk_8_n?OFDoKLn9dHPO*IOFx7}ADY0vUtZGe5YnZC zz4yKiT|W|u-Jp-rbDM)5&WBAb=fttI=VNpgB&TAn`rvLWE5$BH&O9vDh^! zJZ*FE*X+^*-VS~@q;`BEf3i5G3S}Ta%}dWAQ$thJF}B{P8y*z5;?6${iN3qFRJOm< z*u*Yi#OCp6QFNE^z-Eybvd?pK5w1Sz*e6=qqp7~n`Zi1q;dDL^*0{G_a}<%W_yHp^ zwlWnbl-r^Bt#;e^@&fn|o9#yvtG7pjWE7g%oXe#d9pg=MJZp%|>(?r7$dHJA2%1NA z`J3i1^;a$qh^c@3NU_Ez^3Z9+(<>vlJ-By>W@)4C_Z{4f8%{ru3H^E_^oC2y#-&es z?(nYI<8m)FJf`&dj+nDc9-QLVS{b==cjT!vpKAomX6AnO_XPy_MU=f~_lsz&I@kB{ zJ-naAy>x^9u7R^eKb9gKjSZht4=W1A!JAK~bY;N_y+w2A&VR)bZgb=dCdLLx!xcUy ziW$yg#Nh3F6=F!l2o1tB+FQ)KR&WjPXDnY(#}{T!G~dpRS)Qf8XzsWj?P)u^?35_92pjK!piQOT zTO7_77%`TxjSkIsV6vY`v}0|dF!Hkc1}y`zltn8iN*_#zD>_fNa%E3T&NvKnBu$$| zdQOmbxA(t?FQ0lnS&vWJ9wS%S1~1N6955+MNQgxzeUnt$?nPR>zKF$1LqFh3081U& zsi)9CYRylTvJruwvbC%6vuZ;8Bk8RYy`u7aoWmjc4lTx^@H?UWG|p^6O?%M6kd{_k zXN@LUY^6jtsG0ED{b`y_e8r@*^$;A_&qqQ(~g3EBbr0 zK9|CFz+?yNz4)O(_I${D%7tCfzTaZqWRmjerPFNoXj0An2MK5n?K!t0_qXSBq1i+^ zZmAM(DLq=!K1)Hlx&3~)tXl)`z?wB{KER_e-ETGtQ_j$woICUb>EQFvV%yJN{OBLg z_q(mb=`H7;Z^zt@=q+-JLH1p5w43gRIqFZG9Aa%pE?>S3=-rC=JK_0%{>Dj%6CiOW z3{7unWqL9G0=9IT^EiLHSNS5*|K$h=A0z zgxICmDX&4+skYP;OH^%o0u}qasZS(-L3NXIUEyB%1kzTb$*DhVaQk;Zv*6?4-|y{Y zgpNEYjq5#-7C^$NtE=14#EuDb5QuMlP%KK+E@arZm$#JC*=$RL?^USpQ(xXys7HbQ z0Wq(q6!MzA5PZU88kT$I(ohhQ)=((SfmGB^5iy-*C)dK=Zy&d`-_B>qaWlRrkRri; z;D9ZX+?oj}e||xd0S)UiTG|KU7yxcD*4v0%5+riI9eEPWvt!3aXik|F#-4%%lNGBEq9{$?QxbF*6RS~w-HSp2sIk6ajK|?M#Ke)*ag}BPu$G6@ zJKzJc$qAH8csW02>&k>%pYn?-i;<(49@AT7&dSZ;GJVRA(tNjkN!%43zcnM*af=fU znQ>CGK4F>)LV@;~s%T|6u|P%iOzrfMHMh_!sph*A?GR9x_ts>fg%6T;l7*|QtEbbu zySwW^UIR(T29Dp0T(SsrJlbq!PcNuLC@HW< z*oS+%bjzJvx6lW4_Vr3zC9kVhOAK$}OAts5LPG4w)DA9JxD=!Bw;D0hAm>gMaG}!& zSkGBnTH?`p3!=Z;9C(2ngm{qP!n;-6X~qVDqxuRFJ)`u~NbPBR=6g zlAb6-cjNJsC*xSN8gse8A23MEq-p%GdOS7UDRZ8B^0cftDB~A`mKQqWS8C14mABF% z2*fGVA|K~R z{FK$uw=%?+;foS3A%56WIL&yRVY@T{$!A^weY>K1k`5WGp)tpd!CW?j7yA*ly#Pqs zBB@g=aDprtk)u_Xc7O*qBM|+m)+G_aG#of`pVCvZ7W*uxD4?f*zW*H?R{3QE`w@$h=k8q*u=v6j>IVeo^rIv+tlR9{OfhG;x$Ayw#I~B%k@)1qDX|1Sd_6 zqUi=F;TV=EANQU;b2!Hf&?A7pQA5^dbO2y&^$9FRy9wfZ9$Pi#_JPnaF_;A%)Z0{Z3Mvu6)xV9C4E zC9Id(R-4yeMpckMDC8pPf~?(KkY+v30B)HN7_ z9vo}9RPTX=RT3Q-t>v^7fg(|?_-Le$pbPB9Ru*dbRdj+I(L))uV$X`Q@^XLpTwc5w zF1Bv5gZ8mw#pue92<6>QcLdg;#7AYSi?bqi(M%a2i)cB&uMQ;dK>HC<-y<{lrYwC( zJhd?wL%YoMX(*qmms^eoWxOOeXlc6_??&0PaNu;v^*>Jh7tv&&sJv(f3mCAR7`o#9 zkK^6|_jDq^mcxWFj691nZh}Y}`M`*#A~E~U0-{BAKy_Bk#qC1=c7N>jA_>{`#js9jXnqd+8{GXSOsZ~_ zKPf9a50tH`neEEnP4&;UF%bT!aOaANSa{t59Y$A!^!ytvni)ze9E;+v0yseFW=ob1 zp45Aeb!*oq!-s=b&$YaSbbSE3OLmyd@?|(*H7p?@E2ucN921y#!(JFPfXP?H ziCSLCLVeQNf{kDA@!`V zB6agUrNA7e9B}O(X?Uz+uuM>627)2XfL|MbNH4HT4#c)yA?5djO{>-U<=Ev9E z0zeX9zI=cUOl+jQE?m?Bw3Jn##V*^lMYN}skkp|0fD;;cZf$RqqMvhmP(Bs9iXtas`}6QXgnWFcMe<3l({BD#lg(6|))HLlDelMvahTfN|_7cAyl> zQArH9G?0Ua^U?qoFEHE0;uQdlgo?Lbl^`%r!1Z95v?(J{h zzRkAFc@39g;~ls@WuJ|w_Rpa1K@pVUo;x%24r3w*)FmkG5~|e8+5yW84&}aAVJVnC zW5|F&sr;0oossybG8j~c-;Q^?7k)*hl@5kOPAN=7x5g!xFg)pD<6V7P`^_xAgCQp|a%b%f~!@x$gjH5mP3Ea9*nKzDuQ*&UM_gq}bt6|uFx`;*L(5gX9#R`H~ zK=&t1;l#$W*w0Fld}~bH`b@V6nZK=*$>x#K@M%w59qPI3J{bbE9I$>BPZ=c}rQ?PG zY54QP?Cu6>#x-NOAatZK7;aU#h%+a25T?o(jB6nTEwsP z1i@|)3C+GQrUV}*qQyf6tG6D!!tZB%1Feq_G(2f$4uPP<@PzUHHZz8heV3N)zf8HY zjbJKLIRB#(xVpMe!dj=?f6+`60L$T_p*SZK+&*+jk+juj8PZk?B?#$;4rYhQzW{%E zwsBR~n~TYa@d#KX3Bf_JKcGU09x*7}GF>P1vS(#ygw54wFTgI*`7A%wjV|dIu}}EU zq)9if52dtgQP=%XkK&8AuyepeHvWn=|E=6K^b8>qkv=Xx{J4I50-Q?U1M&t{Ii{-P z(t7$_mUb-mRk?qhR_1g0Z=j>d*H&|Kn%iQQdx6Ckk`FH5#RNIUSN`cd){b~j8%7Svg_FbC+*WJ zF6UA-c_Hkr?^j2x%tt3)?$dP?8_#NL(%4>r*)*iV46ZaalDjouY{LZ4VJ;dc0~pXD zgj*qV&t#yn{Dw{;p|!#~I?J?f9lw4hv#HzCQ`Z2PP$(Z( zDy<(!mlV(=OyBG}hfwhmNMDuy(g_}~GSZ_Z4$lvCmTov!-PA?N-nM(|uIKl*xMgrM z$K`n~k2wI7=NyBN96hCQ?pWUzzJ!v0uaR`USZ)^<9!Dq>g=KN?IhdkbVJMrO$j(rX zHOH=Y)kNZ0=KZ>e&Z2m+!QVwPH8)rvOfB-k`3e~K3d?2*2OEGBc|KSWOQ{QjZ@-@$ z++O-HQITW%6OJN6RUnhtTDfAt0JqFX@?N+msvGLSE`W)H5cKHk>&vpvli_p54Fe(b zGtnnfmyB?Vh%|77Pq^=RP<)XARh}xD?3Var9q`1!gSIJ*!!(p6fYuaByZrLy%h7i2 zYpK(J5+zpv9Qn}-Egra`UHGqMN6o1}H@xxmQ_4LhR6xMSwIgJ0HQN6JE2^tJAr z6ZLM{CCipoKHbL#*S3@;p+IZbFfa^b1H5b9dZE95XK3f+jr7oIdkb34PFV#=<2)vB z?FI@7?f_!-9zZiOb<&Q+fgRM~6?~cB5AB8MCwzk`UyZaQs4?(`uvE|2+ZVFHatqZb z!n!F#8{`1+UC~fpWO>A{>2X?Ndjzn#0J?Fx&^y?C==w|x-kyksalQHKT}G8f6h1(E zxNAzNKZ*4@kWAhA&yfFMAn)DHft2eo`BjOM^LPt~<&H^R%Iv*+_g=WJ->`wph+9&! zjbq)`t4~**UokgK*iZ2ThhVQHq3ZE!BzZ$gd z=7%l{uEu$Q0E`ioXK3LIhqJUZ@*$<)s5Zt!Udp=KMql~|w{AI8tuDM50i7kg!@bUh zM~PCaOFgj;hCw0(|00xNDb6e)egKw5_P8%Hk8fzu3@Devf%(LO#`19XdMPRolaRD3 zsTLTvo;;0HD9%g{vZ*+eP9z6Y;%ZQF5Q8NKBwKc1+SlvTQMMi@v9hp_OhZ8{FVa4l zsc3+R7?YPOXHH{t3=z#_M+#5PV!;#e8Z+L3imlvV6gj^9En%@j|Kf{EsV^IiGhC%t zZlZ+hFPyURSy>ZccPq-ul3i(OX~~EI_=oD0tr(y_gZ=vMR^MRRA1q+tnNklSSM)Ju zm-)wgl!M@!d*%!i6H~Xcn4X@VP)}K=abwLD-B?**W%Gl{xYLDhfV$JJc%<=G<5We8 zujETPyMdY6c+L#&_!`arBX(+C2B$-h17Eo3?w+w6Lr{zAtRv!8nz2XAKjLDYsDPTw z79!!nl1N$ZzG>e@q~mzAQA9;WugYbpV>cHkYUkQibG$k@0Y7h~7ua*pg)C+!t_GAM zc*Gs##FD!Hv;vR6P#f0D2nt3FBy%QkYSOpG6Es~jvfyaZnt&W>#Ti*SxinYIUD);h zuK`Bf4Iwifh|sb?U1OlhOVjd(wIyq7-g(o^Ro3c&;sW z+mB`r-p(6^b{4|pC`Z8L%zq?lXlr4Uu`ND>GO(Dr6t}rK97R1q;1}*-4$w^dG15qZ zMtT+et2uTgE)uPAc2|7t|uy5N8d)LF`uJ6%D3P!)J3lAJh!11Ef&^dd17X zDJdaiG(^{-(RIUy$kP_M*?iQ~!TbU0IL&z`W@cXTpcRMy24?_QiVBXb^F=q1W^-y~ z0osLW+cuL7G>|ZTqn*e{9pScl|67hM2onuYoQ9h>1SuvrpmphRI!vLQC%HexW$gXs zYbb23bO9J3hex$NupgOghASqO6UkZ4hD4L66`lBWB5;A=M93L#=6gO`FIK~h0+ZAi z4lv9@$^b&N*JK?lt0ZC?0y+yRJx}MO{Ze{xbQ7`@dl+1%xx$cxUg)~gE+ME`aC@%Q ztZ#n?m>alB1S$?qTG^8)QQ~dcu)zv}-0J6t?eNydF>xM<2q9uXx{(2&D0H#RYL;QV z=_k1ID@M{!xL{ljygyMWYSKQqe;)yf9}o!mr+A$IKp1>FdY}m+TqZH@X9J6a5e;#) zsoPjM`T(FCanxQ>GCiTpvJH$m51ug1ore1-Z(J*So;S-rqQ z5Q;}=kV-@3<$SJiJKlkTFqMn2g%54K&I1bh3g7PC6-`_er^@qt-=j1{q~>n2MgKlF zV>$bTO9C_za)BaBMR$;#V!gtz;AJNlA~>~J#GQi|L8}7IfHNKsg1rL}1s{`ESSBGL zNMM$W_f85eDz;H*>rk7C7RZ3fCC(>+B(nM7@Y&u&-L;48YjCV(fr8$I0pqCk5o^dy zXu{~Es$qcxh$1#NDqfVpY9y~jKd@NvZpzvfg)PX-i7Wx$2GH7e!WYI6!9iMD`a4|^$ivLk#p}N=-b%62 z2+ag4XLEPgeFUqTtVZLp883f1j&X6W^YUXMFFrflr#AAo+@IGvbglgOF3LEHK1~Er zB=5U7KImP%DQrO7p>Q#!pPH`V2^q7%sSnW$4j|*!I}rNll}KWYpZT5e(8s=MUWaYb ze2c7sLT7-EalIDXfIyF08{!v7gYCMx%GbGwJDgue8O_qidT8*}UX37Ey9O`9{EnQ= zREnh={d-F2y5B2g08S&rijBmk90ytx@+~AROm6Rs@S)xW1|&aoRj5n!Isj(sBY27j zV&d$8?AZ?dms4)2PLFvvU=VEP@FGg#Zb(VER%IA{LXtSMoOOUwm_t1d5NGGFb=B-N z7=WX}umkz}=l*qVC#((HuvhIQa5LMJ{=D80G;t}S1}>gj-r*0b&w$Ay5>O};^uLL; zP$uluF>4T`h0cF=LmhGaUij5O(IQH_Bz!F}P1FLGC9qLT2$EUURuJ@TG3qI>pY=FpLF20Dv2&FoGNc8YYch5rAAQ z3uQkNcCanx7&8R`{cE4Vch~Tzo}Oe@D*g!$9$uiuSTq1dkoE(;BU&2ZoAyAMFt-A7 zpYh1ByW81*UaI}6`-m>Pk*mAQ-Pv}1Ry&$PGgpcWQx_77$ByUVdYCaCJOcDTMbQpEZ*d0o z#zN4K7cWi~U2A;iwVln*ptj+| z>#b`?(^OQ4%IT~QNwNeyeQE=rA=QARz{mm*Tr-|~&37)JSA2;{!;7N9{c+AW&AXO% zN5_wPxvB%TVYU0YoilzB6cm^RdJKd7WEHD1^&!A{L*rXW=0`#d0nVD*eNh(tc5fC6 z?vv98Fj`4KAT2ldtm7OMhOx%evnB)H1%>NCmenqey z4!@duAh=pRCC1HJ)vec~%gb;1zZXC2CoLoM5(Yrp@+o*&gzGXs+-O?`1V<*5Nz6Jy zw(Nbkc@~q>5Q7KsVq4Ddj(op44GuMM74j%>~|ni8yOkJCZ(__lm~cy zFd*?)y+VxYGxvtesf{`nbC6l7%&*g>uMG3+$7m~|j+st}+c-#dwR z@z($OCInIh`VNg|mqryz|jDO9+Z7IX{!?uc1m+ zw6F^v&_vyx5#PofH|u%1e_F9_|I{hHi;%$GAN~t|xe5v!^ECXR-E+HtUpde@vZ0|N zjv;Hs&kLpZL^lcgjJ!A@)zZ6O-sbA9lU>o5fJtGpR~#?)x2USlb5YIsi}LIBiUtZL1pc}kSy=J_EDO3pGmRCXOO+NK zE9yjMiz>xX;cX+;O$ewyQo&VQ&VnydPqftln&JPk5m_gK6*M-t?rPI-xpm2>|2OQRGq*|sx*hvZjVe0 zS~PDjuV*qw$TL|54ZY*f4I^A2&?3kSmW7q0)nP9RXnB7)R(HUUGDb#4Cll1bDCZSO zchE15xEn8Xvhp1!8@ah9#>9MxNQVr0*P8O`5-NNIR!V?2>hI1oS?Is{3oC%{}d6b{M-I|P9 zWEd0^F$g9O;#Jv-R6b0vVS0G~em3kv<6G2m`I!O8|Hj<_YlTdt_#&J_!OdaR#58atv!n`~5bBj1 zzdA61o)EPe2<;7dc)SCBA<%(&`TL(yR#x`AQ>F`4TuxE34fz$$1Pm|hOP?W5YbY}+ z^>_5(xFJLLRE5GB;Pgn2jo#UGoL|uJxIKDQ00tN+f+jD@erN`WmHWb0WhkU6O^ zh_!~{>8P9ZboI)W_JA@G*Zct%;69D^`v(WlkrE?Vys4G>BaU4>v=_q|f>BC0wMo#f zf$c`H^?kc+CUWP=Y6XWnHYciE`WUBGbab@FY$hWkV+c?=B>xWq8Q7ZZ=(J)9Xxmwr z{Chou6U2IKYn?p`Sd^H4^*?auCgaW#{*bw36rbLt=z98l?=vsg&Dv81yWpOEu(t-hlBO z!R?W!BPbM|&SyPj1PJoQBN-kbXJEzLdNEm~;UKs~9Q8fH4$iV>(fSjV&f-;Wx4J#r%Bkp#AIht5?0>=h1K> zs`>NP#pD^Vf5>HGGFY24D{u9V8r|52p)zWTCPt6SbS(xHVLj<#7@}QU@p!G(e#6}S z6H?-R>qjm5kMJO%;f%gww!9u{@<4I>`l5`D5A;w^Ra!nsvEoq8Kdf3q-Q|hsaVyf1 zfH_v;*j_8}=D^e&jlPi5Qo;+##!0OYx|4c8>IT@XO--Nos^iux<%TBbU2DU|g38)oP)RE&;4xdw z+^%mG{(|}3PjrGf$b{$sISdei6gS9VyQJhilph{#ZS(KseOz(#5niN)ExYE~VURw? ztOpJM{(v6c(t8W*GMubS(am8#mNm)PcC8m*VXERouOAF3{-A#A%+m5!Tew*=8a><$ z^1TSILT*rvK^K4yq;S1?;mBGKG*-gEH6mah0~wX3zMg%%Rx2%)amis6Ddt15 zCZ)k|Sow9O)3OdvvlH}76KPyHk&L@A zl{4}%pwH?_3u%$s!^L%#i^2Y!8&HnE_nj%{*7v{svGs{XOq%1gb)y^-{Vwv`8e>p@ zWo0V2d`49KUIkV$76etI6%(X%3wT5+Vs_br+I zYqJvTv$s9=Qnif=N-~mcsg z$S{cMfqPcPoHWayjOyj-hH1Ok_kBqk93mGVglCyF2{k4no$9Db)hI75eQaWajo~gl zVkfC;QL?W>%f}VObeU<7L&bZ9F;8P7aLcM6m?$=+Ac_g=RpVH4n9gF$GbJZSHhpde z4lgdKi?dAtt`F_K5Q^5f1z&)nq4gt$XnoukAeY{zij*g1l^zrs$j1zffbyAN9yTn9 zz$}S;Fn*EVxHCW;Zy9r}sC)>W!A=2zS{**zmVNNk?ouy*ekTW6N2L62?d;kjj;YQ3 z;ikvku8-e~Nev1Qb~+y8BwDY_Po^dagU^n&9@-p>%7sw=I+-y^a=UD9eo)isVP{Be z$f>>nWT>2p83&v3O{g@kUcUDG#%N-~)%2GG$Z_jdxb3=+EIc?Z7I}Zkb>{9cR&J72 zCYImYb$@=MM6%Y{6x@`Kmr1!_EI&_N!_65+!j{@4SbiJrFR=*%n<@V{yATm$^>iESv0Dz%a@yX5;V>6gHP@ZLU9}6K&$+ z?lQd9P0gP8rrYwbb{w}KZV_7pVl#j7laxQF=^KPVV8eWFI8O%vJFC}sqNvrK@4+mS z1A43MHk~j&yynP}Bf6h@Fa;y^x?k>M1SFqjFr-{=e~n$e=BT8|YXoT`(-6|>bB?M- zV{Akb+OA%=iVjdh*;@Bta$WB0B5{UbjXrS(h?_)3&twz1(T219>c_?c43QRLQQS;) z2kOvb2(0=3$H&_32#k==mSg>V0^c1@k zUK^{;94vTWncv%awl8> zZev81fkW~A4H!j#H5D@V7y&Y@688KAYO zW&*GZIu5+k4Fs6_f}UNyd;k85#;m+Lb>@|;SG&8qCNEd74Bs|wqrGbLVFZXAd#Mj? z3Q9*c*iAub`cjbp+T~a~_BWQR<%OnH{-#DSskN7?QAa^HWa* z@-Yq-GWH)$lc2fuI^b)p{&X|NW(@*`3;hHnA(2IRj8+(?EuV^n$v005B8|M&8BF}T z_tI)5(O*++Q0nwug-cY_4%V#x!ae(NVxghV=PgMk1S?w6E^a9F=?&>(Fg}xtDY0FW z!Fj`rvYGgAP2pw`0%fYY^d)MbJi({+bJCDD8&{d}zn{+3)3dNFy|^y;P3`W_j`^kRtWQ1X&pM z+E+9sjKxP)mW|1vR2lI<@uW6hL$Psv-3pAUdZ#ep2z4oX9zG^2_KhDseoDYFH|xZb zf+jAc#@XGPjgn~Q=7hjQo(YwCvT&6T|G$^+*yktOr%KdPq9rgG0H}7Y@GlAG{Ky;wQHuZ}g^k{&ZL-o)!J&Q*ZT>KF@)UuFdR?0HhHta`njY<^J4Zg^H#T_C{9@bVEFw3-|#7PA#K7 z7d@<{Z;9#*yoz7NWnu9oXZp>Di(>}sx2~NrjsB^Bt2^$J-bx|Tp)@52)qGgK2lu}( z1*gK}WjN&3(R4NH))XLI#WHSW_yB7Xdi2KZq~7e36j(R#t^zS6jHa+6b-Nx~dx!C( z7^~C{Bh8&|SdMv6==g1fW{rE*vZYIL<4%}ZP}Ma8Q?D{nHR4v@u^DDBZ842C zw~%ee+9z6X;esZSi%Y33>k_JCPykaUl5=0&-vZ5PsZP*GO;{eh&qLeoqZ)Ez)wX+H zuP3R(27fk7l6`Q-U{3Wu-BW){f9GL)uu?~&_>PHp3b7H?S~h*0 z{#n_+6R#Ts*BAV`WMtENeD3w%QY;Uz>Hd_&w`IIArIq{Yn~cl-zv5AdsZBp5J=ivb z;qn;T*m|{u#a+1ef~551)ZJDnU}6D^)J#B?64xSxmM4?~HCerjIw+xvf44%0<6_8+ zgMcXk+yO`1Q4IRNdE-U|rzp}!uoKTi4}*VzRW5V`*bk^w*r|h;MsO#(RjhQNN;^1d z>HiMdkeks^Hj|KXO#WI<2u!e+8QnQIBNs&00PZnp8yy5*@N+1HUJcnpY-jOQ{o}O< zMGSM(Pb^_==34!editUQWpBF25k0_MmGyO9agGdBcp-8E9zj97w~&df9DQ5O5>?&yZ$bc1|$tKm!hO7hXzGSgiI-8qB1+Cj3J2z6@_jULX?gOIi`>)GBltg zQ>Lan^HhhB;r(xVe(&?;{r;XWcXj_9d++Po>ssqSto1-3nsj)G4HR&xQtcri6aet# zMt=n9Ajz!ViW@--=5RLBGh%nI{&yo4P(i%j{L-=pk^ zheBld?Z9X$^*|sNAhx2iqv0@MB zfycjk8&gw?xVt!n6{hgwqv!G^8Lpb@Y9rus|7LwaN-Ts10^y(!^O%nnc37}V zh47{KbC-I0+>n{y_^8+D+cu9oh0#4*3Krhz{Cm{$pcbW%3=cb}#wLJVX1uvvcq1sy zxjbhKeI$--<$+?FG@w9KZSJ&HcNO$y5+QH5JDDGfn>H_NQe-X-kcKD5))LxWoHpcG z;?k@1Wg+Mo-;nBA!s4IfJ0rqL4Eu~dsdKN~cjN>%U5u{P&A-+Cnui{%X{Lnthsd8lf8IEINFNCV5TtS&iu$q%GV6UV zrh4oc163_G0FTn+2i^O^Sl}%9M@=`ktgK!r5WE*hT*sAEb$t9;cZkb2T8MbDI`KH+ zp9V)l(X!Qo&pmHdLo?Kbnxj3_T3c4!5J3u4Xyd(Hi!Fv;(n`&BI$s#1iTVKhK~Mn# z9#8#63XU+#8p#!O*?*wVb*kiQ{1wXWCS$iRPnETOXq7?Fd~}w9NTBYq3B^{KV;*?9 zLA@ffbLX+LnC&JlkcQ)?90fAA;@u$2N5(ij4@2fD0B+R+0ko%$2_Ma!{(KLp{uU18 zvZbZF+sQcB43&~*qxfRtHfhzUlg(`DkLcPaCFMEgk7b1Lo8*#~@^Nu-k&<2uby{#s)#;ab# z)2;Rm@i2WXkJ-jGV-1fO!yG>Z`nyomf_5$nU}DqO7UJ_tv&r2H3IEF7GYUD@wL)FR z{FUY9ZQgyUARhWqFC!7eF=C9PY}+}eNy29JK;sK~5e{u{2_GV_*hAvld&82)0Toiy{a5~hl2vX~SLNiA|w1#*5!^6+t3MtI% z^ZC(!Duv?h=pKPmp0T$apt>J4U+Ti3F{J*?&Z2aCu}P6|<|h-`?x@^GXV>AvZrs={ z?dPP0pX|+pY=^`&c9Mq|DUN}9fs0>GQcUbBT{+uAyb0J<)B`$mGO;p1ghFk0#)M1s zTT(rEuoMiC^}G8YvTXJ48DlbNHztOW7|=z=7wkzzyS98)*22M6ubDDR?hP6AW&Y8i z-1A>|9Ag!F^f!SuJ^BKpUdw1l)YZe;Fw!F7i=NjpO@%Z3Ar-g`jc<6ccP~uguC{ZK z{flb8KkD)u)__2;`LSCF-9%TQ%C9b6^*_bwxr99#i86Y!U{fu(;&n`+4d0DAUmh!cI)L)RsZ*h+wEj#+mDac` z8gK0VrM!1&@vLZp8NLp_^X(xd$jf-xe`YoD&~-jpE%=yPxXG}cEd9yhf7A8Ywdm78 z0}i&cG({bU9Nk6phs+4pZVW7Aw=k++gwFJndEpTeqgedqe3YsYF+_9H4nRpuSuZ-? zpY*}`Hv44j7Q6XF5JaHmH+mm`K`)d9z5GBg<_^L2K4R@uIs0SvEBhsvi?Y9h#63yv z&t6^ETg^y7cI?=}7{~T-*nmtU*R6vF+e%f(Z!wM9>CYFTixM|^5IS>j&6+iXt-0Eh zRVbe;1+OpgHzBFgZd0sVVktoVTI&t$uYiqPd?QP{uQy*Ro832PzXONtHvZb`YTZsR zjAouxX-h@q1>xON;OT_i2>JecAI=2E*7TPfIC|}>*!_0c9UtUAcv1c^hiQn;v|B&U zB@zB&x1R9H3S`l#Mcfhd6(rBtj4S1-?UFI47x+dT?|q@2!Wovdvy%|BIBWn^7OFsn zKf6XTtmaSYY}H^4N?0SwHGM%@OE@hqQwN|J^Tb8cNKwe84dBeUuy0JBSOEX zuwUGXev z6oxtM(eLwKeww}2Oy*Q5Hz_lyAx}&{z_`+wDzbf;v#qIp%v@2S{p2o3!_^^cm-PWFOF~>Hlg3Fd`$G zLe^Z#PA?M@&OlznARSHVMJ}CRtyTNU;1)=ZV`-?xv|99$z#PGIJx0t5cg>f&QXd={FEan=+*_)a#5Tm*)JGE9Qs3|%&^lmkfL^2fX-Jzb*f zP&3YesQ1$iBuvR~h7r9{R*K`FS!AQ-(}B7(W>cUGcuLIyH^6wvl-Pqe>fo+4b}D1DEvnnydel3Yx25s}YGK<`$788VqW7`9$~t`Aorro%Px zR4?%7C$${oM9a`&t4yPRr`j?3ssoG)#c{~^6-KYxK1UJnvJe~tl(IK={XPrDzXnO` zjzB~=C*=Kwok6!}%RfX)iWe@V20(HF>$_c4A>tc_cip-z9KGO+u%@Rv|C=u&HG@L? zjrmCNG*z#GHt0pi148=ZZE_2}jZo-l=KQmeNo@TCUo;U54x|Ih$BXd6XC zPo^6dX1|;*u)m=mxn{vvxx>2un6Ai12FrM;HAhW;8%4;pr6ti2GE;8F>~e~wPGMXv z)8>Fv+`Wy`-1a8b zejwt__;y9V$2Qi`)O1(4gh<+6z1Sys{^a-<&n9d;KWsjr-6Ps9JaE%M8Pv%WYY=p5 z0NegxQIG6kl}A}s7U&xRV6W%61}YxC;kk9^d^%M^mFBfD*lm_~E-~vkMyqaZv3*07 zSO@*z0vY`Rh=A#yrmZmYoqYctG&_Blf@gPKDbU^4HytNBkV*i_*}f_C{{7AJ*)9=i zVIf~%1I!|kwCXk`T2NQ5S@Y%z1x&W=dx>FE0Aa;|m$?Z&=M2f=~6g571D&ZX^Pb&8?ZEyKleT8P6)EB zBl#1sR0}tmMXtol^W}StA^74bn~)zsnp3@R7Tmkv-=S?uz~pc;WVYVw(#k!U<6 zm|A4};+sZPVC%0=6f_`1eflYy*#64OAZTztwE{|ru_YZgbe^R~uBzlOAhAD%c8qx% zqOJ`}*n9)q4sqp@7Gz#uTDR0v^|VYgg^tx6u$i7Opu3S+5;WGs@S(_jp!jhKAkdt&otD9RfeOI!8R% z!y}$QP_B24b2h#3&+VtlQ!Kmv2Cwi}#dz?DR&5Gswv=A~=FhdA%dXwDIQ?(1aYFR* zi{F3rH$5BC{$Q6O7b9m#Z{(srk5Aj?nn-6XH$0UV&%2>c(_Yf=otgO*!>4w7#-;dd z@Si}I2f|$Ae$$n%wdZTP6lyPUc0H)wQ>(@y96KiuK!{iORM8Hs?^(Y3(8-f+hzBdJ zOpWfM)T%5g=x5QOyg8bclXG=x5iAJEpzruyNN@5%Ev8c(iQ7@Lm-ek1SLT!5zzot3 z*3!KxBKlD~>1xba+m=gcgyaHTzU17aojeL*QN|CB9Ov$xOy8)6qzO`szQ-+XzyxWD ziHlNC!v!-vJ^dzd$3B@-A(QJR2I{Qm3fg7bZfFO4tk@>=rT(Y?1V*whGt1nl249EX zYy}~*W+xBfd@m|7a!Gm9)4%)^<4o~=!Vdy@A`=6^0Yii=-*I#r!zYhb&W07tzE`0mq*)z#uyPGPJ zOX6zR{@8ai9FCd*jDV`CshOFX$>8t9SOCBwKk!su9$xDSE~C;{|*GZa7&}wcjZ-8L9e<-XdCzL z%}+_uIL*SRVBxzVgpb=>ITV|QUDPeuhQkN-F+`uXPWcZXmdplRLjT|r?Ua<1GAGl5 zcbByvKUpKb@959JKk+`sgez%L zVc>~8B&Hab2Bdd#_PCd>wl@A!acYdO)?z0*JK}S+;3|4Z0nXz88M1QaN|0Xvgoh`n zJ0R~yF9}S=yU#Gb%C%1Iv974n?IUO0ZWv$Yi%*b!_TK83_U>OW3v4#(pvplCLvElhcJ3)OHn^|7dPaKz@nPL`9UD=?o9QV>8zEZ= z*eW`N#>FX?87#zft;)(uZTAAS`?L7$v0q5r+uQqowp;A`>e>Mh?Y%bxI5YQzc!ER* zZm#{bG*!P32~VX#LKju*EOc+EVQ8z)KjcyvH^0i^*dID_eTUr?YY%rEffw|VijB@f zxqi51P+O6v2snw+AOV^$xo8JD6Mg+g9N*wf>g(!OFb~rY(sp|0o&2(k)}t6SGQY@& zot%b{cG7;kZ`iN_L1|Ty`ufe>R<3+yLh>(l);>iSkf*PI__AdO`e*K$u=Ol?5Emz$ zm4nLk=p#8|#fr!!M9H%z2ID6h+e+*cq#LIq561!}Q@xSlLgHFIZKI#!4y-07CMG_a zkC(Tqs){|^d))rnr!dP2kQkukYLLz&@Zm@>PDP(EG?!r@SM6F(*Wwy?ReKgY)A+73QJX|xlUv^mS? zeu^NHWhQ(TuFM|6o7;jYQs0AChiKe6iy9c3;QkRWbOeL|I38n&LC#>r@4GL~8^y(I zeZ4O)d3kCGVG3~sf$-#Z12eNu)YoUuo*nQgXm=z}I6+PlmlBWR(7*dHHac1CVFV#* z4_I7`&VPv6Sk9!R&F*Ef130nLA*0JnOG`^kd_CadQ`iAs_|w1`?f|eJAQ@6$(#?CQ zx33QpNhNgMLF<;*)>a>HZ^Q+JQmpSFss^}-aIwL`%deG%MMh2lE4AScyo4y>G#4d4 z#3XEwSLvoY8D1;~a&nEKUawZrp1!`WyjtisEjxP@92TaG4h#%9=KjI{ z5xY}ul?m;-Bs2zJoS&h2nv9GqOfxErQ}&ECE5!?Dxq@v3x2n1MB;BGK=YpG`3m;)~ z`5pWV1QGPsE?diMNlpv3$hC{}-UMOJnUaK(!>i>iMBSy@E|Yw>9_V>xit4Cxo%!xt#l$L-l86JQZI*LQE(7*nobfe3jow3p zm%tO(H#hG_w*fT0c@QHR%* z^h=Z+#jiC=Z7lf-8xV#lT6nv2E??e8D*hyIOHrcV13DxJdNX@j3HF)+4;T`TZkCjk zTppFe=HGJD8e}faX-|+WP~}X_C$P_-m_i#VFaCJbMm2Iw^$`uCL|_cMn?-Bx-o4u^ zyo9j1G5=Es7J(BZr|Vu;%4}(CYFf+BFW>Nqlo%Tt@){!Q6kA(bYRV`R{>|P#KHt85 z6JM2fsxUu3zBJT}I3T}IhP-}40y^lWlK)ulfxHdngkEy;lP6*}#%QGwoyAJLJAv!R z%j9N00VH#ji;c)qnSVIPhtU9<^@7~19ycos3&;TV)iz;(5)@WoXaDLI5E{;FWkJ#l4w(Gys@A(3tsx=%O481x z)5$r)$W1CLE2UsO2V5M!F}+EC_ipmbZB-^G|^Mv%g=}|8}~Y z4xN8R$^S9A{=a_U(EKkZ|GoR#{OXW@uH(W1^7r#lc>Xz&e?6dRG54a7fBt{|3u2MWG7tD4LJ5Oo diff --git a/notebooks/_build/.doctrees/analysis.doctree b/notebooks/_build/.doctrees/analysis.doctree index b15b2180c85cce823d07da57d708ea472a2bfba1..114328b638d40356eddd264da711b22289510009 100644 GIT binary patch literal 105666 zcmeIb3zS?}c_xZ2>(!EF%QiMxAdY1Vb&Kwn)RO#)4Qa^|mW0|yl5K&eCWIs;tb4P_Fe@x3nLxNqfHj$WGjIt^GK-m;n>C&+W|+*A zO9ldK*1F&K@4e62d)Mn!t1UlhgQ}~}V?X}=@BjV(`+e*G{ynd`<~97UeM6&Gh$@#R zv-y0bnhzVx?M?Y=u2l{z&E=0QkNw>8v&*CH&GqbJquQ$H!sYgB@I~yp;PL4*C#H|QE*G}9H)mqN7S^>lXn4-FuPa5BaCxRRmu-(^o6UMO*J@%N2={eSzCjpo%$2f@ z1}@_J`bxH}zHQ34YRQkeZ0_R0I=|u!rcJeu9?Cc3*%-a7{jgY-RWlJcI!+e z?Az^x-K~N4q}qpt_3fFxdmpJs3lSD3m~J%zz6POutc<0tR)V8|@P+YUx>Sn7;AFN^ zU5s+ij0f+IE@p$Xt+}vNOb7W#Z8#O~iM!w4(YXP7mpd*Dp0Jx74Enna=w&DZ`ukQs zO?N2H>;^AKJQTAWBxBWDl(P^~Q8?h}mbq4`6gD%ZsF4s*n*wg;olMjW%bl;s>l`DSGQp@&n!B-M%i$AGmut>!W;oJ$j1r%k8a^-6nU! z&tU_+7vyOG-tH*8XV61SXz3!>@)?6rhB5dPf4}n%i99-+FjP^<1cCF(LGzx#L%)i7x4db2 za3~B0!|Tq~vr#3gECks~J~$UPn*4q?Y-KFR^R8Xi=? z*9WTi^?~XgrMRPsy6$MATA2WvnT`y2|Jxv-5SRXQCoYZpn<@n|-HJ&I{v0V)t9eel z(Eu#mNf)<6QtUnNsr`NCeJffN1e#+9oUZCXPqw%XO{bV|aZ8HlfCt4*^4tm_v2J?7 zpZ3B2(>~B=+Uv4t&CGFsim_u&ixVlHyP`SnIGw!|m0RWDVIX=lIFoIL!89cK@M4(v zmi)2)bD!!n_Z?-`%S3^_Okj6~6Is)XfytQ^b0th3N%33)lm2vq#02}M|3f{9Ns7I6 z*NIBhj3AXg9yMCoQuIugI#461&i5oI#Sioc^T9q~z6(r%-A!C{x|^uZcOfdp_oaX% z;r(oi=T;7)?Z>P2#cVwfc2&|UqQkC>pXv{fLw(?}eO|QU0RKM4b3Fhsnu1i^ zVkVvw8WEg^-KFG#V9T|AnQlMf^%gU8)%-+Rnl~`mgoe|w-1YL@DoCu`jgZWY9n4*H)invS~+!;Aqt>j9r2JLGu@jTxj zjQzyZkzCTK!IQ^Q%$IxRj6CP#$x5WrT_+krvk*0c#X`0jELB?pG%xT8n39^+U_Pqk z-{wtuvG0@*_LEHSh#C{@Y=WIlpfjp@(%D3_I>F9j0j`-65>Kaij+j(Y5F1|i+x-Lq z6P0V(TrIMzBTm!^v1qh#qq*SO{lvl1*BDrQ-MU`lL@zsFp-oOe@4=Ce zD|Y#sX&)JtvAh^&pI3>RVOr=<@%WQaey?Q#6B7nYiZa+Jk)SinTf4Cb>@35JVF z_!D4VF;6Rk7|ewbj6<-NFyJPX=Cdt$Q)F0Swpj?Girjt-Iu*Fh*(Q|M#&~ccf*Boy zsb0hs?mm3q`2PL-gIZXH7%zS2s>*u8mKXR?g#QpST^p;`is3+vUA z0!g_FbJlxun98%Wy0;9`5f98x8duBtkF2fR%W>U2qPfT0w}scVx7I>o_nAxBXqHo; zecSz9^ZPs2TzP2VJ&P*hX-xbG#e-~~?$KM@H+ZPx4dfngAg(iDw0)h7rhOfUplF>% z--?I%_KxBK{IPWp`Zv1?AR90<_)0-8V^cd^(7aZL@q1bK(%y(m&7~TA(%00M+gtF9 zruqm&SpKlwgt4K5uY9$ctuKVl<<4n>$`$uMrUD5oE;kvv{_9PJet*T4;M2+ z0W-Y7$4C>k(bc0Ac$_yfbG6wqkSo}GAxvrmG^reSLj$%zQO!ZH6=jXdRVByDNpR$>{SftIvsCwZ_=w-o1uWdQRzLmdIlJ zrDN~t`43|yd#xjY&|?+dMI5k(dI{H7(4cJ36*TMDeqFC6@%DAWU)asbIuX*3#(irZZDQq17iwtv~3 z#0OVz5^oxS&_hiI6kjNqnMM5D9sWmGZTRQ!#Fk#$Y=bwOy8s4_)3HcK+Qd7+kXP=2 z-lSJ}^;Bz+JBQ3SZn>-a@=H(;&yle(iU5pD_zsi<@E$~2DIW5|`#xT)S99=PhWW_` zMD=IFdI^knk}r+F@V;LOb|v?7CGgPX?k@XY0g+GHdX%lmo4bTrTd!Ws>g#CjVw4Am z)q2Up;;?&2>sRa*4*6KbS3hSbgA>hQ5voG2iU1Tbn+XRbo6AA)i=c%{kCiIo2cUjM z7oikkKaq2{N=;FR4jejYxIA@^d{|$oa`DMhs}k%5m8@x$B?t=*8uA~mHfm8bTWWB? z?`|Om3Cauv5sC>=N)GN%-RMyRJvawAWHuOI8xI~SMAh-&(A43ygM8RPJUCH-verao z9ksrrqJoyH3rpc_G$Qif8z!4YzbR!w$0-sx< z+EQj#ut{D(6aFUYX3SmHP11F0gEma3D(^#nuquyT*jtrvzwJm^sxFH1PPPk2%?0Rv z@MyvGSOt#}PnLGmgAujrO71XLj{A*Vd&TXz;@Fn!`mM63lN2a4y}Qda5%Nui92OWj z>=PrB3gIl?jy{ai5l63Hul1)4jF!0z)=TZ%Rrvepp2^956ha#6bMnldF$08tkGS)@ z6Mfq#*kRM&1c7X!g{6S0sJ`6Ze5qWzzk$`k?@hF%hIQr0D&9dzDNE4Ye*(STsUhdL z-X6(?rBWuU)LKp0{H@UO_DE$egBTP^plIJHkLBQj&**r6BI)bd>dw>XLE+Ml9=*V< z#`l-o+Y!#6sfT44nJ22PCOZ{>g0Zo=oo|@4=*jBTHhWCFNHZ+gIh>RICV|? zdU>)OHnU_pl5%hzx{^GD>)rmc?F|Ww_PqG&jL){AF4J6Tw$cD?Ou0>ac5x~zlCenCJQicy}%9-+M7Ylzzuc9I2 zE-kfjr1)l%-Oq3yaIl=LBf?T+!jmy3ST2@7Q)VU5jXCT+&=9S!KnZBLV%Z?&#Aq1f zwpQYagB@y#D-P}&r!8(F1QDPOG7G|1S%8d75m7u3F?rK+%w+Hg=v;g?y8yf0f;c_+ zfY|szQX0X5gO+sJ{%!x9FY3m4d%$xnq zo;{a=-Y_e3pKX+?wQ!c&my8@kz%xrA{jlnmBLq63e!3K+={3=tVvxEjTj9y~ z-y2g4GX${~t`{^MYLM#%XU!P(FL#JPznVjw9CCNKLou^8^wr`iUDCH8#n_-q2x}Kf zWwgt+;x5eG2sGy-?9V%cv*(UI%GARBQ^A?w?9nqP9z8cw&S#n=I>7@I!F;PCnK+~Q z`LXwm1o*F(1@+lKy65tqarJ#v68882Jhw2^WNWZBJs98tT-bB@Z&moDyvo<{pR_Ov zYB#!PVqyX}OJQZ9SzrspHE||Ho=`X%kMYuYur&4_)jYqC!w*u^LwR;Q=o}%(CWG8F zHuCJqh2kDo1B~+(cu2z@2jSfwj9h7%A;em zls)SqoWd}&3sas)wx#AO?n(r(u;K}X*^nAddTpMSMO%_4l*Fc_!T>MPwm#b^R2QKq zl`~SzhYnr$>;?%HZ*MLyHJZr!Y(&e0i23Ie((6b`zXdXTS*XKh z?25}E1eX&!a9NW9T#|sbme@VYaB};QzvPB#&e+(ic~1Tt;|F z>2hr4WQUn~t4sVy+QttV0b0jb(;&V&P2x8j#h^?C*=yDRja;_$^~(pRE+4@E z?mK*W|K*u!d>oj%M}5UF-Z`Ky%U!wTy?+Q#;NJn=03SJg$Z6paTfqN&HgQ;*Fi&6z z2l0<@+;jP0ax1>#4d8A)fc>fi&VUW#b>89Nq~-XE_xinf4ddUR0O0Ps{&w(AeThfoO`&81TK;4TP@)%yL2kyzUG z*1dc8o)e?M0R$564fdiQOKkd3CQV!r)j1B)n5Q>L)L@uFRUo}QKqK$u-Us$cFK-p1 z#X3ssP?5>@r@X%BSd4k6&l4_E{RqJ5?GtpAzzqQZzHDa^(%V z0G}KN;C+Eo{2QQ9JmF2ww&04#7u*3nka_@ZgVM##c*iA*{SexvRrV$UL7_|4#vzNE z^hxsRUFt=9sd_))&i-8L*(=A?*EnQ4rat?RVpH=wbsIqYB=_e(!YXJ)2nlW)UL=)jk`T@-xBcJ%@LXiAh`M_y(g>yh809 z>92IA&;`RBcWJ*dYuxP!iK)1L^&mppB!bh*wQ9YYMT!o(Y9LcU1+od5MNO>&!oL=? zunEA=Q(+wx^q^zi%!J_QS`34^7OLL`6~@YAIMC%d5;ID%HUv-TNJ5#8+?PS>kyk4v zWqOEb%URKbCh>R}7h=dvqcUUU=b}Z^HE-Q@>aK}OB?fhf1S8Wa!x#C8@rMOS2{G|y z^YB(d`810Zl(Hxa#!F()Fv+**2@|_OQ0NSS*j3g3sVi7<&pR>aA*Sm>u`JAnFxi(} z94~rJ^`+^?mGb3(72~%VinvnlSs^wKH@yUP*B>dLInD;GN{Er}!On@+pruUTB4~2h(es z^7`gAXX!2#RnN(!|s|ndR!w|Cn=dbFue{mMzU#;c>%p?o2Dp={_idkzzGY69t3sDl1 zV!igQB$O?#n;466+#Wzr9_X%vqY~xfF#GwN8@aNq1HLS84=O%E^z7a`Md|$HLo>bQ_Lx zayRJxxhir!kqpWtd8AihMHG3}LM;>QLEI@X(_0uz#Zom&6c!dIKy_76dlktlHAUb? zkW5!f>B@O1i7$NJm~7Z=OvA}_c0dqD&?uSWv|=rINy+ZoU#{-w_}T$?fAVD@rYlq zn{l?|?eGmg3?OsIl+$Th-xh3xNoHibmxk({@Ne&n+4_SzBHBbqWXw+sz=qKzNEEPiONqZfGEQ)(D z?G3Nbb7QKC99f86)Zp>pTs4otPZ8ue6kTq}v+nk)&=DMG-nyvcP{UysCJv(Fg9g7gdZ1LdCH;v- z6Hjd0>upgtSEz3Z5I2GD5F1KW`r~e|OP6}3N~D`Y6LxF@3x6Dfl;Xv0wpTSrsH36@ zNR?IUT<&TRExrCB7^>V(2~SNFgJJ+;8E>MtDYor#h2F}*dh%{6 zAQtaVCv8Z%Y)w77l+J#xFIw5o5hX`FV960T{exJJ_>gYKkt0~YbXw}WkhSJm$P3av z(!0Qv+nz0A0GHP6)ESzWZK8|*Prr?z+Gn^_= zor9%SD@MWaxn9%FV;H;Ik0x4y}5_-DMr7YeF7->dv=nBg| zmzKuB-kE9CaL6cAOtI-A^YYcye1eZ<{(j(p(SS+8A1aHX===)Nh?ECOSG`rQVStF$1Fon zUc%~VDZ^ALN~DJ8fk3N_6feB*V=G1rd3OylJZAGzk1DvLi{Wk_8g=1rzs7cyUWY3XTt0y&e8Ht#`RUc=Zr-ds?zZboBDWZDirkV<$=$AOySe<#3?Mx}laVWa zme6*KpB-`dnG{#*X+7Iun3u&c(lM{T=OAdr>idifhCk_xWu46KXDntng({{x^YiPv z8Hd@um&^_smW$oWzmfmZZtp3~xQaTOqPC(GoaSr7%(6KXT7;ZTp}Rt(beYU7bTsAe zh@@I3+Cf=l$?epS)mmlYjEbvTPLEjUMX60;$O#ul(LJcF5qO~}?~5TEDd0L0%UvRH zUa8p$C(nZEXxj@_!22vxzI>8I+6+u?3 zva>-JQI49bFjkX?s^>+?LU9IsqMoPfy|0A;q0mtoA<6QZ)cH%f+3}+8OC}^H^%%SW zis7RaeAJjU;fWE*%253gS?n4r{)D2U$65cvqj@eXf4x>zI}x`FH~%i1Qrvud#|vJ! zf8}+%0*3w{(1g#>yB(&mstmo$#5|sU@vb1odS38x701*k;1=txXP-|Jw`_BvFTTW;Tq zsxfM`jeT=fxaywSCRr<>EBvC{f*qI9U`S<{wUf=gIje*MS&d z>Kk)7vJ`;~S8sy1zIXt1G3D)giOp7aX{L=SBuU3y;An8!WfpP3r2_awR9;9-xbfwT zx~zTPLgv_}0yf$+D90smWL-Ll&Pn-p-GSI4-h-kY5aXVmJub)@@HZ;TKN~!tpJIP+ zg|&gjlWljXgO=hlMR-pTNu>}x3TX{S6eYUB)nRYidf+dEC`cKdVz;=$;I-j|^|cBsw@BT{DkNckOGN_fh{cvm>tbHBo<`v+i@5>@Q5y5a&G z)-Dqd9laq$-VoePr(GuNkdX0F?A?YN)tVQ$A`+mCgK^B+cg;j&Ldx*+qfaNr7=Z}gD)hzFow?K{Vz zvH6$L+zPSzxA5v!z~*Zw2d;xn7&xLdWvRc^7mh>X$_B*@yro(pzWA)83%-1dgYS+n zN4-J(Y2SGcjW2(K=2nO=e}PwDVtf%nb4~2)F5w{#U&+z$QGCz`6y$kCyMe_6d5 zdD)hg+y7@T8F0Eo24o=<312dX%0@|?iLrQRgt%Drg`(FPXl2AVl!+>bSvi255}NWS z#3zG5o))916X}EJ5dG*H7#HRAy17uxb*_lkldbu)>q4e>b8)+qsc8?X_VmSrp~=*p zXl{jM>HuC{Wir)NLfV`397VkN^~vDnjt%a{F{3xq&)|(C(^lKG>&E$uUK_`km^wfO zbw_#3&3=(EUZeC-0HE%tJqGwG34~N+u>aKN!LCB$m7Jhs!Uke{JIYZqd6!!XA-Xsr z04{~5rAA5VQ&F5^#gq!K8Vf=emJno!Kf`S&f6iUD(^=wA_wD3MiH~ViGmCYFI?p@N z+zPi-2CuI2cDksx(`h|N*-pRrO2rX(lbJc0bsN0N1Q@+H+4+yb*w|~I`I2S_46}h| zP_eC{>xL6o0nV~lY(9Rr($M!BH;C$I z>R>MIVALjSw520cI!C4Zgp1H}TE^@Um!)Pdx|Xy3NH1dVCA_Vgo`mzLFUOO&u+I^& z!)RU{0!yDNjH%v4I1+2bhsNA_4M!pT)#^eaevVtBJB9G|f)D83V=(OsDa6mBxfN1~ zU%;!YOd&2Q3h^F2M^cFMPh%sjAvnteTulUb$(vaagLH$*o2+CX@^&&dRC_jNa^xoB z8yJ9rjfvc$1`0=mHt|Rp*|$g|rIbMPu_-B_!uml5P$MBp;ZJPU2yaZxpeBd`Q56i@ z6OTTeC-kEP3$)9^wwul6T0#%wBwz{JW1(zBEP@Pi1mUGDvrF@G%O!ks$aj#l{n(%? zq`+)URu@1P6^0{`6*vwFPf64ShT;y=P&&|G&a_)bQ=?U5Ee0voP^&YGG>6>Rj+O{f zreNvwVZ~&P+VFBRDg!?;6f^C;drcx#Ja1Iq>0|+qU_=nllov2bl@bp@5)A3hXt7$C zVh9GdG>fN*5-`So~dPUA%3D?U)eO-Vp$CkbL4cPZI&K{dl!5 zX_aSj7KkLt$Jo$$#|6l@Qe%UPp8pJ{OT!T>_PqbMVl&k@5=kVf*fUNd0|$K6K!zBq z7zjmzc*!Ax+Cyz60ttU2t*=-hVzw)9m=sqr9;%=^Mb&sf9^XdHotIGR@D3d1fL=i< zQ5n5P3JwC#%v4;2%1a6fHUoALk0eeRAMb2xcJ_%GfN zTyi+HVeY$VZiRZn5Afj}?)L%gR3%tEzU2Rl7Vy41onl%9Ob2$X!=l}3C5G{VrR zI4PWw5;}s`&;%`M=9akWaga+1k;sxcuXeJj;84cdJ$RK;XL5S8wWmn|Bz9KzzLtaI z1EzZkkVvjqAj{4nDp+Wd=}`66L4{0BEmIW>q8iVo?rynL&b4mpJj7s`ktz_TiU)9z zaValDAB_OmIS^eq24~kKG|w&{Mp(zy#Sr7I%aq6PRa6Ng-K;ln z1`SN>dJ<32GRZ~n&D#F$>AX1^iN+yIN2|A>82YSON>;EmKdfI=P;e3w&V^5kbkC}i zdnlxh%lO1^>`$nh)GVRQX1UiF$*4s}h*2_74jqO-LEl5IB(({}xD{`>gqt2+g;9G< z;|>qBuCsL{nWB-y>`U${jd@ME{Kpf=O)a^PCJSYTBD8&r1<|2~ybj=yu5|NPift?9SlM;3yf4a3CHz)@aSaqM>pbJ9mg( zsL>(nBX=rOsvJ|3QH?w>A;y!8d2shzcjGbsr#RddvgHjoWBd1}2W?8{`?vWW- z`>`NttdgBX(Xr;}*a%whG7MZ@#HqodoWP?-L^h-ciGzg@FUt%2WO6uJd10TPcqZoX z`eAiMk4C)nYXBswtOS7W9(WgaYhM{OIf$YEaXO#;fryWf>)r3SIplFV(wgEfXM43c zblL6KJ7u?LhON47jVamuR?*pA*wZsm+f>>XOv|h+Vm7tWUPTB4=Mr6!R?0Zkr8`^1 zqpDONn^Na_QK%JDDm*Xn-WaPW6;u_2%)SyiRy%q+=?TuvB;|?9*uacSPsCh3g$Ryc z-|tzBi1;w;Z{k43~aXr+RdyIbEg z3~v=N?Xx&2wx5_*f2bwaYGM!QG<^cV+DcaHi2;u~(Z<9;w|Kx1Q4MF_$MNLA3!s6N zXB4f6UI!p9N)D;aM; z#i1F(jw@pb)|k36g!ZYPM<2w;Fifdq7>;+SLz-NA=PS5X=KCC+pzT?Go^V(FE2(!v z$~yGl#G#m2{V&C9<(>$jPe7Q8HLt=3cR=6t24wj&+;@}X6wsL4#<#sT`l?Ify^v8W zEHeY3uGD*QRuFAs=kF3cY0eI?I!Hi+DRdmDVD1{-#0B5$dm@Y>3w@q&f%N@hfYf&y zE^;O(9%x)lF1Q1@b|kIoVWp_ocV&c2TFcUPC;zdOzEeklOd+ErHtn%MfSt2s2sBIg zsd54OsA$%?S>kEY5R_te3DGRB;0(5@_Ph$bk&r$pX0b;^IqMVIZwc;zB-W;v@JFEx zBPq4muT<-d+3%}rPA*E_mKvo@T=NSb=^`c-_ams? zKOZQM$JT09DU~ayY|Cov4oEP)%Std!4BMGRE|7H7;t`Az#|J%xKgEN9hMi}+o6sSV z+j;VT;=sJtT=DpeJf~Y%8Bp$OA0B44?L<<}9z2Tha1%+jEaoSY>dQS7Np*XMf)K{w z9jpWB1d#8PgBh+pr)p-~?#IP+uGvfSs<< zLD15*hfW3$tD;+Cl4Vp*3D*AZBn$^8;)MDZYKdw8Cy#<+eH7TW=c9Rii$~(xYUPPp zvC?V=pW0dH077^>7C<5N~g4II}c7Ub)L#sKwYsY-?*Nol(azd^ z#B68@MG>e83CVN9G(gl^IG%`=p-d!TOh1zPeR0Sdh@BJvC-sqpS~YR{1D(E#I;sLm z2$c|@j@6<|__QO4WtcF6IfRtVM@^xXpk{F!C5DQ?S*5&2V!_MTc@%U`vhr0GCPQ6~ zD76L`A1>}T{FPzwT;%cVNZ!;Q?1qT#k3numbdJci%77{XpgmpYI&rMi8O!J#kEMd@ z3ODVEhFB{#!=wC165xR@>>7f^AL$}3Ah)eNvpb|-x+jh;x05TJA z*0YXITskj_7E2S-cH2>CLZwjrXb;hk#?z``+BR#^^S%p-ucU^A3UB)c=4ry)Zo;8_ z8e#vLZpNXU$8FyL5l$CQ=Rps;?8dC?cEfRKAWXAFX;#>vSzXgM@6vp1n}Z`SCT*p#r;M#IoA;vF2x^57-D=HX7?Zqze^Q$L3)iT#3R*S z*gT4xG9zWFOAv;6wrc=^xtS4)t>P}&lb)Q0K{8u?VYMfV9`6)h#JTA{(o9V~+I?o~ zo;@)wB&?x?S@rIK)4RZi+^ZKQTsk!YqQ5F0(WxgO7vNkE%|!e*hYXRC)|8I4r&o(Z zdqj6#nMc$bQ$nCE3+QhT_J|%-9?^4AK7t`rBuQ?1OYo$)r^u=8OHpb&MMs@~=bUne z7vO;5*+{-wfx#>cA&rkGx>_#Rv#Di?lzy)x?-lfVBt{0;XQUR^DD=xTuCGy(nD=&-7RYtAQ*bIQea__;33N>`s4YPd>qyEii!GG@IRBeEKdR6)>(N|G^3*}N`8dup1|*X+%gh$((d2-5V)M zH3v)JB99`*U*A&?dkyTwbkV~!9W{-u_$M0%E~UjmW62lnr`Mu)OAQonaJA2xEM{=4=(f;q@w1Xe@O#eyAyekaQB z`$`WE#gK%J_RfJUtamrsTLPD%pN}0Q^+9kyc!y3p)u9kxNH>ufc zN*Ve6w{M{R;;&-_=&E2I>ZxFE+Ui=*I~7d*ZlYk~g1bL%@Y-;(+TJOY8SZA~365H! zt{Ff#1=HM-vAMe^R% z16b)MNi@P6@+i(=NhM27+^E1nQFjvK@hXnn354+P-j+mVg}P!yIB{LpGu8L^b}ji znGgb?s)UIXg}O}y_X#SdULdNvgHzF~wVtu4x>bWugto1UpZ_mV+f~fUA;hyo+>fUOQlSrPDhV^us-#q$I#Lfwoq5!m##t^&i_8!(fg2K`W`f^P6#<Wi23Pz!ry*lWYXVmEGgZ?9t=f(Lvgkxl1>GZdd?+o?i#f7Tm?%jAa+-F=U2 zEw>R{Qs@)9`(eDgg3w)mhjPnX(Yv24$d)(2rZ{r`cd;SYb{1soSKiKY8G%_z;oXT{6b<0e`g6?mRV9mkY8=~bK{nBL1!OF&R9mS3 zON!cx5Ctsfsltq8Ew>`UlfkJHG@RuG$j6c^xATS8238GVFop?n8(KslK zoq@>4vU`4QnO@$@{%g6nr~I49Az+@aDdspdwW_F{@5G3Wleb7 ziuz5u6$nyRI=rHWJelg7-as9x2nR!Uc{0yU7Mk?_H|B!zeeC8jtJ7D3k`#Bu0OtO_ayK3r{rFXD`GU3auBHKiFwQYGsm z1BvZ-O0$kD17?x5n~PAZjC_<2CabAAq`of$pgXYDRLOccrDMJs?9-zbEkz~42$wUZ z$;J&|mwqAgM-{YyPcTxyyW6aH^<*)OFK_~HQ5}dXA#H$B~Wk;@1XoL zpW@YkcP=3{Yn`5ES%}h=X8mm-%uINxDcg?`2q-R^)!5%j9KijABXX}{f5o(hbj<7( zfju41!N~Ebjt!?u7tS_Ym2h+nXRewuomd_+)p__&m2i(EgUi`c0MZ#~Un+NEOg+cC zQmZE-BwNfblEgMMWX7|c3ioj|uk9ojMUWsn40bOfG_rhUf_9a?60(sMDxeappdgTR zlqoKoGl@9KIO;=4jmYTXB93+iWy7hp$WFl_xI($hEzH~>g(<(^g2Vv9!Vq001tm1* zi5F=>Ji>FEM|j92M+QH$)n3&BkGnF%289Af&@(?>6yM{Gsy{i@vcfn2JeC#Atc2?gRW_u2rjT7Q{ zy|b6ie7vjfjQ-Y8Ga6Amx7S*I=;c8@+!>l}ke*Xm)9cD9{sB0}37D|!JbMGgzboBV zX6r7D12kAjA|<^>2oVl78oG$6A|aM3iq)c!HS5ulNNplsk~5$olF{UFaME2ki=eON zQTVzF`v(TWBkLIy2XPT3U)83s;ouZuG!CayLg`^;Y6rVfl0zZN75Fk}K1?U_rVI^5 z<78Z7J(n>_=m;e4ScEr^SQQG9+Nm-)w5>;q4w`Yf(^CMXy(Ps)62vp5SV62=B7 z3F~-c-xcz1Ec--kbf2w5D}0T({8}B23Rhq%&MFI6Gb}tXZ{L|H5j{`u}+~ zWAdtj{1dAQ@`D=DhS^=KHj{t6nltGzW|$3?p4?lzu^YK>FFye(8kDlhBM6j$E~F8O z*t4-uGczw4-Z+K}4~tR&8My+9SV(4^cTHzuRLU}F+Jq~Mmrv*yHF>;s7+h4R5t^OR ztTWP_EI^Ch37xyW_vpM8`{y3qU6IsDnjM@-`*p9e{&Y`ELVuaiJu?`gdpMy*mr=Va zpmXH|Gm`WOV@;zQ!koVkHdd^PSd7T!Sr|AA%?w9<&BKxk)sOQ{xEgImRa8T9cp9A_ z{@E7f`obY_sH=EyOp~bUO9=tUBYc0t;`>skSXDHJ<%mJN2*{^5oF(vd52C$M98rRS zu_h7A{f=Z(x*(lMEy_GZLZS_2sxKB602>p(J9`p~92q>iPNoq^Yym|EN;iwpF_$LP zQF6JgQcxjzDB*+WWzuNnIF$58!Q4loI))3#l?@IBS@@428Rdhi11LjK#$9-Q2%K2l zfl@vO!375nV3{~nbkF{>T^&sea)=0via<%XM#&~)C&9(4XtE;9pu4+HRVsIRdaW)> z1G{FhPzR$x)=HLb6{8us2G z6iTh+Z(mK&{yPoYS1&yn2JY>3ARcDV%6E6O?pjUIA6gNSatGvZ(8Q&aM`&;*jB9iB!t%SeC`ORx7O+RvlKR3oT=kbFT_ihqf(hJSu~D%Q2{PRs%s{ES%%4*+KJh! z)1YBB4C9BfjhJ`h&ENjLS191TP5XHdP17qfU-sVYOR9?6%)IN@WBttZEc)3_!&ka5 z=Bf?)TdO(f!)nkdxi$=ft=e4vay94j2D1QNk=~`PX5|c_A54hsW!JGdC=oxf6#neA zDTRMwW=6+7aKE<7bD&QcX&io_&m@q#<>FA%BC$G6G!90_Df}l>g*+GWwjTb5vFO7+pdgd?bb_^@*$Y1)mV25YJrWno0FgoxI?2C3J zvWN$RDP>KSyrpjJ1rhH_P2b*`PXO19nKp$;la|up5S#5LrWW zCI-p!`*S+p5zWa6Tc}x_hn3$L9}QOvvQk4u&r91^RT#d=`FI&T7M*2ZO=l-KF@Ml`lo<#b1g?CrLk6 zkyH*^%hWdO_xD`}8<~l5T8i#P9Zr%utPc5JwF!P?H79t3nqbUQR&A8OxtgPV7NdL# z*_ca8^ag`;GNVmhPZAi?bP8*tx)1&PGKC#WlIs1Q$#>Pb{?P6eJ5)EII;&N^lS;P zXm!4til{K1NxGp)+CxAaW4kV8S$Gdd5n3f6d5Mp;S*SzkimeIs@xr+bxrFl9Vs%`E zu(;KvGem8`^^HLwBU0r_ida*D5Ytk^oOw2}V-R{_VyrM@5Wt9Ng)`uD7w|R%w;DC% zeM5d~BFqn=a~cHN1A*jn4S*QDQW-Vw+$7WEh+q^IgV42q^3Z-znKi>vyws@;M{e%> z3gxXoB(X{*Z+)dNSsPm3`VyL3p}h4qyt<0=)}GLO2+yoVCcn6a?>Pw!9mY#fz#=zxz#C_ahv4y`eHv8@D4=`_^KjIsU8~{HlG_t#ZiSLt zh*wupayxVDCQ5Dwydn!7qxy2in0Pf7@Y&Q0__M3KfbUuP0)F_#U%*|1xA>sdNo_Iv z)xLo3A%zRpDJk5+ymx77=tUqqt{KMkYB=y<7GMoIVF4?NNBjfEBR&e6D?Sl7{7|ab zNlBybw3gwCPMPvK7-KRQOx15MsxYb9>{RHcC&{kLt%`0>Srxs>5k_NYu2klR^NKww z5ACh(SN0@aT=;`QdwEkSTUltK2Iq2d>N=jb&W}U*pbhvA{MGK`xd(-o{=VK3K7k)H zf>Byid*pX}wK#MHl1%5)^XICc?!V`wqk-e*dpW!qS@{zT>^= ziUmE0Up)^rQ44E&7Pk9%q6)4ia0X4*$#&o1Zgca~-7r5GYSucltJkbM((?>V(vxPZ z=>#iRLYn`SqRYS2xNSnmTF~6?kwL z&+sFKLDnCNFqmf=5304W=rU-3Caf%=3diWK3vdDN^6qi0qr1%DRZz^XIJf6jIy)CP zU%P#PWSy3nzyI$DF~14zF-qnNiMh0<_WTXKS{#~~-*aWe+!|A|Z7gE`ZMYN!fpyI+ zdsl#fGjFk0Y9Z$oTA$ABV+@GeFj4^kWrcJ`BMaHki-N$?IqjZ7#Q{}Pmr@H=WVSQk zY9cjO`%FbUMf8ZyTa1gSNnlAw)hoPS58+-x+zm@cl2b&@Jt%>t%7n4*L3S=eU4tdX zCJ=e@Z(jv7eBpf`>pn+!U)-ay&QR69oJyjVpZ{#krV{j6303_cq^ieB2@`an8_dut z5Lv~>W41ookFW|#g0eOrm@wEiYSF=LKA%z8sFQC*C{|az#{^UDrxKcNJ&B%1*~WwV zY*d~5s*mBh(<1rt$c&Wy6F74h>rSl}HU8wcg&IHHi+0`%DLiY-TkVm`Tn4Ey^hYlj zAJoG7>nW`7JSnXyYJ99$i$hc6`>u={TVqPLTVc!C&n=rYR~V{B3pbhz?d|92hzFG; z-8^kq1?_UjU6xvEVxUTb9<)n>zGkzLUdu7;EUxkPCs6q-i^?(_megy3)M6;M*|7XA z_xMokg4c18vMpm8y=v{bAb4+T5J1Tjdido%T_(N)dU*cdz*tO@Xx7hDdlW4+(BlFF zfc*$!L(c75a*O~mDN1Yrnh%=di>&LuyB;2*}nO-Rz3;&bg@Ee_4+9=I|-XN{>V|9I!%B-p$4kzSIBX6T3;at4xlwGve?zQ2fp^e&PkE|svqgJ?P z20*J;@4-pN&6H%^^tHa5Y*4F%1T@_eU(H>k>bT&0lZZ-*(BVWX0&R@!KJYmgVBZ}E zV11{w!UWeJq#nRZ(Xj6-iHKw^QP;iwr{`>OPf|#jB36|n9*nnG%*Q;Mk0K;uBzd|7 zzRB4V6qPi~mGd1U9_nBf8G`FM-(r1gDaTboehqBSevN0eu~5&}3X($$5t@bSabN{= z=0)^W-Kuips_YIW+GZq~v4Sq|y?6ia7=z+{*sfpw>3Q3B>rKj96{CJ?H{LDYn|(LD z34H(F$77M$^emR_*%uw;?&dR{n`sZmRBPnjF!lVWA)`Z)xj-YAsin?B@G-K+Y=@Q% zPlA_{RY}p!KCvHS0&&jWnnndKbu4vgW7J_+*d#e*WU3(P_^DEM4!Pe___|dK-g^++07@IDPXQRzQ`Zo7 zl{(oj*zIyQmJA_ZZQ)QCwb66~ZXc4Xqs)1zkI%s*)<3iqFT_%?P_5>ZEqG$p7R}pP zZ}Ikr8-H?Tr)C{y+o{4(?(s(9?$V*dP!6KGzGCYJEJ41STQ1J5L)6J;`Bg?mvgP75 zUR^;L%79a|zE6U(qiBFlVsidoY{ki7ZC}XV8+Ko~bke{zJ)M*VQBqx3I(ZWo2S)V% zwj8>9g~JNRm2?O&>Wc_;Bgv{(=3(-HHvmN@>d~d2!ZlU*0)#>HdXPeT7IM`(C}A@Y zNFYx_n~iBInPoE>v@jbVGNYXc?)g!yrGfK4n2kG+fq=0i5r!v>u;vA_Gvrz&TmZZ0 zH4Gs(b4UX5B94P%BC$&G#TRRYk_^+tfqn@&`ryj}HXbE=%A+Ap@@RXL0i=K9m|N5)d3M5x58#?vhdX}m7$XuXJwP;L-e#Bg5`^zaiddnr+x@}%B3*`+WH z9VHb69qlZ9@iDB4eMIly;Tn;)?>zbDn?@iA6pwGTvd{nQoXp0h&cQ1lvSw?%TBqmk z!(Sd|AKFJ26C)sr5l5UNAJ@lw%`5eh+~`^GL$_(RcSpgG{|j!Wu1Gi9J9<7I4tss; z?3kT&HZ_Hfm5(53pdJi(HmhdnEesjJR0h_`suii6jq+D8A7J;2{hz8BNH4UYgZB-1 z9kqucRp>)DJKx7p`ge~q$Wg1@w~74&nqVGjzXmAa92(FDk^*>=Pw!?N0aWN+qL_(X z25NQ}X8RU`>@BRXjF0{JIK(XM{deCL!<`k+MV^Deq~ev8K`4t>VWELqrxTGWZ?UIt z1<{>lQc7anK`bz0vCC1t4zlbw133`qUZ~I$t-($Pk94S;9FYnwVa_up#RL5C} zI+hRB5v=S%!dem`@YZwP2;mQ(Xmftam98ZwCl{b7Z>W7ua+v{ql?6AY7qt zX#Mi{g?hM+*pgwNf*^l{S6854dQ^x3x>i|`sr!Ve8BmLQ`5|a9YgD5*<+^HAW6*xE zO_}W-eMpSq@O__g+2o)1#d{lNiBUSMQ?N_In3!&Lr z;$`c7Q1%F2$~-9hvq`8~5)x;1al6ySEoRrNxOe5t>)p%dxR>~h>omu4j~uO5axg9c z?G2x?FS$^?HP(Gvf}G5hORChh-VQZ8_!?T|)aL?|^UG>VfqiC#v%(<|8#9QJ2Uh zfUvqHW>4oA6Q{J>Pm~~asI|E9a5r8<17=l%5m3w{dmNO$)XH73mPFiX##*GU?x6D* zLn_H=zZ^;Xy0t`)xzR^APh#8UVY{P*wAV3zPHQ3Z-Q6mCy_b7$6-r<_r|6+%kC@KI zoP6!LUku&cHapQB+ctN@m|^;t-4Q>qnj_wz_UKR$-KaOT8E*XB9p}tyj`L4ejd*ln z)MhhTxccIgk3k@JDst}Wt%f_qMwZ0EvEm$;A(axI@4H|_E8(+fZiPI&ywMeC;aJ` zbu*3(cLDkm0#@ug(Hw0o9>G0SU(kLf_@PiL|v(l9)Cn|;29AyUqP3lUc6P!5#tr75rEFmJ2sJ|6x zvW}vqYF8OucwTA~b{F)d5hMqO*$cLar9*fzOjKXYRbhtaxrfN*gUlBTl$2gnn4SvV z)AFOQr5j$NrK7|x4>h&CN?;cjwgz|y2@;7oQ6Bu@;@?iarKk+?FtCRQY^0Cl)bZnx zTve!;FWW+jPVGRF5EXINh{LvoN}bStfcP5Eu<1ObiCBTmRTDarcr?V3p)0?m@d!0f zv)nf&e1Yj+=?DS)ad(p<0t;a!RBr4#GQ_#D4Pu)r>~pA)&n;bLVlAuRvuLX~MDBhn zRS277F$E|gk@8P#|CVwJSw^jnrp&yA#!ywVn}Y=mQ89F{RMEF0F*ylNgi=xBL{OBK z+6qWWB@E&4ra?-@@S$r=DWq}E9W-sHt&)t}tDA3WjCdKPr)Y{(r*mq3N$7)+qega- zN>uOVw?vh<;?UKudMT&EIU`^RYa4(+nQX{-5I z8IAF3cnsK}#*Wzo9P_YBh~2paZ{TF$S*trB5ktocJi}zv#s#L*51d1R2VyP3i(OKp zxw(Y(VqIW~E!Gy17={F$u7TW8qy#7Cbz7VijGYUuDy&w6TBg4Z<}{46TiQ8O^Ow z8~X-cU4b^%-z9pIoOMUhfSUT)`9Fhvw8jU?wO(y}aHtJ-1;&p5n0kBtr`6qF-&y(g z`u@tcS3hG%x6SqBI@J7KlQXQiN{>fU9(r}j8J(uiHAw?9kI}7GSJH5;H-@jJw?4_9 zResIHW|J7Lia!tgPU6?x1@U>1=_y;-^VD)-?5XAAyHI{aQfZ3s#jsNT}iY1xU= zS-f^XA?j4Q21!usNevz)LF*C3Ul>EO7sJ@-mGWs9a<|_yobU3JmfhYYAzjYHXeEv_MstYP)rVk;@NX(E)5|PoDmiXL1ZZ3Gr#Aso zy6?Btl69*Nfg4JVwxB_Q)B0zgaefe@wfrk$vaxO?VzAJyMA49AIy$wzV01s5Iy8pU zJE+#xrPedVb6V|MQKJBvqq)eiL@HQ4^dB`~jCRRX)Y4E8_bRm!rRFHZ9fnPn$WwI$ z{t;tq5HC*s%T_>@I)ZV&osldR7SV}q792N}9#+z#Ix8Mcs9L#fOPaw;SVBqesUgWP z$_3d)yi&oMii(E_+k8+GqlK(gwS=?gf*cxqCPXYgURP_UEhWf4gL;KXOSPEIY_lb^ z!{np7o|Cesz@|`Y;8YhU$JJG(~4?zeqguGCa%WSQMB1*Nnw(+AOahXjT_tGtkRnxk?(nFH%uo3TiY^gTSl2M zL7`t>TgGK$qp8`Lu{F7!tjC&3|L77EQ&%5TJz% z3)W1)vICBG(%*zOccczG&)T zZ0y~sLr>aty`fFk9!_YJ)%AkY^+;mH?;U;_2YDuOj%mU#x10&*5lDx?zsCK>r|(>I zp)DqEXIVZeS4#Zk~5buMI>3yP0mGg&G6D>1*NDO%k8cBS&FI> zs<*WKk!4e>v9LjG&E{b9_PQv4FF z&elAKk=aRk#UDEG--2AF7)Cu8H&#BAd71@CR<@l9>Fxnxsw_;HI75UhPLM=~@H@i2 z66Pn2o4zs8tjet@*PJjyEFTxLH=(_a6H#Tt)YDN=7;SF@6sL*^TSaIj;^&v!h`nnT ztP3F_We>-3ZaKq=qXvX|@D_#>%hVnIH~K`Z;q=heuhDzq^i6wI)H9-byOf1?)^kGx zlsSi}$8o-VO?z9eg>ceJGo!E1w6~foC|4XV&$Kt8gbHB|T-pv~fJRknOv2>@22sf` zw>LbF#Q>tkn03QUd$V>CSL=9xGm_Y#zTz}Y{Me$p$)N2E_&K6~w(2GPy1rS>W#+QE z3%rZ&)?-}trRDZb^VMn-?yk_fdFq<>^$higYcO+(3ga@aY(su^RLem2qjuOplRMNE zU39gPA=^@wATeb0s9#{dpj_Bm4{ONm$cU!AeCpcvNC6_H`MJKmJ-ieFR-*DHSJ&sm zxz+;O+Xl6=0$AY*ILXSmvKblQxsa1uey+VOs?=I6m!7NAB(mJz+-lBG+&h8b+vWBf z+?yH69m&ArpD%@Vz?nnMHJ95rAP~iEWxcer+ppXL&8$g}rF-<@u z%A>kaI3HbFE^KITgNk0wB$wLPMnJ0T^R03%6C)k~D;H3}8=5~n(rD%exdP}`8eIP5 zQmqlT^3}|xGEwSA#4*7apRwN*EXg%97ZFnoJ)Ui4KnCcR#6ohoEh1psjOTML^U5tMMMYnTT0dpz~Kt#HNo6Dzf z+|%Ax3u`D5ZD=Gq*~%+Cb0)*h(SBW_*{n70-?tB!8J37{xixxtgHP7C<_Sj_JvjrU2LNe88rcaMF&0% z?5VANIc(IE^Kb!=07TyMdW(KBzJxLx`PMro-)FR z`r%3)Kf>Pc=Hu<`G3L%>_CF-EhvgYl+MWyz9Ja+(EB*~`8-b#I?SXsD2>8|Qf8@12 z`tQGuf6Q-3`0Wg@8a)m#m5i%t;TODe-;{E(aV?lA2-zc6Je}Ug9t+m>lIsN8R zO@UPaFe8(nk%`a9yk}(EGcxNLnemLwc1C78BeR^589pbon~|A4C$pN78O_LSo|Bo( z$Sj_d8O+G&pOcZJHH>RUMm!^q)NOw~Ft?vZ?j@5x>cLy`JlJoF7yCi1_gsKV%I*#BZPF$0zt9tNC?) z`!PTM13zS4cgE{_fZt?Yzrj_Pb=}Rym394R{3h%A8LqXg>uD~otSb}C)Vlt78@|c9 zG8I*=E6ZP~b*0{;)|Fl%wXXDSsCA`fL)KM9_2LKk^S$_>q<L0$d8}l$7B3x^Wy{j z_zXWj#gA|BNby8np+sn&Q@ql?qMic>g=kTptCnKvLms`wyBI&c*=cdJ z=~Z63$!TAX_o6oOTE8uQ=QZsS$g9GnDVT4`RZAsscgTIvSvDRe^Tzd$fS(lq82jzi z9gPnypMeYp7Y?L3@T`W&8<@gPvH0p--V$FH`C$u+Je68`NR8D6iVh<<2D6F)Ty(fR JqZGc${~zhspC14K delta 17958 zcmeG^X?RpcwmCO@FJxs)LedGube7H@SrQTnAcUm}NmLM|=_H+`n@&1(cN9cSaA$}M zRPZ9|pbR?hh;hg~ML-^ciZXy3&eI1tZyc9#0b~XRbxu{?d;4}aGxOd&zxlq&kG^&5 zoH}*RsXA5XoT{6B{}Hlhb4XA}@J7>)pq6~GDIW^j7u)~=0b>o-HPb5%6=p+jo}tQ6 zJ+-Q$vPPqE+H2ib_e!JJUcd5Mo7-bcSE}5$R=4ksA~d_|ZBCD`uFiE`tJCH6RWvrz z_k3SPoz-n?S0UK)a>wVTYh0~fyQ{@xq+Mh;TfJ`k3Vf`{cDt_g7$zGoP1ksA-fWM} zR&PXXkE_jHXEUZ`XXjMqcx+Bv9c^uCaJjFuy6Y_sZ7r-KyDFs@ZnM?la@&b`OyBO0 zr5S6evRUixEschHtJi99H8dFPEnb_u#pX45U4~}sGMk~!bFHDl?zDOQ8EAD{>ueU< ztZ#=7m%RmvD$uT`&}+JyMl86Y{bwBkZ+g2jsz1jFcvq79j%k0cF}SsBP1ou!V^e5w zQ%F<1V*xpun?d#-NDOmFK>$`6~=ZQ4pcOX#&c{#aI_atV?3Lw-?+SC_E5Ej*Lwpb>mZE8{%edm>;I!U{O#Jynd%a z#tNG-7IsQlIyDw?PMAfJmfxJKZoMu@T$&Fh?Zv8fCSSGAXqs$Rx0e})p~PgMhGIbj zGp4HmlC^aHFK9$ryX4{Kqy4rr+FNg9qkU8vZC1h6beL7nJD3mQIHaX|6$mx>@^>+0 zM#Xz@k!d*bnQ$_H*6^6`=m5~>iL;)2nvwnsSvjj*7#2)UzGomG&PsvdWci#dGVge> zo?-C55N>@LzDmUQdYr3#FdW6xcMz+>~f;t99tfq1lf>E>bil z_ScG|BjN?J=jkFSMZ|QH_>ATfEq383Kyr>k{Gn5)AI^isqZ-K2srXn&*34~zD;b%N zf)J8q4%h8_TbV7@0mK=GCK>CU8>r$jSMkx?>j<)Or#-zgot+b-oF1 z>=?0gMCJ^7)k6gE(dn0vT#{79{?o-UI*S)GFux!(>eYgmUkN7al}cb}@+3c@bV zZ_0vn*snBy+sE%NqP^-{HP*ZRV|6ZYP%LT)s@B!P%n;K5pfZF4wIN`AtJCiF%9{^) z@a3d-zx|GziicvAm~cb!+O19tdo}v3D9eEBN$cd??D0ie29MW``_bfjyS1^!<*|D# z4YFM!fNe=7Cb=ZhVDw}xv)AUK3?UXT_#w%5`7b3>_TVDG`1!Ut`91^ z!F7_MZ(mpv-wQoZM#uG=Xm@3jysH;M8nHHHlNYbn=+0CiZ=9KNWa*OF?mu3=PJkk^ z{F*$yu-pd=5tG|t9C_=S>2NtV&LK0G=*R;NTA13sbjhMXp(cc^Hzknwt(n4-5TZ>q z!cwF$M!d`pp(H0e5f&47Z5P?SEEHtv6^2yggv^eV|*M#9SVfpjqUk^{>+u!#uqkf)<{T#4HyrZzdp^kynVW-9;V zK1}`KoCg<}URO8kbXA24z4MH}$D20=3E`nk#TK_ohzTWkxifGl$h~nK)vgc~O1^h* z46j|pm_y9_J-5+a=jJ>;tK-a_mzeW-i+VE`Dl@0*8#Trhe9~LodsZov5a$n@Rn|7E zFgui-o@n&29-Q#V75SqgcXO>P?9FY>k~&y>V|nFV#_H5TSZ(*BT86+YcG!zPGVT`v(ixL|oxR@M zgu!2aZWfLL#)Yi5$!2eC@?v#fuA+SpReP(m-Q~5=iC~lmg$=&^qG(^P=q-0koy$47 z03$|p#AOl~+cq|Otk?2jv%%ijhGcRi3fZkKjVbAJNM{Lb|2b^~<4^LR#rgj>4?k=D zw|Sr?{k-O(I94Gn+P07#s|;dCA*6>r&UU=Tq13m!Tu0ydUbirmyH+EaYju+kFf){f zUKsP7I+&1fIWtB>UUo)CMoEsxyV7YZWwvN^ToBiU!d1epp#)|dY0OhTXw0+W2xDYT zs1h>iG0;foNrK?caMlyqGAlvo3dK-vw29Z)uy5HDR@Er-GI8&xJYZl^rYO*W zIXSio)6jyPTCr`c48o0RskCk`&0-s~44FzkUiohND}M*o2g#2&M8H83vARU~T_}mF zDHy-?uZmUZz&P@=2$W#bC>PG-aUw=K0zD#2(GP75(*-7?Y z&&Eo*$N}KHVWL9xvED?XqPy(wG9c~ud;}g+)0Ii?TpuQ^hwjVnE~T|skW3OG%m}0A zLardiFb`?v>7MY>nL!SdTUpzQ6psc7DkwUf%zr)6RT|eTDpCRj_f15zD~r@^EQaMs zou;~i$(tMX`sWgZWMgXyqXvMvl?xj`@YyI?f1fE#lD;pf7}^!V_f79bsylJ>qCmJ) zLD=tyfU8sYp$Ef3xIc_d(lfs_!LJaPrPdDkP!Vk1atXzXTs?*y*_jBx=^rcPp(ct& zwWDg@62{!|U`$v91d!aVGs*Q^Q^~_yXOE@6af>zE)ok}-CJo(hUw**iX{*H~x`qt@ z)jX{v{6EfbqJH8XN5Xh~%wG92_huMh#1q&et^)8O>3(TjodD+~JqDBO zpVbHmp_w)JufK;tlKksD{r?b^_E{DMO2`+F<;Pg->e}4aI=jsyFTkumURCeE437-w z{GNG%@f#b?`DL%1->7iTZzAJY1(3Kp{6sbIeFY{Xb1apXJLt9|e8l>i81CCv$d317 z$k$KC33I|(PVnm|LrK9?@lcHvO{DU8ke)T-93c+fDDZ(Bg`5~v!6zad6N55+RbnvV z>8qdxNoFNEq|BgSGld_X8N5LjXYlPs5r=Ot?LAs)z`8d*vmIbPQpwXthX?yik4@5% z3nB#S7yHG37;KTqXGgTtP){1Om4;f3xatkA78)DUa~y+mvNK3j5g zCLuYkwVY6znH+s~)Y!Bv)|Of&qnb7yvub#}g>uRrkPkPHN>t-{?Ovx1IY=|NHP_nQ zR8`3jjA*aJvjW_w>oLT_NYvY8Qz+2Lwa#hvc!#Aj!6X);HM*laU;Z7XQVgePUq z=n-4!tC7lzb@{o9h%24;W@DW(H!Ck4*A9OLrb>~!WN-f-R5qsn;)6O$9#sFu@)2pV zOvy!Kj(2R87EAWZm!>V!VwubqOBH}Gmi``k{(v4j9Fmuw!5#Gcs~95(RV!&f4*Hi* zCJ4W$>+0w%d8^Ow@1Yv8a zUPX~BF8m$IQOhT#zqy-i?4G7Wr*V&}@&G2BPwyT>(6bPRYp55kE5A`$bM@q&oyii$ z?{+2$Y5id2^dt&;4NHEKXWn4DELZsQBHL72;+y318i zvg5_F-U&t}S&DubCK%m68ZkFRY2zLjNGti7|B|lB&=dA z>ucXo5Iq`lCwfT?XR2@~7fB7LLdzs*Sg@rZl+3+G83p}$VMkw-?o)epj1$s+a|$sW z(F(O1$<6wTx>;-XmyzxJQpuAt z-1bi6yg;|+v_#bB)^y+f`e=YlkdSiV>DNqQf}3O^A`aoeQ;~t2q>3UAKZ`-$d?PQi zR}2zLzWex6GVRSW^5<7GXxtI!ID>OU&YW+Uf_mZ7RBEYmyHC6sA%KLcTthLJl2CB`>{|061ljjv={6N0ar(V#t!Cu~=&$C*Hc096o9! zQ{EmM?s3}jS`1#0AOauv58(n( zW35Hsy)avyDl6#z@njDeq=2T3x$wPnA>x62hrw(%Tn;7!OpO#`UhXX)n zd~%ntNyicyXFoB)L)flR7k#~gzX?^4DV_)et*~B4zQ|6X4@^~v7c`&+N-efK^s|eQ zv|Ac-#k$t32Hw#{%D#<<14v!D;SuZWWOw(CfBqbV-HftM1>p2w{PF?_AL__&zfPf# z556|h2ffymb~+Wlpe*ZC9#&XJ*j=Y5Cw({shJK_B#Y$IB{7K9>Gh6QE*)uspq@Ma= zy}C(0TNd4?8$EHKEfZ2GewIO6i~LB-rh#7Ht>opeZj1Dv=g2|qJCf!_kTNYNF>@A33+JLg6P>S zoTO)3QUUnPe(Sr}gibx19MlKwqGSqmg+4`el8lRMDGF7xs=lN9^u-$l;VIsB-H#^W zdEU1CD@BPfBx-6KkHE>KA0cbOx}$!B`U~1wy9q$-tx@4TMURpGFPE&>>p#VKUq=8iFBHd^iZw?hS_F;)x(g z!orw=03#y&Cv%8+G#F-vRgDOv+d`n29D=7n?2Rvc0kmcmsXUkmg>;8f!`Og|aiP#4 z`>a{RhUT-@PG;R1hsmaf7wIr7C(a9lIH7nLby#URRNN2-@j^MJnyY7xI9G^5{Rw=i z+*cLch;VdYW%`Oi>cv&zuu8aQ7`1)**vGG(!Vuezgk_3AgYQSOK;jV%Wa?BD*#g-U zuZ2J%sY4Q1VW;m3EZo6Zlg-Lqk9y)FcMKB`jf06pB68m#L^@KTa!5p;7=*~2OJKav zF$_&KPpe{)P03l7v4+|HnMV1lb{e}Y&T?baxAI*@$*xLE*DPyk@vk+~8C|XTT>rOp zqk6k)2e~EOw2n>9{mc@?Ulidc`m$mJ;_M=r#WvL#q0{dKv~WPrO!z{XL(>QKX*N8^ zdj3>p6sjFsIsrw;hMazKv~ZCci7&@e*vCD?8h=X<6xYN8zxT>|;?oN0P)ovxD#@aP ztGM9~S{xQkLY9VEg!uS)*%^UH#LQ^8I!Q{Wpqqxrmj+LhwUyoek*j-t9}P}O z%8B^NEfvO7j!Xv0N!a?nVlr~$wp!fDw}^*hA@`@c6|vh&@zT){F{G|%vaaQ=L*2D_ zViYtCiN?Z#Y3v;hnM0!C7??&w9NZ`5M6lgd#UNXk^rP@5nXK{bo)z&hJdhrc8k9Qm zvn04AY0VHuVXYqv+kB(2MqForhlWIB^T0G7O@%& zX63L8O1&|baNZgVS+5QS$KLMS?BLy%mjw#gUwb)u3=|Nh`GTe7l zxN2((;1c+UTjv*oN$^M-{HTp-uvO9^d*zyHmNYn-xsxgYo4Y-a7r|kGjZ|<6kuXePE1CBt_XA}k|rj_ zlg03B_&^a^pAxN+=hdM|DK)tdGaKTUrI6zk2%{i*(SloQfewY7`4OZkY-xLKY>Mt7rI} z9fVRJ2_LFxLj{jUI7S;XX~n(Qi{5EaC(MXaM;m_a6kd3=afKqw;J%eCi@0MtWU4vk z`suki9juV#kVIAZ=_lN9Gv4G?yXtmj-Z`Sg_h(?J`nrIAJYFqTFvn%=dlTkjU>GQASMu%6rhf4lbI-3~BB3~%t}06C zF-wuMpy%Di5DY>=G_#PcK8R#yrX^qx6si%7R=7vh(qk#pFp&8q`5 z&oSbxTFB|0@eY@!w_>r;mh0XoIMQtM_bA$v!&!nGXNC|#K}iCfJ|;wDVwZTtf$?BRpMg-#R-Qi>cC$f|ms7uf#6`<^%WJ-r%4m$dCAA8;p_J$4R!O72Z|pRJ^es zMs6TMJxQzJZRlC&1s7Yem;QZC=LHJia4ud@bHS(2-W#E$_t#Ncc|xd!;)34}I&p^+ zeUanspwsR0kqZ~6v_fo8PzNjvfjEkjPEJk;)9qHH>|KXm-^;f_S?>;Ya)&C4vZgC; zhh>n@dL6Z2<(KXCQO@C=N8W)7hs%7O?^C0&&KItOsl7Yb%blwzV&`~{J-)Z4D0YPg z!7Qb;6LP@9Rq|jb==A$GDVDN0M%>v6*Ntw8!ATqMSWF-6V`TQZ^Zrd*@$x&Npm!IF z?vYYY*PRdxT9tA4bl(Mqg0MZN=hJ)OzXFrLM~D}?AW8Tv zMoicUW3oO+K9qaa4-qIW3h^Xgw`03&Wocv}D2S4UXq&X)YcmJKm+G)p#o9I8RGXG%H)GEM0p_-*WISqc+yXJ; zZ$$iOBkQQb-f~om( diff --git a/notebooks/_build/.doctrees/environment.pickle b/notebooks/_build/.doctrees/environment.pickle index caa9797880dc73f01cf9bbfcb750c69be43f8ac8..1bc2df29202f56983a14c76669e639c5638ae1b6 100644 GIT binary patch literal 53295 zcmeIb3y>UFb{$B38lMKx_=Epp5+I3cva1T+_z(bz88#ar00L-2Xz(*6FvYB@?9R%r z-&9rsXo48e$l?rOr!}*hvR9U@2rIPOkYy<(jckoSVaqeNC5IiBwHsdVdUwN$o!#~R z!=c@9DD05rJ?Gx{GP6DnqFdx>yeq~`qcY#i_wKvzzI*Sx@80{qJo4wC`R#|~zi3z3 z^egpSIj?@B(rVOeUcKFocD&lDRLf^lufEwG|4R2xHxsRMo6YWQG+J(y+AYs3S6ba@ zCjVyWwZi!gdBfHRQbeh@8bGmvLfiLhc)L^I76`q4w=1boXf)fEMqQiS9(r!8jq+x83XMgdq4yQnzU@|umX(r&bt zw7tCFZa2e|dCnsm%#|9oym!khb=q#RYNpQgm*qHsm{b$RmW%NKg*7(>MBQjBM&EJ^ z^9{^q^&S?0G~3#dq8IOX@_i)?J6>pT-o4j}_Q@=UjZUlNRV($y zLfDy~uiPRa8|s}JiRvzbX)aGeIe{#$M9-PVH+e|b1Rs7*HTQSO*$%^ zd29OOo6}d%&z^OrXJ+2KGClKo=Z)8#%U8~vK6CZVl}qPm&zyGNn!a*=`qhhP=A5f< zNYVM3tIph+x6WKSe^siVJ2QRds&o4M+?naQGtT*0=Q5f+GkbLoXm&eozX3EqbK0#} zysC52^Cp}#tx5^MI`xGK=Q#&!(z%LCbwC7aXfCxX3qB}v{nVkUDZG-wR~rirnH}#| zsoE)Xg4&ocjOjX-{GR8Z&sCaB^ zOS|huPhj@Zii<_mC>3nmHOv4Ii22wmozJ^BDp;)SUtbj6&?9l<#dgr2E>5$Y$%01x zrDg*Z9#%p$GKyLENOxGzoK4Pgty67-s7nRRU(su^x4Y3kPFBIIlaK*S+pCANVmZVu zSSO8oVctVCSoq~ewd%HNSS(n3q>0M>5@tK>6hpMz;Y#mDo7!%;SgnL@jC6;z4WJ7l za8v^*Y!%C(Qf)VYY_6(qG$M-&)gJ{ebycCIf?KUNZWh3k8Z8cJPfsCNiC1gl{SLfu zblS~M8=ML}0Q0^+^cy$3eP6UIH4pW=7d{g`+|yLa1#FyJpQzp0Q&ww~G4PT31{Og# zdZMSyOk9d4qODaIj19b?O=AM5VKhNO*ulZ;F*YEll{EPk-f6jmVp8w80 z|MUL4{(Bcb<6lFC>;4z~g8#nnMjLN=I{AL-u3z>&f5G?tiXTK7^akaOT|eqX+f-UW+L3jL za7?i%!W;a~1$TMa%ypWEa&EJNUgl8g66(Y{(1>aPkgj7QR>4Z`K>lL1>2#yi5m_wt zXUTInLSv}AP=x%y9Bl$0r0ypoa0Cny(r&i%)owA2MhY#6`mX;o_*L`TF6H-DnJ$Z! zXk$=R&7o6_MpaKBFc`Uo1Pg?$H*jwqF2rm<+L&lq(T--T0iF?_gMv0g)u?Ac81ba{wSH6#_Crg)nsgm!narT7ILR z0LlOa0aCau4R)h-(7?O1U+c=^`!0S&J541Z!HRA0 zZO9VvD^}zR{S8*!2!)oi3~b$(FE_Tlss||=zZhvZ%I;G9xLF|g~*$qsPB zVa5edg5lOg!=>g9ebh*_LfEA4eox!qD(p;U7=*mM6z(e%xXXu9R;6MV;}f%L;52yK znbb*Ef;K)z4T1C;s&uFBv5=C6wMw0YU3L%WtCeD2N%(LMJ2Y~SEZ|(k%!hfyKtyZ{ zbI$AE!S|3{%|@NOrf#&jik_NFWw-4DMcjMpcFOcMtR&sr_ibFBuC47Bw}m41jIust z%C;?fUNhMYm>H!^6(ZXQQsGYR78Y-Xml0Qd(T<-jhmW=D7fEgZln;{dQ09Yta4z*rFCvl@Mrl8>t9M zh+j}yn$SNltdTt-j}c)|N3uxBNRfpLqJXyXs%YSVE>!M-~mQ0TZ45#I}{sHD!h)iw@vgL?tWC#en%%r-dYZS_LWV> zaI>E8$snUqsiE3b@YyvFJtTivvMVV`87Sgn^PvcE|2y&PE%KGwTly#B_X?jK8Ys@I zcjH1;&Hxg0HJ^L^Kr}c4fXoi^0ZDeX-uSnQB?V(S21n_@VUp zHp%B5*aPIfqESaxqLrsRo_@7}ik^LC;B9%aGO1M+A{a%m-pn>d3j8nme<}uB@oG1; zJ@q2R5)@ZM>Fcyz9R*)wlVNBxt{OtZgQ|Wv4Fb4D0V^CU)2@X*GTIt+9C=^3St)ZV zJ)~dhfJDq-A4(;&QioFG^-q!5K**W8cjNKwke0EVD77kL$LhngmYdB*2V4HW@}2Vi z%~pjPDy1Y;+ff)DDj#4!;#Ol2WUnFYbGv9>LbFz831gI<2y4hbM5^wPsu)^aNXb8G>dd5(fcCfFuhg+@^nec4KBV@ms}hO`s^ z+y39s3S$CEYN6_DL$}Q;44a}`fHBB;wSYuZP(9d!t@|6{30lBijwzJ=zI?8OV|U;} zb+uh{tB`7&EY9wqb)}hA#0L8cv^nWC*|-=yJ|ZJifYe4Fc4|~(EX46*ziIUs^QD>w z$$~%*vWME2tP*bWYE7^QmSKMihcffiDDB$g-g8lZn)VF-cZ7f)0M>aUHqPi`p6KW8DGF26F6B{m=Ez2-O*Pxn< z$$U?$hBE%}1~xTMMY~f4AvSy^GUjM!xpE^H?-d;AoiHS&YN~ZY_B!2nJ{*1MA-n5w z!2aE)cg0&cbE}zw;RC#U+_^pK;J+4ZW39TQFLR*lDm1E0{=MAuFMRF`&)mL~8UOIT zYuB$`yPk*9`QWu{&pdZ<{3R!!cb<99sd?DjIp9IgO&>ch2YMUqkY&@@=$+Bg{PWL` zI?p>-1k0gg~M9VJqmzI_A*1efo_{bApXK&ea&A_qE&iotro)QAm|a z%KSP%8e>)A;fERhWWsi1kqhDo+fE4vXwNxihLe*=4ln}?lm}!In_9;eSh3r5xXGAb z65LiRH#`TB%5+ucos7Yv?S!+478FJcL0N|`->`zTpZj9RYc0(gf|{;YuPy-i7W_nU;!C44V?g2QhI7+%5B znPFX_L#*yUcjn5OY-}Uj|2b)iEdz}NnLq-Hr=K1Mak}z31zYN-hY-V7g2}G!nGtZU zf>+Tl3kFBlFW`U@aS%r%DZ7*Axf1L|SWJ-86%**L?%f3A5teuG3z>t?3qxlUuMduA za?g(+9G7OnOE9B`IetugJ#3W|+D|Iu1Fh?*fqC!+B}5{VWbxkhWcGCAui@ylj1r-- zq;R3pPEEjIVS?~fnf6HJoo%$07E^taBr-`AyNEc)SO&R}ib>|+wfe#FG^T~d&50DMN<$nX;4-P^3s#bS;uw-!S)yv`A5Job5 zPD+|PjN>RcwI+p#ZCf0$%ub~)r@vt)y#mdbb`pBNWDA(DgqEI8p5lsT(Cp>uAsnzD zogagWRBL_A5wj$tpv^2Z?wmSx$~ky&rLF7gj=9cxDhJYRXaqe(kWvmfy7TC^yRmsKu=A4KK`g(&_2RFU#&Xepn}(!%OVVol^hPF>ifh+ha-ZrfuxQys%A$k5dO zYxVs-%Q{sH;H92&A*8pLIW*y9CzbkpG=fx3C<8E2B^=Ru2;h7(N1*GCaKgzg;Am@$ zdZQG8U1+%5`y5h|a!7fcw%fy3OpY<6q9FN)1< zX1ir}Ra%%j0FX_Zc5A$jU`%Ss&OywF#=C`QIb~xv0&e3?AdhsVi6>-d#uG<5aFneK zCIDMmIzB=lvBsIo^pQlK3OFU{r@24*?SQ*1^rS!|ce^;{5g zr*or~t9$Kyy;;kfy00A0d*RVMXeC>#RkJ0+hROy{_H;01(p1pKY*)te#dDCg*D|nF zUK{UPlY*^Nu0UYnOiU}i$4b|2rMMwTJDhW2e1ap}@f7!S$$S4-{BM~G_H4^g0OtO` zqaAjKea}NQ8Xs)IR$I`a5%Zqb-eq5Mtr}+S-W$)NT!ij*HW?XWyJY zi|;O8e5G2+HChYi8{hSpNNE1w^#7I++^8O$ic66>d(by<90a|HRmGeiJgx;;)j0OT zWUJo}TyZ+Jx;c3;$FQt&3pNkf38a%pwSK$Nta>**81wXS9c&CI6U6u)tk&k3i^L%bCJ4B_Kq;-k($jtC$FV+ygHj|u z>&#(Npt{XNR%i_ehk0OWvb9jFQ8wk1k(IWcXX6%}YZ$RPmwWFbNTxn<7ANkD*Kc>I zf{Qz#7bYq}s`~8?5BuOaKtfMyJd2GnFu34|2~~7Ah%(rt<36v!ywz@8qh1XP#UaE3 zP5HO4VU>F~Y50T2fBPCJpW0r?BZ@n>jerX8BpqFYcNR`L=uC4vZkt$vkC5e>r%2fo zy`^9UwDZL;lNO(K&OpOmJuFj^_wp-pI+ zF-S^*Ar1%)nHms>sSj2w`>DQ@v&YGUwZNVt#JebSfEK0dh=&;XH{4JvEs#2Gnx@~l z9iG?NPajR1Z+Y0x!%XUXE_ikP;m&joXiPA9U05Scrb?_QnJ%eR!Occ%k&Rs#>HmcO zpLAo>W%@|ciz!I(5Uu^f(_L4-eY!Xkt0f$kqs!5Nsh_MwNOr`~`DhB12J0`U=x614FG*>52YQM?`u3(hop zSS)3%E*U#3r55Z6_h*J%;4gr6xWPD;Ugu;!(_So-{lDHWZtfwgWfT>^* z^Khxz)B}M*X9HUI&OM=TNA$EVS*r7ePW_7=pc99`+9OFd)1BQk zL~ACKYGX+?aTpug&tj411!Z^-#;hruG_fOT0u|})JhTzoA;1uO%O6g@RTmS>bnnFj zc{Hg4=O1Wsty-Z9i4GBw^pnC_2u(^UJ$Ri5>=th+FxCI7+grXp=|_)dqb-IDpTnFb z!+kudN8N<9fpy7Ke=OAmq7?q)YU=fJJ!xxS(v}P#dnt7Q-k$G-tvmuG@_q$A+BkN$ z!$@H)ZdbqA8GmC7lCPYkBWxC8w{hdp-oP1qg76(6D<#v!eS;oc@=_>tCnZU5m1wgr z1c-i|=Lns~m4=+S$^KAUpuDsjNV_-rBD4}Nlcay$lk6}B;KKJdz^mJ+qqajWq>2ii3xPhW zLmI1s4%HThRR|*+w{-07eN7p?l#U z>G!*&I34mKo&+iEqAWS7g<7!YHvWI7`&FaMC;-GT&gcL#{agj#768Rrnfo*&_z|mx za|K(j15cN$OQ{w60${qh47;NkoCHYiU(3r4IA$^A3IN1DsY)a2KLK4>tTeW7oe^s* zG5gJ~|7(gH#*UO=?rhNUmCo)7YPO?@^C146(4XLkL^$Cqub(oyg_>?}rQqdtSULjs zHdIi<64ftgRM~6?yU}(wYg*Wg3fO(rvF&dy+ydq*V0j4uL*iNxkswV!YNImLfCya! z!j;~xPywc60PYhsV<5E6NI*^c)BDHGASgn?NJ4+i<`3L}E3gNQ-Y_7$8A6bSw1EH^ z2IWDEiT6pVA@qJ5hY$^XYD-d|-Y+yszu%X1E&Ea%xs+<;aZFKC3$|$bmejRkyykoA zs1{kYg{k4$l2r4IgsOQs^@nwm_LbN}js=Exn&1-^$Qjla9W6?a1yk0o9ZikjbwiMKT*lG_Z$S+a-R?gyS0&E zM6tofKs<)x8n(ogX*gkkw@DJmYTO(LBg7DwBjAuA3}R##g}n+aw9#fR%`DtADyg+) z>Pb8rlt!(H_&>%ywCytHA~6+Jpe2?P?eUSMf{7I9uR%&PO;G4jMX)Zu5kgH zYybj2kFZgO1sH?xz`FZd%9x29e?{fKk=h(YT=krJ3JsW<$UVNc;==JIw zwF{Sn_OW-~J@NYMi_@oY3?Z9hJ^lf5U1(HGHSXs-(RmAKr`}v#5a?bpY$R*Ol&1`X z)vivv<11e{l$$z~Lku;}5b_>2yydK0D_d9}A$zqJMB6|XCiQOgr0r>_fxR32IWW55 zNAag)+>Uo8^I%CU#nTwOMG|7rmyi;+uJ9(b7H}eNi(9?vE```4y0Bp*JSbKOx8|hs zM2-stu|~E8f(T)ZaHhsamf>*b0~6kerIpha2t`t4g+6ulAVxyasAVyhOkqQOny$K3 zlpKSinluR8CHZi=P-7v*&;%=%+0>>hScW^RWlyHdj9Nu|+&mY3O3Ml1h=^t4-tw$a9)n0WIMx7zewd$wWfv|(3hSDMrX0Vfv>pqY&} zLat~u*qHGsjbCiMY>ML0J)0)M-^}nQIjGclq_1NsCNXs104#A_7+2{I)3j0CbEWQu zwKhJ~hOp;gv8%)5+(Y#68XHiU6jo@&g53mVHf==Q8nQxM7>PY%?Q3;YMg2$ndJo(i zu9`v#h6#U-d!pXS_j~)kQX$m6ux_A##%tn(ey|WIjn{q$@g_GfZ1#6wINpi&7@H2a z8kidO1_s~S)$<-FxZq6)MY9_np7#JTJStatF($`zur7j$F|;RI3$jAS1M=$Fb3fXl z&$8AL7y-=Q!*&qFwg{h5*j5WLb~3L3n8;n^XFyC5ckr5w0p7BDGL6?^P6yAUw>(%W zYsL$TM6|UvUrK%Zoc)%P0=7&z)U|RIuRSjfz~Ug{hAr{Co|eXhJ10ln{`aCWe4u-` zTU7XoE!ub)2+HV@f_=NwTGPSO=ViBps-wP(XgfKmBaQ46(*_bIV3kpS)rkBuhQB)< zP-Ei_uba?Fe_ix(p?1+WdulG~n%b%md=2%YU9hn|9V`-TKQJIpWALva3C~Xd%T33> zo%yLh2qOds@{|%>ibo>;N6{9;t#NS4@L&z&0TE!ow~p)No86DPSF{-}z^8J#yy`n) zp6kBDxJ+)YT9sS5CIb_nOVy~kfvR${!IB7=!VQGtO2ubV6;tJIsno%A0z9oYy$T2X zWV$8nKAIfTl^#?}Fh`X@(MtP)tbgryU+SA;<5siUXiLF2!f2CmBtlru*7eXfw&M@6 z6m5gE0L|X2Fm%5TblSb5sk#kSqxA;aF=olXMs?2@HocOlYg-|Od4MklV{E+9d=kVO z9F%q>jtc9t1r02r4W8Oa6YHg1>mt)c*{fBUguw)`tbu}@B!^K&ILNczP1M6F_@TQ{ zozCCNwz6hN5se9X)1)GSc3=xRG!(PqXyiz4DmMv$Hq-P_g8z`ZvyZ6#_0s-r2rm~? z1f<8#PA7~u$Qp~ORTd-dn_*5Im%IMY#lm58%e`p;frQyq@{wZ)A{VC~!70JWRRBgZ z{?wC`eAJbELBTY-rLdDThITjj9G*Kxq)JJh$#8ntRpgk(q`DE63MNSjv;_y)gs7?H zfd>j8VX9r7Xk**OK?5Vxe-7z6qEWa}FZ3cz`V0|lms;|QjxEJbwd$#(4zQvrjtt1b ztANzvZ8KeY3Q$dI%T&wQqz*zG7>#PMA@GoX7xP*U!n>X~IAJTv3^q)87A2I=BRlFN*z|cCain2*ey%_j((w^!B zZ{vfY%0JRq1;0QcE9lEKu@E;=k|u)d_-ELhW`g1}C4s+OL2bDLnUt;Pk#|E5d#E4v z(!P%B&*A%(jp_k07;QTMOedWW;PcO{xaR?Uer>f)xcE@V|0B}GvWU;D7W2<+ z3-HL*LEuWY0T%+KvvN*D?{TK#hPlK%LBpoxmsdQh2c44V4nQZgP-PJVV4=#&zCBKK zF)&xZxMGk7=IZAa(aX{PvNN#S33%ix?0e!(%7}og@HK&k?94$m8iw=VUhx1Q6z7i~ zfR-zOz@Sym(h(ehWT~SKp!uJ!7>WTj|Krs*kt~VdTx}EA@S(0MoosLAyfT5}(^{BM zU!)hPcmTjJS$$Ix0pno3QoU=yGh`Tn{D&1IKgia)~Q#wo%Vwty+i% zDCPH849)QZx{jEY7T3?JQjy zvxu5hSO%!SxMDyCrlqjjCisEF6m5%@wvu|NB^KC zumvI~?s{NRRae~az}#1)iDehnCvTPBf1Y`FkWl3&^Q9~`I>`Hi<1=K-qN_FH5zC(& z%EG?B;;}v`j`ts^gjs@=B}iF-MC+)4lto-RK^o*|(Tc$tK>fYdHjym5uj=f5(kBPc zzRkI*$UzZ21DV1mM2x4*4s@T;@!cEV@M-$iiU;+e)AZ~CnI45ID^O(#l}r$!$`Y!< znfj#_Lo_f`zp&aSKJ}RzmzkRHNYD0AnVC0PZG;R9Y;eZ@%N0X4Fk}C0wN3QT*ec{vBGQz(uA+$qiciV*~c-mJx&G1&^hQq*W_wRL#8aj{<4r}cOePef6q^xeou-41fz?*K3i*MtwQ zX8S?k(GCfPr$1v0(VlP`;md6c)kcw5Fle%WcfvG(Jda4IAb!9Z z3*&}Cm8a~p{?E?xY6t|h%tqUp@KMMdxyUd;w?^Di9I86o*b>kZyYGG_CTU&i1}s6j4{ca+nRf_k)>u)@Ww|2iW%V0eIWqT7vscCin}e9c_mLcj|Tm z4<*UXZLe@Z+eK>H9X?dP#8XEZ_Rirdr>i2b$gBuj1u$O>UW!Q%~nIPl$%W`wOWSdw}c* zIof?$B0{)Z2O$_BF-pt5=u2%Je(WpZL($vT8sB61h8{(iTW|p+Nmu}XVtxcUKyl#c z$IC3ZXF+Pg3IZyS>`qRQnW&K#1G1i6mz^6%neIHzJEM!!>OQ%|<}m}fG>iVWNH3x- zDT6b~M$D}3x(DalCgA<>8ieU_XoO1|38PP>vOX~BQuNKF{k3(=K zq;TWU8ZtHX^eXcKZ{o71?2$)U-Mj_377_a$da)r)R|7W5q{v#o*ich2p;zzxdnw;_t>UeqCRDH-7Q=^~G<*FMd;AbgWbw zfx`oY1?A6r5BJaDmlmyoKjZ?gqv?48p~V-FdWfhHaUMOP9{89;Or5<~icZ5+7$62- ztrSmF?t?L=0!`4%K1lZ9UjZ7a^BQY^vr9+ohyL2sKm2KSf~y^HOo}wzvdT#gl;dWx z(=#7VZAgm{?Jif~;fY%cL--8?|44CI!|RO%klsCzjpAWIKYaBtn2omCX2>WgEXVAN zmUpA#L8<6`72FzX8`5#Yg*V5>$OxbcVMuXYj2WA``!W`caMah�|F_J!bBZnn4Ta znK}vgsvsZlY4sU5U*patJ})!$;NK8eBWEyb3Lx{%di65ih;!shi3s1O(Pg|+PyCOQ z65J`}RpCP${2m%IUXTACKiQwTq$&D|)1F=I2Kk1?68oCqkl9NX$QR(ihL>U~!fNc4 z@bkC6m38S(jL=J5F$iqq4ww+*L~2spYT1Dq1AAa*W3DdI(o}^~h_A4AT~uZ!3@m7J zJo+obgC1=tgO|C-#ZZWPgufm_*k0FPT&UAX^MTwT&Sf8de7qZl5ydx{A`IAAH+kqN z9+eApgTKyXJ0qIaJ=!pJB%7T&fgCM*WgIR%JainNlpDAa>#4~@xyi|+Q~7{79uNS< zwsR*A9XT|KushaUF9~s?vCEgvpFZhK9zSyY@Z>RcwvM?tA_PxpWCmK3fQpZ8Zv%3{ zW8ACxbd!r~2bnRv`_40%&}j%rokil(&LiVAOAwSPlscJnS5Q38X>lC{Q0oCvi&%b3&X!dnrX2IpEn9iCPG|4IbFoNOe@P1q} z|CW5*UE2V|z^yg+CsTAuh9A?T3|;V)8YZA29;qa*b6nP9FTX*cOlt8<>M2m59kP_Q-Ne zW1t=a@3^KuMQ$hv7g^%yX!5AjsA8g>%(0`+cYnn>>MXT%ZcqX{FA$KKl9D4*V$lnj za!?*+QnUfQA@+!ErufDdkgZN0n_{ykoEw;n$rF=&n4Cn$ZX_Sb1Bwafvh%Woh}lDj zCbeIFj3d)VsUmz#(BPWp%;X$B&SqYeHjf|H_V3f;3g!TSoH)V;@#F9@=>Qz(sC{+h zsPkLhb64{3_2B&a$@Cy{&Z`ZimN%d>zxScs@fQcjxdN!Pkz1`F`rU6YE`0Cqk4=8}+aNvu=*1{; zLGrr~Qjud?Ks+|p^J&aCwDhPn%$YxQXlmu0KpQzCM5B!y1xDWJw36cmY(arCFea+F z;OY&8*CYKik!>Wl;gIBJ19RM`1Aqti>Ij%0+{G*V|9;INmSRIW@Px9h9#*XsK{y!q zMKSng?g-O|AcXI0ywNk*jBB&38We2dL#%ED+xTd8ieS4u zS(Rdke5Wc!u!|3>P6T`STa<}lpS%`*A$UYyQ%49M<4-I0gD3cuNOFb>Z)BcKkmC@Q zExy|MI$#&ga051wsGO*VTjp^yW80)lyADb^xX)o4oGX`2E4osFyfek_Mhlzf> zhM%s-h0>*NurBp`1i$a62Om5KorCfh?$LJF;J{MZL`ECE*`NeL4(pat_kP~0dpB?1 z%$3Te+(P3qQ1Akt2PZn|6;)md*dJ&Ril@>V=iy>jKQ320bFw}|BI(5vI^Y%Epd ztu8-+K?Cg|lu0OK$=bnE`=7PPjsVlLqj`cmkVBKl@=$=LvL_~woX8wMF@ECEQEY>- z39@^nXbtu-F|womSHU``kxPeS(@AZ+X5a&9w_A3CCr=zlOLl)Xdic3o&5Hid`KDFUW z11Uq1R@JbnJ_ZHe3C@Wm&zDODqG(=v>>Y z)Qil|fB$wiT|)ed@qiSeLruqNg)&&YT~I+Kbb#y60Sk!C#{DuHbG2n5AI9v{Fqn1)a?2kx$%*=AWyS z!d$0R$wBeU^B%h`*qftK$uicBF1=YtCEPO&#s%gy!=$YZH0@3}=UX?>)r12oLE0LY zo=1p%3+7(3J}QlLD#q@&g(|Rn^J2Xo(eQtz*89Ja^={b5@A5&##Q(#eJs_=~8=OWW zjut6Vm6m?$INc%T+-K2@(9lN`9Qysp*_Jy$pK76pF8+Yy*w9ZG|C`c9za?{kJQ86f z`cCrrak8mBZMMQj8qFc|R|6F6yxJ2a=DdXy7Av3LhN%_jJ1rOuFzXYTMI(^TNsx`v zC@}9Zyewk=In!5=&ZFv>qO_>VrlboM_E_r7G@!ufu}E6#SfLTEJqB}JEWg%H9!|-i z$-^%m&1NSLA3v71^G))p5{A%fMi0Gsm^BWaz!FhO`Mg!;(zZKF&L9^cxd!ZilgDz0 z@V}!Ju43++v7b=?3zdX5U$|uQGHqxnTP96a3)r1(-lsB$a$BUjouaW_-0B)vr3-iLn1w&;-f`h@U%Qx zL3=>HGy9om`C!ECLHR963�d#qSqBk&9SKi2#b$UL9;?)8}D%cb9OL^!>+m!L2Q&+UnzXV;5YU zbm7K|?7Of=`uA^ZWCod#)02035Uh5! z(u&00%CE|12c&00W@*RVAicGNakAAm)$>xFJG(SDThR_FwVPS>)@mxXwR!_b0X_2b zM~P6&4Ze{q*&pN2gfVpam;xsF3w&W1z>o9yDz;Ythml+cU2u4j1Ga&AOGMQQCD-oh z1?a>JR4XVqWNyGrlS7f?a6%hWM~*!P?7zwgWqW1sGK8KCIfx_RChjL~;AqRO;vPl3 zwNE10ij@Y`y&6k-4I;m=rnZu72${4E_Pmzei}Lsb+8j(Jcry>UTB08WkwwA2<4-2tmS&g9pL*ufPL2H;R?0||l#1Sc8EXmC0oH^)nsW!5yW#30*N?f$P z01z7EaB)%@@U`hn4r4af1_PI?P`+X7j!$Mm)j}Isa89|^SpX+G56ib)e~RHDFR`A{ zB27BlY4Ms}!M6s3h{HN&3Tu@V%i+lFRPg@5Y3B{90$^^jO^PQ3H!5Z1e^Z`ROAdV( zaBCS^GcbhRAaiTT?xMxx82YBBU&7rgP3%L6*AlHPvr-4HKp<*dOo4r=00WRQ7%oE) zV$EH${`SVMrlw3B8)J4`4Qzig2F!5pB;uV}T!Q*sTBdJ*wdK6-yjsERAp*GsHvy|e zM{AF!{0yQs6voEQVAJH`W7uCD!5+n$KG#F}gL8u2o==`Qfx?X@&m*?gb2y6pz-!UF z2y)D(EQFOF`e~0?|3wkWM#=vrJ|t2v_!T}Uvi(>2XyFb1x;$B>|J!^r00)0l9@I)3 z{B1rM1>o=ScMN9m>wHY0dmwdxh<$0zOsog@shuNN8aV4q>4$u{LlQw&2_LF4F=RPgRk-z)t2CA`AgcwNyC^hLip># z_lQaPf`5xD(PRBSJ>I;Fh128O6R4k!n4RGpyWJ-ErRGR`ORx>jP{?qHM!$*Ek7yeX z4GXq6WcgbQUu6h+y-E(JDq}aX2H|84`j?xz;0kR0iE&sYVD0Jyi}{ukuOT>_w~<}Z z0MsdV;C}iQ+}Z=bt=P56ru;R@=ja-OqXpQrY%_g%@Gf8s^d%aSs4utyOaboYv-C-b zDn=1^LVTy7VX{qN?x~^PX1ddc@d@WK+tc1z7hr?=rtvWaSjXXK3lH2)xYIt`nXdPi zOHVg=^}c@fYoh>EoYUOkTkB9UapnfK;o9&D^5U*R0^z5kbzs0?0qWmMtXvV_EnNA8 zoedh<&3@LOxz!YuY2gSIHFRalW|@{S{!r4xj?l*r%YI#{ealw6$h_I6S~1!{T?VFT zB+W$@^lAZ%gtK|!p=cDx-;xtvOUL+_t}y~5_pA`&%a6iM>05pwR@iofF@XkO#(2Uzyy={Z4MBp(H*>$O_D`J zT(8hR?xbv^_8?fxsuj}f2^eSsg<-YJZUAZA6`l8!sk}f`jM5iPTskqSv|Uf z);rh5MLi6BVK15J@!{-2qEEnmW-2BugZ}%|Ahlo{{|Mz>rq$JYZJNaEW3P#g8td^4 z7;WNpnH(7gCvb&N>?4XpGM^{A-QYBc*DezZR;B>w!PAeRKLokZyK#Xlnki6&&+ujD z0Z*KB-LNRl^aO{%8ookYyjMu!id&NF*gnx)MCi7!#|N0HpZvk~aF!AMHypFDiFH@qm`7v+5+XJLHG|IY z2|9-_w~up=#!6HwdU9|TK0M*TWjZrCesYS3_fsb(z$6YGPeALNj_tkf&&$?Zp8Ow; zSqOhE%R*Qf1D+oQeC>p=s=mb)ov{ZqZtGU%hInGbF1TXvY^CAfzaP?%x~+FAH%{9A z(q~8a^COSPbaY@$!M{U)SO)!LS|#)wwk(g{=m6k7`Efq#F{}p$VNJ82OMh_u2WRERUy8ipLD&34g*vcpTx-N-7KRNz8QcJ3zmYmLkN+F_et|ICzJE^Z>kLSiMi1 zcPzKgK2hFr>VB*52cCDFy&v?S67LAc&}onEa)Bf)x{GY*8k8LUd__tgP#m`e{u#>WT&L1?zG(0k0YLs&ZoQsR?++B@R+_ae*TgTprZd3IEckX~Ge= zrDb%QiE}wee3s}bLANA0`3P5_(}CW|9p!FERBv6^>o|0Wh>KhIywZq`^B^QysJ zW)H8r;Da^kUg7jv_^A$IRR2++`M2+j=Aos3ENBjXv!BunF{O*8c@NLL`qe5ac|c0v zVEp%%(RTK{0d2=R?@^-?|GecYUqFDKbY+Or`AAoMWBmpuLHI9R5lB!Kr_Vy1OmY%9hJH$N0Lfa*=oX+;T(fmMdXHNpKPq zpIEnCiDZSll6A|C<3!Y(Aa;*I(0J^Yi?eii{Fowv^`WhxgH`S#SLn+d^NQ?%UK2eI zmF{?E^6>ac`trgiMQ2`GrQn3i85S`6+1s)!Yl6fr42-{)Wne6fftncrYPlWbfc0lN z6>*3su|oAEkiHyL5w5?i40K_`dWJL^k03WVf*yO#-$~TPvzIQt0Qcx2T=-8|09<7M z|HT4c`HzDI2$=t$VFB0wcv(R3Ec)-!gu_@rkkj1%e3*V9B@d<_1pi!^>(J93gyF&E zXO*II&-9=lur&3>KLQyK_uvjvmcSQB)nHq&jk36cG=WgcEXxV$L_u z;Zsq0>EZJc(9>;kUz${xp;>q= z4Mdl_a+dnj=tineB~{~)y}l}klPW{Qi~Fh{NveNb=SP#O{c&M^jUG$YG&-L3!|$v4 zVp4NR{w=BOX@;=%xG0$yr_*7Hj!(hAC1dzK{4vK4!##L@9~Iys@Q3=3I)(*nz+&)n zo&00`f=2Lwg<+C9cA^c)1qQcMOqtGSj=8mvj*F?o=>353!!IUYcbVW3_+a41Wl5d( zjX3L|TtSQ^YI}Q1AGH@Jc&!3Lywdk4qwb!bx{ur2E()oS5RGM9ez>RhbGDMkc`tii zGP>E_^Wh%&!VTUI{nc)VWBMH~!2h0qzQ;fRl7IdM{(J*TBg$3D)!GgI3%rQ7orViE zudXMWLiOK>cEw4;1gE%6yn-2wHq!;az)WX++M=G0a5RKR3!iJ)dNA!8veI^=hvf;L zEeK~oj2mC(nB*1CiI>Wk<@JnKjs0M7gK`aSrMPT+v4G5YOSt)a)53hs{@#gMEaIwg zbf-5XBR9uI$;&3M!zK71!X<8$PI&uON;xyj6Xd`oZ?R4R*7i?c!U@w71wgA+-!Z-p*fe-$A-qM6=?O z!r5r2eHB(a3k5p(nzaQw$kzGtw;F0T(OtOX&9lq$1^$jH!(1 zS|17V;H-}%rA0)yp|hRow;{53c^rQFWx0ZAIab}RZ_AAiC#6!S*CB>K)@g!3Jlo(8_FaIIWD8kSD8AD`=Fk_BZ4^9SIo`b&6s5*CL?a;S3byWW2M&Pjbb-uFHd4R?bk-|seSMcWl` zQ#P|zMhY;W!|a9~S5WXT>=q72OD_znIP%l4Ww@FZMoS%?dNn1%aHA=ywFywQ+YH~5I9 z+bYeao0T$h9EAlWG!E{{O9Sw{q<`v0=T}b(mJ)QH;juT$P!sy;hFo-GF;#=*%-6d2 zu#$GdEgZ|eiD>;>hJwJ2_om+>w;o)<=}C@~$I~U8jxttns{B#Y6ea@+vDh*4U^85e z%W4OfEPM#TRlSl*0x%8BVhf1!;mU7z{l64#K}`#7H`of<6*&0wQTK{!5P)QJ(h42J zM`}p+j5+x5gy9w8bu7YUS z43_vAyJpYG(tzAT@eo&Bkq z1oy2#kd@uT`D&$@$BOkE^~1=SlIO6qV3v#2Kk{}8WijV zr>Hx#kV3^qV{t~l&D4vh>P05>(nTGfihoTwi?vgWwF&3>=NED7-9k8?GtFhjKM}Br zv=q?C737;Ou8MLRQ$z=-?qLe10V@KeD2OtLfN`s>}d*n1^>l2!p0fIVq?680$02^ZV z1Pb@2TS2}(uR5RWDJ)PPe@f(i;@HtaXr#k_kigx%(qcj7Df9^ys2RdGAt9Auk7e)H zgse#Hikj7>6;5FkX7D#L@`SuWJV1v3CHM+KUy7Whef zeAGgKwOaBdlVO+}Z1N=BT^wPnPJ>$>M5!{062_R+M|!ZH(7i9y~BrV!oTtBM2$55J`XOLWHY9mq25GX z2-*8Iq`~b`Cr6HtlUltdF|~1YUe1E=La!}_Hw0j6u6fBG4M&*-k<8LW)`=fuI#SPl>jYV+^g4Dbri zo$=9QIVTfGIA;{A4q=Uv096C22a$6QKts(c*k@DOj!OtrDj~eNO`fJW!~%9Q<{J`? z{d_#>fv85f#*Eu8`8va<(lZz*5?97gGUu3kY7xk_Y2nUzeT}g}h3CEZG=d?ckK@h@ z&gAv$&dV4JSfN75+Q5W)x?_L9ajd0d1U`8}*NTU}f1Jpeee>c)TUkb_aAAzLvlxf$ sf@?&<=@tJ#*#C8&^&`pZKa99p!y7onr3)1?qe=`?wi@))U$JL&-vOFKRuE&vne<4@9z55*YoK7 zrfWU*U)^3gQxOIPMF{M&)zhB+O*J;Sndc97!jS+(Y-CIr;dKuQnIE7p2dp%nj{I4eo0g# zI@MR-q3_kb#CVNth7x@`siD5sEAtcgXlHBnhD0V_0FerkEzN|ph5n#*xHkT36TCx2 zxM+T!Y=vK}w*`Ko!fnP+yYbU${B+Sr+DfCLB^v358)OhK3?vAtNrNz~ID|h5aWjJ; zH^7e*176Y>f6|ynP9VcOB$VmF7TVdiz(T`Upy;G~05n`3wNbFo4FHtw)6*#UvKxq~ z8RI6%7?!}>nm zv-qcOK%lGxi%&3!j6$+fa}D}t!pWvU4Q=gQWntlzn+|}E%IF)Ni|s6&bOYkd!pm+T zGHB_?ZZOQv*aaCwj)pOW38ITpKj|`KTzW|_Z5Jbg!bdcP%3Vt>R{SqFJ!e+@ZPzNh z6+dD4u5!8MT}Wis`K|3MEHo_0aTgTJsL;L8PQyGmAkH+*aRZS- z%(EGW)%!1yFKBEmyM9p6_vxlFyK0Fc{mpI~%`|kTC*Mw9of{Bm@;17Gz}Y}Drlwr* z5|Bqv?^taS+ZWxmlU7{cVdtvP4S>0yDSzvA12L}9CJK41erv=_MNPx)CxW=3s5#Yn zz>3ze7!i4i+bPmdb}qMA@Lo6UF~#4xYqi~qF*hL2Ry^PaB7+t2_BivXsnR!ltE`Oj zN|5UjBq0zHPJ``ANVewfvt!FGQ4W`WwpK=4@%;LA)Kzz0=u4XI_Xs{(AaN9LOjnEdsx-;>b zo7OWHPYY#smweR?h%<{nbptUjixb60R)40Ik`Wmuf-vg0VoZ8+Fjbc*>P~((XsB}x zufKQ0A+zOsgK6RQQ#T;aw)~wNhzz#G+nRqOLyT)n;|st<5ID5L_lXR9g*UQhOmY*N zA;ov$chL^9g?=jD<7uJ?$+;C<@?Z<|oou+&Ln`@IrU~BZBu#LulWe7r4pl8~!F1?} zPSVP5ZiDLq(gs&(WCuMr)atp8ZkATS)i15%u7d}Abs`%-X8^x#nik7e;L8twe7TMu zkv<1S-;@@6?xY_}WuAR>Y(|G1)Fgpx4F`oi zdIUD6Y$b>eukF|G(*67OSgtDYN+6_@uft8)J9LCB>S2YrE*`eJQiw&V_I!gb3U8qe zw_IL*CpHf+p(S_e)*^fReyfk5xQ5MM-MBXdS0e~qPEO<70SiG61{fxeYKzn)HTf?%Nr3CRSpBPxxr9wFHp~Gk&vwD zePH&N>GONPvMWD7*{LE(_UW;_Mp+w#wVBS7nZ}*0ZXaZ3vkWOQ?&W}eBrG$R<-rS8 zavmxP?O)xklN@^QZF4)0K^_`Z92CLgs?Z;h!x2S>PW%EM#F_jhBxBQuMKz$4H%;lc zAZ_Wu(T{E$^F)(Xcu5&loFso8X0jPW6`0IR+MyD&1tXdtzI29={A#=r=X)cjbB3W^ zA>@vDAaAJ^S^=JuthFD?tiUqI;Q@55Bq;KOVObT`eqI{Hb!})ky?c4Q5)lKa5!S<0 zHocRrcNAJW+0GgmS6C-zl9KAeoS~I&_8_6I9hgfIuoJWK{@#G;97A{+`x~|DBwZo7 z-7?5Hk`#zd8hMQZs4*;?#6cWD>cc_Bq_Px9l*ur68$hVy1R%S32|lM}YDr;FL=eM% zMGJ?=$I0*DBax73G$#rqK^(Q}y`XCVzLdikd8{mSP8IYn0N9^GhKM^zXoZG{PgCQ*gN*rW*o1kFl6RzCi;L6R~$jDdXo;Ob8Z^e~ul=<>TW-lH`{R zl4trQSq}D(D1xfOav`1TRBW3t)V;g^=ax|Sp_$rqm`TO3->_CC2GfsOE)nj2$KHz% zrk`LY9_;>`rA1W@>*V*CHiD(60F!K}$c|zLgl{FtdnOHDz&OHi&;58_~CcCuvP!R6DbZAZ1`8@h> zhnB;k!s7d{ynGX^mQrUu@a!J_k#PqO}@fd1qC3-bT^{vw=5 zmC&rijaR*gy_*haxD-4k*o_O%Sk7)<(qIsIuYd**ugrpe za@q95!%L#9(|CN5{0qP(*T?DY!ewm>l!N6=wiv7hi#Q)GWJThOafAeExsqKbTL>_?gpOO$Qj-ly&{DkwH=IfXgxE$8~F7p_zBUYhML^KSGs^V6gmz% zEDTJBMe3{Ez@zLlSk{^PY8(10og~hrrc3J$CO!Ne(Ba=w6$ zJXoHK&qzIe^1+o&A|&_eAYvX8OutYF-Yn?g$GG+7>nnV^>L&yEf~`c(_1*1t96s%( zvmTo7EyvhFupp-P>Evce154J|NIBj9(42YJn=ud8B9L3@mmXSByDQNWZ))MpdQZNP zdSZZkE$G;{sE{fXf+WEX8qJzqR}Wx$Tk}#~Ra5A@v0z%KqZxV)l&Ele`Br$T?Wr`n z$!&0-F@VqChUZa4za1``pKWFBfTWjPhIg4nSX_Gp0!S*q8r>j2^BlZWL~3>YX~W@&XqL|)|MRo;p0WyAIE0eI4tP)!C?~E0Ahl& z)isfo=%ObcYxoYLGFfNu;FFs65;SuxOMqPzroI>X&T^+5BbzDVFRZV5ZhHBOWr*fHf@&Q_kH4jr6o#TVN3X@LO+1iKQEM*>NmLWay zX!{Zd{d&fp(~8Hg_A%{Mr(u%Q@EVxkj0tyWy|$h+n*6KGxF0-L8fCc4({at3?l|m$ z0x0U(^oE}D8jLtr;Z9k%my8_k$1pSmWa9(O~)cCn`SlPAZ8aPd*U2WXWB-f;%7!@ zr^`|LcGWt!5%2W3!?o+7?^6;RedO7-S1`X^X7fvW_Sw1D+u9P#2?u!o^V_-*rGG631ZtGcF zQ|lBl#xac5F3^10*n#F6>B47*E~1V4FO7}5Z8jok7FPyh4Rbco=*2V;=>as0PpwV* z6kA&ybMh(nWO6>W{ki3?y{GWVn&<&!%oa>@)|XdoWcqb{nw-*_dBfhE#6B?hz*NTZ z8y_a77gC#jegP2XF|jQKK41)qjm;GsodiA(OICr?sgm^MxFk6~y_h6LCruK0&@Qv; zq|Dfk#rsY&V^5rA#t8J9*F3rLEm@chrN{8T?=5nO8h3whQD0hFh&D5OeVnmBTFT)T zs1qapwgy|ZfRLKS79{3oyXnRs)PIga zpM$Puf{yv%>v$)0<-IO98V2T%^e+UD>gWJ??mEr)LzN|6YQK*K@}kwx2@Dz6zK0&2-b2>+4VevcE8X@M{9(ere?1WIypO z`nL+`{uehD->btZr=T1r8&`3h>;N;O7HF`VB|(>G2a^q`y8{K)0Tn zEp4oX6_Oa{`gwIM9OxgBC8>WvR{9lTL>epP;NP%1$Zh8MQC^I2LKr`Y8)dz!APxA2 z0zNo!1TO{fK!_mu2I0>wz$;#C7_?w>SQzb(r|I)2cdn`3!0Iz2v1;J+lqN-zHOYQL z&z@+CN+SGahjnpq)i*M>tdx_)u)wX4H#}aSfx*KWEUsyIBr;ame~Tt)g3rhlHfp%3 z%t0H2@OILNc|UyX*~@p7SD10Fub9}ftHmdvX8H#dc{ou)Kd{C+=%p{7njbZ5tB$K@wQ^|U zAO{BLMnj-j4#YCbtDK)j%s5Fw;CBE{7jc#4oGQRMxuEJR+yS9<7{7!M3iw7HhYbS$ zkybEC3fNcJ0tb^gak~wh()a{ETfBmwxzJFuu#|F1c%@E EzX2s8M*si- diff --git a/notebooks/_build/html/_sources/analysis.ipynb b/notebooks/_build/html/_sources/analysis.ipynb index 836d32a..5441dfe 100644 --- a/notebooks/_build/html/_sources/analysis.ipynb +++ b/notebooks/_build/html/_sources/analysis.ipynb @@ -63,35 +63,6 @@ "source('../tests/tests.R')" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "# STEP IN 01 R SCRIPT\n", - "\n", - "library(tidyverse)\n", - "library(repr)\n", - "library(tidymodels)\n", - "library(cowplot)\n", - "library(ggplot2)\n", - "library(caret)\n", - "library(e1071)\n", - "options(repr.matrix.max.rows = 6)\n", - "set.seed(1)\n", - "source(\"../R/selection_forward_function.R\")\n", - "source(\"../R/majority_classifier_function.R\")\n", - "\n", - "# Reading data off internet to make csv files\n", - "source(\"../R/place_data.R\")\n", - "source(\"../R/joining_data.R\")" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -108,19 +79,52 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": { "vscode": { "languageId": "r" } }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[1mRows: \u001b[22m\u001b[34m720\u001b[39m \u001b[1mColumns: \u001b[22m\u001b[34m21\u001b[39m\n", + "\u001b[36m──\u001b[39m \u001b[1mColumn specification\u001b[22m \u001b[36m────────────────────────────────────────────────────────\u001b[39m\n", + "\u001b[1mDelimiter:\u001b[22m \",\"\n", + "\u001b[31mchr\u001b[39m (1): place\n", + "\u001b[32mdbl\u001b[39m (20): age, sex, chest_pain, rest_bp, cholestoral_mmHg, fasting_bs, rest_...\n", + "\n", + "\u001b[36mℹ\u001b[39m Use `spec()` to retrieve the full column specification for this data.\n", + "\u001b[36mℹ\u001b[39m Specify the column types or set `show_col_types = FALSE` to quiet this message.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "|place|age|sex|chest_pain|rest_bp|cholestoral_mmHg|fasting_bs|rest_ECG|max_heart_rate|exercise|major_vessels|thal|diagnosis|sex_f|chest_pain_f|fasting_bs_f|rest_ECG_f|exercise_f|major_vessels_f|thal_f|diagnosis_f|\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "|switzerland|32|1|1|95|0|NA|0|127|0|NA|NA|1|1|1|NA|0|0|NA|NA|1|\n", + "|switzerland|34|1|4|115|0|NA|NA|154|0|NA|NA|1|1|4|NA|NA|0|NA|NA|1|\n", + "|switzerland|35|1|4|NA|0|NA|0|130|1|NA|7|3|1|4|NA|0|1|NA|7|3|\n", + "|switzerland|36|1|4|110|0|NA|0|125|1|NA|6|1|1|4|NA|0|1|NA|6|1|\n", + "|switzerland|38|0|4|105|0|NA|0|166|0|NA|NA|2|0|4|NA|0|0|NA|NA|2|\n", + "|switzerland|38|0|4|110|0|0|0|156|0|NA|3|1|0|4|0|0|0|NA|3|1|" + ] + } + ], "source": [ "# STEP IN 02 R SCRIPT\n", + "md_table <- function(df){\n", + " paste0('|', paste(names(df), collapse = '|'), '|\\n|', \n", + " paste(rep('---', length(df)), collapse = '|'), '|\\n|', \n", + " paste(Reduce(function(x, y){paste(x, y, sep = '|')}, df), collapse = '|\\n|'), '|')\n", + "}\n", "\n", - "\n", - "heart_data <- join_csv()\n", - "heart_data" + "heart_data <- read_csv('../data/processed/heart_data.csv')\n", + "cat(md_table(head(heart_data)))" ] }, { @@ -146,26 +150,6 @@ "We set the seed with the `set.seed` function in order to make the randomized processes throughout our analysis reproducible. A seed is a numerical starting value, which determines the sequence of random numbers R will generate. Throughout the analysis the `set.seed` function will be at the top of each cell that completes a randomizing action. " ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "vscode": { - "languageId": "r" - } - }, - "outputs": [], - "source": [ - "# STEP IN 03 R SCRIPT\n", - "\n", - "\n", - "# Splitting data into training and testing sets\n", - "set.seed(1)\n", - "heart_split<-initial_split(heart_data, prop=0.75, strata=diagnosis_f)\n", - "heart_training<-training(heart_split)\n", - "heart_testing<-testing(heart_split)" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -229,51 +213,31 @@ "## Initial Visualizations of Predictors" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "vscode": { - "languageId": "r" - } - }, - "outputs": [], - "source": [ - "# SCRIPTED IN 02.1-INITIAL_VISUALIZATION.R\n", - "\n", - "# Boxplot visualizations for each of our predictors and heart diagnosis\n", - "heart_data <- read_csv('../data/processed/heart_data.csv')\n", - "\n", - " \n", - "boxplot_age <- grid_boxplot(heart_data, age, \"Age (years)\", \"A. Boxplot of degree of heart \\n disease in relation to patient's \\nage\")\n", - "boxplot_rest_bp <- grid_boxplot(heart_data, rest_bp, \"Resting blood pressure (mmHg)\", \"B. Boxplot of degree of heart \\ndisease in relation to patient's \\nresting blood pressure\")\n", - "boxplot_max_heart_rate <- grid_boxplot(heart_data, max_heart_rate, \"Maximum heart rate (BPM)\", \"C. Boxplot of degree of heart \\ndisease in relation to patient's \\nmaximum heart rate\")\n", - "options(repr.plot.width = 20, repr.plot.height = 10)\n", - "boxplots <- plot_grid(boxplot_age, boxplot_rest_bp, boxplot_max_heart_rate, ncol=3)\n", - "show(boxplots)\n", - "ggsave(\"../figures/boxplot.png\")" - ] - }, { "cell_type": "markdown", "metadata": {}, "source": [ - "***Figure 1.***" + "```{figure} ../figures/boxplot.png\n", + "---\n", + "name: boxplot_img\n", + "---\n", + "Initial visualization comparing degree of heart disease to various factors in the data.\n", + "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "These boxplots in Figure 1. are our inital visualizations to see if there really is a correlation between severity of heart disease and our predictors. From looking at all 3 predictors, Figure 1A. `age`, Figure 1B. `rest_bp`, and Figure 1C. `max_heart_rate`, we can see that there is a range of weakly positive and weakly negative to no relationship between the different diagnosed severities of heart disease (`diagnosis_f`)and the predictors.\n", + "These boxplots in {numref}`Figure {number} `. are our initial visualizations to see if there really is a correlation between severity of heart disease and our predictors. From looking at all 3 predictors, Figure 1A. `age`, {numref}`Figure {number}B `. `rest_bp`, and {numref}`Figure {number}C `. `max_heart_rate`, we can see that there is a range of weakly positive and weakly negative to no relationship between the different diagnosed severities of heart disease (`diagnosis_f`)and the predictors.\n", "\n", - "Figure 1A. shows there is a slight positive relation between age and heart disease severity, meaning the older a patient is, the more severe their heart disease would be.\n", + "{numref}`Figure {number}A `. shows there is a slight positive relation between age and heart disease severity, meaning the older a patient is, the more severe their heart disease would be.\n", "\n", - "Figure 1B. shows there is no clear relationship between resting blood pressure and how severe a patients heart disease is. All the medians at different levels of severity are relatively level.\n", + "{numref}`Figure {number}B `. shows there is no clear relationship between resting blood pressure and how severe a patients heart disease is. All the medians at different levels of severity are relatively level.\n", "\n", - "Figure 1C. shows there is a slight negative relationship between maximum heart rate and the severity of heart disease. This means a patient with no heart disease (0) or low severity (1) are able to acheive a higher maximum heart rate. This is because their heart is more healthy and able to pump blood efficiently when compared to a patient with high severity (4) heart disease.\n", + "{numref}`Figure {number}C `. shows there is a slight negative relationship between maximum heart rate and the severity of heart disease. This means a patient with no heart disease (0) or low severity (1) are able to achieve a higher maximum heart rate. This is because their heart is more healthy and able to pump blood efficiently when compared to a patient with high severity (4) heart disease.\n", "\n", - "These visualizations are taken into consideration when making our classification model. We will see if these predictors used together will in fact give an accurate diagnosis for someone being examined for heart disease based on given dataset. We chose to proceed with these predictors because of our literature reseach support. In practice, these predictors are conditions that doctors use to give an **initial diagnosis** of heart disease. Our research question as to whether these predictors work to accurately predict the severity is analysed in the remainder of the project report." + "These visualizations are taken into consideration when making our classification model. We will see if these predictors used together will in fact give an accurate diagnosis for someone being examined for heart disease based on given dataset. We chose to proceed with these predictors because of our literature research support. In practice, these predictors are conditions that doctors use to give an **initial diagnosis** of heart disease. Our research question as to whether these predictors work to accurately predict the severity is analyzed in the remainder of the project report." ] }, { @@ -287,7 +251,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "To visualize the effectiveness of our chosen predictors on our data set, we used the process of forward selection. We chose to add this step to confirm that the choices of our predictors will work using this data, as Figure 1. failed to show any significant correlation.\n", + "To visualize the effectiveness of our chosen predictors on our data set, we used the process of forward selection. We chose to add this step to confirm that the choices of our predictors will work using this data, as {numref}`Figure {number} ` failed to show any significant correlation.\n", "\n", "Forward selection is used to predict accuracy of a classifier that will be made using different predictors to create the model. Based on our literature research detailed above, we will be using forward selection on the variables age, resting blood pressure, and maximum heart rate. We made sure to use our training data set in the forward selection process so that the testing data is never seen by the classifier.\n", "\n", @@ -304,13 +268,13 @@ }, "outputs": [], "source": [ - "# Creating data subsets for forward selection model using training data\n", - "heart_data_subset<-heart_training%>%\n", - " select(diagnosis_f, age, rest_bp, max_heart_rate, chest_pain, sex) %>%\n", - " na.omit()\n", + "# # Creating data subsets for forward selection model using training data\n", + "# heart_data_subset<-heart_training%>%\n", + "# select(diagnosis_f, age, rest_bp, max_heart_rate, chest_pain, sex) %>%\n", + "# na.omit()\n", "\n", - "# heart_data_subset\n", - "write_csv(heart_data_subset, '../data/modelling/forward_selection_subset.csv')" + "# # heart_data_subset\n", + "# write_csv(heart_data_subset, '../data/modelling/forward_selection_subset.csv')" ] }, { @@ -332,8 +296,8 @@ }, "outputs": [], "source": [ - "accuracies <- forwardSelection(heart_data_subset)\n", - "accuracies" + "# accuracies <- forwardSelection(heart_data_subset)\n", + "# accuracies" ] }, { @@ -351,41 +315,26 @@ ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": { "vscode": { "languageId": "r" } }, - "outputs": [], - "source": [ - "# visualization of number of predictors and accuracy based on forward selection\n", - "options(repr.plot.width = 7, repr.plot.height = 7)\n", - "forward_visualization <- ggplot(accuracies, aes(x = size, y = accuracy)) +\n", - " geom_line() +\n", - " geom_point() +\n", - " labs(x = 'Number of predictors used',\n", - " y = 'Estimated accuracy using forward selection',\n", - " title = 'Number of different predictors compared \\nto the accuracy of classifier model') +\n", - " theme(text = element_text(size = 20)) +\n", - " ylim(c(0,1))\n", - "\n", - "forward_visualization" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, "source": [ - "***Figure 2.***" + "```{figure} ../figures/classifier_accuracies.png\n", + "---\n", + "name: forward_img\n", + "---\n", + "Accuracy of model based on the number of predictors used to build the model.\n", + "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Figure 2. shows us that all five of our predictors increase the estimated accuracy of our classifier. However we can also see that the accuracy plateau's at the fourth and fifth predictor (`chest_pain` and `sex`). \n", + "{numref}`Figure {number} `. shows us that all five of our predictors increase the estimated accuracy of our classifier. However we can also see that the accuracy plateau's at the fourth and fifth predictor (`chest_pain` and `sex`). \n", "\n", "According to this visualization our pre-chosen predictors should be accurate predictors for the severity of heart disease. It also tells us that with any more predictors our classifier would not be benefitted and with any less we would have drastically lower accuracy. \n", "\n", @@ -416,21 +365,21 @@ }, "outputs": [], "source": [ - "# Selecting chosen predictors within training and testing data\n", - "heart_training <- heart_training %>%\n", - " select(rest_bp, age, max_heart_rate, diagnosis_f) %>%\n", - " na.omit()\n", - "heart_training\n", + "# # Selecting chosen predictors within training and testing data\n", + "# heart_training <- heart_training %>%\n", + "# select(rest_bp, age, max_heart_rate, diagnosis_f) %>%\n", + "# na.omit()\n", + "# heart_training\n", "\n", - "# Adding training set to directory\n", - "write_csv(heart_training, '../data/modelling/training_split.csv')\n", + "# # Adding training set to directory\n", + "# write_csv(heart_training, '../data/modelling/training_split.csv')\n", "\n", - "heart_testing <- heart_testing %>%\n", - " select(rest_bp, age, max_heart_rate, diagnosis_f) %>%\n", - " na.omit()\n", + "# heart_testing <- heart_testing %>%\n", + "# select(rest_bp, age, max_heart_rate, diagnosis_f) %>%\n", + "# na.omit()\n", "\n", - "# Adding testing set to directory\n", - "write_csv(heart_testing, '../data/modelling/testing_split.csv')" + "# # Adding testing set to directory\n", + "# write_csv(heart_testing, '../data/modelling/testing_split.csv')" ] }, { @@ -464,26 +413,26 @@ }, "outputs": [], "source": [ - "# majority classifier and visualization\n", - "set.seed(1)\n", - "total_rows<-nrow(heart_training)\n", + "# # majority classifier and visualization\n", + "# set.seed(1)\n", + "# total_rows<-nrow(heart_training)\n", "\n", - "number_of_columns<-heart_training%>%\n", - " group_by(diagnosis_f)%>%\n", - " summarize(number=n())%>%\n", - " select(number)\n", + "# number_of_columns<-heart_training%>%\n", + "# group_by(diagnosis_f)%>%\n", + "# summarize(number=n())%>%\n", + "# select(number)\n", " \n", "\n", - "majority_classifier<-heart_training%>%\n", - " group_by(diagnosis_f)%>% \n", - " summarize(percent_outcomes=n()/total_rows*100)%>%\n", - " arrange(desc(percent_outcomes))%>%\n", - " bind_cols(number_of_columns)\n", - "#slice(1)\n", - "majority_classifier\n", + "# majority_classifier<-heart_training%>%\n", + "# group_by(diagnosis_f)%>% \n", + "# summarize(percent_outcomes=n()/total_rows*100)%>%\n", + "# arrange(desc(percent_outcomes))%>%\n", + "# bind_cols(number_of_columns)\n", + "# #slice(1)\n", + "# majority_classifier\n", "\n", - "# write csv to data/modelling\n", - "write_csv(majority_classifier, '../data/modelling/majority_classifier.csv')" + "# # write csv to data/modelling\n", + "# write_csv(majority_classifier, '../data/modelling/majority_classifier.csv')" ] }, { @@ -494,30 +443,26 @@ ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": { "vscode": { "languageId": "r" } }, - "outputs": [], - "source": [ - "majority_classifier_vis_function(majority_classifier)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, "source": [ - "***Figure 3.***" + "```{figure} ../figures/majority_classifier_vis.png\n", + "---\n", + "name: class_prop_img\n", + "---\n", + "Percentage of patients in data that have each level of heart disease severity. \n", + "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Table 4. and Figure 3. give insight into the proportion of patients from the training set with each level of heart disease. The most common diagnosis in our data set is severity 1 with 31%. This value sets a baseline accuracy that our model should exceed to be deemed an acceptable classifier. In other words, if our model can predict more accurately than simply picking the most likely outcome every time, then we are on the right track in terms of accuracy.\n", + "Table 4. and {numref}`Figure {number} `. give insight into the proportion of patients from the training set with each level of heart disease. The most common diagnosis in our data set is severity 1 with 31%. This value sets a baseline accuracy that our model should exceed to be deemed an acceptable classifier. In other words, if our model can predict more accurately than simply picking the most likely outcome every time, then we are on the right track in terms of accuracy.\n", "\n", "Table 4. also shows us that none of the percent outcomes are over 50%, and the outcomes for severity 1, 2, 3, and 0 are within 15% of each other. This means our data set is distributed evenly enough to build a decent classifier model. Knowing the frequency of each outcome also enables us to set an upper bound on our number of neighbors which is something we will discuss in further detail in subsequent cells." ] @@ -572,11 +517,11 @@ }, "outputs": [], "source": [ - "# Cross validation to find optimal K value\n", - "source('../R/classification_model.R')\n", + "# # Cross validation to find optimal K value\n", + "# source('../R/classification_model.R')\n", "\n", - "heart_data_accuracies <- classifier(heart_training)\n", - "heart_data_accuracies" + "# heart_data_accuracies <- classifier(heart_training)\n", + "# heart_data_accuracies" ] }, { @@ -594,41 +539,35 @@ ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": { "vscode": { "languageId": "r" } }, - "outputs": [], - "source": [ - "# K visualization\n", - "source('../R/model_visualization.R')\n", - "knn_visualization(heart_data_accuracies)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, "source": [ - "***Figure 4.***" + "```{figure} ../figures/classification_model_visualization.png\n", + "---\n", + "name: knn_img\n", + "---\n", + "Accuracy kNN model as number of neighbors is increased to classify the severity of heart disease\n", + "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Setting the number of neighbours to $K$ = 2 will give the highest accuracy, as seen in Figure 4. The shape of Figure 4. is not what we expected to see because of the huge drop in the accuracy after $K$ = 2. This means that there is a high risk of losing model accuracy after $K$ = 2. Choosing $K$ = 1 would also work considering the accuracy; however, it is a small number and it could lead to overfitting our classifier.\n", + "Setting the number of neighbours to $K$ = 2 will give the highest accuracy, as seen in {numref}`Figure {number} `. The shape of {numref}`Figure {number} `. is not what we expected to see because of the huge drop in the accuracy after $K$ = 2. This means that there is a high risk of losing model accuracy after $K$ = 2. Choosing $K$ = 1 would also work considering the accuracy; however, it is a small number and it could lead to overfitting our classifier.\n", "\n", - "Figure 4. shows that choosing a $K$ higher than two results in a drastically lower estimated accuracy. We experimented with testing the accuracy of models with higher $K$ values, but they decreased the accuracy even further. For example, when we used three neighbours instead of two, the accuracy decreased by about 15%, and it continued to decrease the higher the $K$ value we used. We also checked for spikes at much higher K values, but the accuracy continued to level off around 0.40. To make this table easier to understand, we made a visualization of the mean column and the number of neighbours. The mean represents an accuracy estimate of the model when different $K$ values are used. The optimal $K$ value has the highest accuracy and has neighbouring $K$ values of similar accuracy." + "{numref}`Figure {number} ` shows that choosing a $K$ higher than two results in a drastically lower estimated accuracy. We experimented with testing the accuracy of models with higher $K$ values, but they decreased the accuracy even further. For example, when we used three neighbours instead of two, the accuracy decreased by about 15%, and it continued to decrease the higher the $K$ value we used. We also checked for spikes at much higher K values, but the accuracy continued to level off around 0.40. To make this table easier to understand, we made a visualization of the mean column and the number of neighbours. The mean represents an accuracy estimate of the model when different $K$ values are used. The optimal $K$ value has the highest accuracy and has neighbouring $K$ values of similar accuracy." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "After our initial analysis in Figure 4. we decided to continue our analysis despite the suspicious shape of Figure 4. This next step pulls optimal the $K$ value based on the above cross validation to choose the appropriate number of neighbors." + "After our initial analysis in {numref}`Figure {number} ` we decided to continue our analysis despite the suspicious shape of {numref}`Figure {number} ` This next step pulls optimal the $K$ value based on the above cross validation to choose the appropriate number of neighbors." ] }, { @@ -641,13 +580,13 @@ }, "outputs": [], "source": [ - "# Pulling optimal K value based on above cross validation\n", - "set.seed(1)\n", - "best_k<-heart_data_accuracies%>%\n", - " arrange(desc(mean))%>%\n", - " slice(2)%>%\n", - " pull(neighbors)\n", - "# best_k" + "# # Pulling optimal K value based on above cross validation\n", + "# set.seed(1)\n", + "# best_k<-heart_data_accuracies%>%\n", + "# arrange(desc(mean))%>%\n", + "# slice(2)%>%\n", + "# pull(neighbors)\n", + "# # best_k" ] }, { @@ -667,11 +606,11 @@ }, "outputs": [], "source": [ - "# New classifier model using optimal K values\n", - "set.seed(1)\n", - "heart_data_spec_final<- nearest_neighbor(weight_func=\"rectangular\", neighbors=best_k)%>%\n", - " set_engine(\"kknn\")%>%\n", - " set_mode(\"classification\")" + "# # New classifier model using optimal K values\n", + "# set.seed(1)\n", + "# heart_data_spec_final<- nearest_neighbor(weight_func=\"rectangular\", neighbors=best_k)%>%\n", + "# set_engine(\"kknn\")%>%\n", + "# set_mode(\"classification\")" ] }, { @@ -691,12 +630,12 @@ }, "outputs": [], "source": [ - "# Final workflow for classifier using new model.\n", - "set.seed(1)\n", - "heart_data_final_fit<-workflow()%>%\n", - " add_recipe(heart_data_recipe)%>%\n", - " add_model(heart_data_spec_final)%>%\n", - " fit(data=heart_training)\n", + "# # Final workflow for classifier using new model.\n", + "# set.seed(1)\n", + "# heart_data_final_fit<-workflow()%>%\n", + "# add_recipe(heart_data_recipe)%>%\n", + "# add_model(heart_data_spec_final)%>%\n", + "# fit(data=heart_training)\n", " \n", "#heart_data_final_fit" ] @@ -725,20 +664,20 @@ }, "outputs": [], "source": [ - "# Testing our classifier using the testing set\n", - "set.seed(1)\n", - "heart_data_summary<-heart_data_final_fit%>%\n", - " predict(heart_testing)%>%\n", - " bind_cols(heart_testing)%>%\n", - " metrics(truth=diagnosis_f, estimate=.pred_class)%>%\n", - " filter(.metric == 'accuracy')\n", - "heart_data_summary\n", + "# # Testing our classifier using the testing set\n", + "# set.seed(1)\n", + "# heart_data_summary<-heart_data_final_fit%>%\n", + "# predict(heart_testing)%>%\n", + "# bind_cols(heart_testing)%>%\n", + "# metrics(truth=diagnosis_f, estimate=.pred_class)%>%\n", + "# filter(.metric == 'accuracy')\n", + "# heart_data_summary\n", "\n", - "heart_data_predict <- heart_data_final_fit %>%\n", - " predict(heart_testing) %>%\n", - " bind_cols(heart_testing)\n", + "# heart_data_predict <- heart_data_final_fit %>%\n", + "# predict(heart_testing) %>%\n", + "# bind_cols(heart_testing)\n", "\n", - "write_csv(heart_data_predict, '../data/modelling/predict_data.csv')" + "# write_csv(heart_data_predict, '../data/modelling/predict_data.csv')" ] }, { @@ -754,7 +693,7 @@ "source": [ "The accuracy is a reasonable number that shows that even though our predictors within our model produce a strange $K$-nearest neighbour graph, we still built a model that will diagnose patients with ~80% accuracy.\n", "\n", - "We know this is a reasonable accuracy for our classifier from looking at Figure 3. As discussed in the preceding paragraph, we are looking for a classifier with higher accuracy than that of the majority classifier. In our case, the majority label made up ~30% of our dataset, so the accuracy of ~80% is more than double that of our majority label. Therefore, our classifier is reasonably good. " + "We know this is a reasonable accuracy for our classifier from looking at {numref}`Figure {number} `. As discussed in the preceding paragraph, we are looking for a classifier with higher accuracy than that of the majority classifier. In our case, the majority label made up ~30% of our dataset, so the accuracy of ~80% is more than double that of our majority label. Therefore, our classifier is reasonably good. " ] }, { @@ -772,33 +711,26 @@ ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": { "vscode": { "languageId": "r" } }, - "outputs": [], "source": [ - "# confusion matrix heat map visualization\n", - "source('../R/confusion_matrix.R')\n", - "\n", - "confusion_matrix(heart_data_predict)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "***Figure 5.***" + "```{figure} ../figures/confusion_matrix.png\n", + "---\n", + "name: confusion_img\n", + "---\n", + "The confusion matrix illustrates the number of correct predictions made by the kNN model to the number of incorrect predictions. The darker the color of the square the more predictions that landed in that category. \n", + "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "The confusion matrix (Figure 5.) shows that 22 individuals were correctly diagnosed with no presence of heart disease, 39 were correctly diagnosed with low severity of heart disease, 22 were correctly diagnosed with medium severity of heart disease, 20 were correctly diagnosed with high severity of heart disease, and 4 were correctly diagnosed with extreme severity of heart disease. Therefore, the classifier labeled $22 + 39 + 21 + 20 + 4 = 106$ diagnoses correctly. This is a rather good result as the proportions of each heart disease class diagnosed correctly mirror the proportions seen in the dataset. Our classifier is therefore not favouring one diagnosis over the other.\n", + "The confusion matrix ({numref}`Figure {number} `) shows that 22 individuals were correctly diagnosed with no presence of heart disease, 39 were correctly diagnosed with low severity of heart disease, 22 were correctly diagnosed with medium severity of heart disease, 20 were correctly diagnosed with high severity of heart disease, and 4 were correctly diagnosed with extreme severity of heart disease. Therefore, the classifier labeled $22 + 39 + 21 + 20 + 4 = 106$ diagnoses correctly. This is a rather good result as the proportions of each heart disease class diagnosed correctly mirror the proportions seen in the dataset. Our classifier is therefore not favouring one diagnosis over the other.\n", "\n", "Unfortunately, the classifier also made errors and classified a total of 18 patients with a false positive, meaning the patient's heart disease was worse than it actually was. Moreover, the classifier labelled six patients with false negatives, meaning the patients' heart disease was actually worse than what was predicted. A discussion as to the false positive and false negative results is in the discussion section." ] @@ -809,13 +741,13 @@ "source": [ "## Conclusion\n", "\n", - "The predictors, `age`, `max_heart_rate`, and `rest_bp`, have high accuracy and a good chance of accurately predicting a patient's heart disease severity. However, some results indicate that these predictors may not be the best in actual practice. For instance, Figure 1. shows that these predictors do not have significant correlations with a diagnosis of severity of heart disease. Additionally, there was a significant drop-off after two neighbours in our $K$ graph, proposing that our accuracy results could be due to luck. However, our confusion matrix reveals promising results.\n", + "The predictors, `age`, `max_heart_rate`, and `rest_bp`, have high accuracy and a good chance of accurately predicting a patient's heart disease severity. However, some results indicate that these predictors may not be the best in actual practice. For instance, {numref}`Figure {number} ` shows that these predictors do not have significant correlations with a diagnosis of severity of heart disease. Additionally, there was a significant drop-off after two neighbours in our $K$ graph, proposing that our accuracy results could be due to luck. However, our confusion matrix reveals promising results.\n", "\n", "### Is this what you expected to find?\n", "\n", "We expected to find that the larger the numerical value of a patient's age and resting blood pressure and the lower the maximum heart rate, the greater at risk a person is to have worsened heart disease. We actually found that these predictors have a weak correlation with the outcome variable. However, our model still predicts heart disease severity accurately.\n", "\n", - "From our confusion matrix in Figure 5., we were more likely to predict a false positive than a false negative. This is good because, with a health condition like heart disease that generates ranging severity, it is better to be given a false positive and be treated as if the disease were worse than be given a false negative and not be treated at all or to a lower care level than what is needed. A reason we see 18 false positives could be because of the predictors we chose to use in our model. We saw in Figure 1. that these predictors are not ideal because of the weak relationships they show with the severities of heart disease. This can also be said as to why we have 6 false negatives. However, considering that the accuracy of our model is good, this is a reasonable number of false negatives. These values for the false positives and false negatives also relate to our research question and conclusion that our selected predictors are primarily good at predicting the preliminary severity of a patient's heart disease. However, a diagnosis cannot be concluded off these factors alone. Unfortunately, false negatives and false positives are given in medicine in the real world, but from actual research and examples like we were able to display in our classification, it is more likely that a patient will have a proper diagnosis than a false positive or negative.\n", + "From our confusion matrix in {numref}`Figure {number} `, we were more likely to predict a false positive than a false negative. This is good because, with a health condition like heart disease that generates ranging severity, it is better to be given a false positive and be treated as if the disease were worse than be given a false negative and not be treated at all or to a lower care level than what is needed. A reason we see 18 false positives could be because of the predictors we chose to use in our model. We saw in {numref}`Figure {number} ` that these predictors are not ideal because of the weak relationships they show with the severities of heart disease. This can also be said as to why we have 6 false negatives. However, considering that the accuracy of our model is good, this is a reasonable number of false negatives. These values for the false positives and false negatives also relate to our research question and conclusion that our selected predictors are primarily good at predicting the preliminary severity of a patient's heart disease. However, a diagnosis cannot be concluded off these factors alone. Unfortunately, false negatives and false positives are given in medicine in the real world, but from actual research and examples like we were able to display in our classification, it is more likely that a patient will have a proper diagnosis than a false positive or negative.\n", "\n", "### What impact could such findings have?\n", "\n", diff --git a/notebooks/_build/html/analysis.html b/notebooks/_build/html/analysis.html index 29ce863..0e28fbc 100644 --- a/notebooks/_build/html/analysis.html +++ b/notebooks/_build/html/analysis.html @@ -382,35 +382,6 @@

Introduction -
-
- - -Hide code cell content - -
-
# STEP IN 01 R SCRIPT
-
-library(tidyverse)
-library(repr)
-library(tidymodels)
-library(cowplot)
-library(ggplot2)
-library(caret)
-library(e1071)
-options(repr.matrix.max.rows = 6)
-set.seed(1)
-source("../R/selection_forward_function.R")
-source("../R/majority_classifier_function.R")
-
-# Reading data off internet to make csv files
-source("../R/place_data.R")
-source("../R/joining_data.R")
-
-
-
-
-

Preliminary Exploratory Data Analysis#

@@ -418,10 +389,36 @@

Preliminary Exploratory Data Analysis
# STEP IN 02 R SCRIPT
+md_table <- function(df){
+    paste0('|', paste(names(df), collapse = '|'), '|\n|', 
+           paste(rep('---', length(df)), collapse = '|'), '|\n|', 
+           paste(Reduce(function(x, y){paste(x, y, sep = '|')}, df), collapse = '|\n|'), '|')
+}
 
+heart_data <- read_csv('../data/processed/heart_data.csv')
+cat(md_table(head(heart_data)))
+
+
+
+
+
Rows: 720 Columns: 21
+── Column specification ────────────────────────────────────────────────────────
+Delimiter: ","
+chr  (1): place
+dbl (20): age, sex, chest_pain, rest_bp, cholestoral_mmHg, fasting_bs, rest_...
 
-heart_data <- join_csv()
-heart_data
+ Use `spec()` to retrieve the full column specification for this data.
+ Specify the column types or set `show_col_types = FALSE` to quiet this message.
+
+
+
|place|age|sex|chest_pain|rest_bp|cholestoral_mmHg|fasting_bs|rest_ECG|max_heart_rate|exercise|major_vessels|thal|diagnosis|sex_f|chest_pain_f|fasting_bs_f|rest_ECG_f|exercise_f|major_vessels_f|thal_f|diagnosis_f|
+|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
+|switzerland|32|1|1|95|0|NA|0|127|0|NA|NA|1|1|1|NA|0|0|NA|NA|1|
+|switzerland|34|1|4|115|0|NA|NA|154|0|NA|NA|1|1|4|NA|NA|0|NA|NA|1|
+|switzerland|35|1|4|NA|0|NA|0|130|1|NA|7|3|1|4|NA|0|1|NA|7|3|
+|switzerland|36|1|4|110|0|NA|0|125|1|NA|6|1|1|4|NA|0|1|NA|6|1|
+|switzerland|38|0|4|105|0|NA|0|166|0|NA|NA|2|0|4|NA|0|0|NA|NA|2|
+|switzerland|38|0|4|110|0|0|0|156|0|NA|3|1|0|4|0|0|0|NA|3|1|
 
@@ -431,20 +428,6 @@

Preliminary Exploratory Data AnalysisTraining and Testing Set#

Before creating our classification model, we partition the heart_data into a training (75%) and testing (25%) set using the tidymodels package. In data analysis it is important to split the data right away to ensure that the classifier we build never sees the testing data. We will train the model using only the training set and test it on the test set once we build the \(K\)-nn classifier. We will use the variable diagnosis_f as our class label as this is what we seek to predict.

We set the seed with the set.seed function in order to make the randomized processes throughout our analysis reproducible. A seed is a numerical starting value, which determines the sequence of random numbers R will generate. Throughout the analysis the set.seed function will be at the top of each cell that completes a randomizing action.

-
-
-
# STEP IN 03 R SCRIPT
-
-
-# Splitting data into training and testing sets
-set.seed(1)
-heart_split<-initial_split(heart_data, prop=0.75, strata=diagnosis_f)
-heart_training<-training(heart_split)
-heart_testing<-testing(heart_split)
-
-
-
-
@@ -465,46 +448,32 @@

Maximum Heart Rate Achieved

Initial Visualizations of Predictors#

-
-
-
# SCRIPTED IN 02.1-INITIAL_VISUALIZATION.R
-
-# Boxplot visualizations for each of our predictors and heart diagnosis
-heart_data <- read_csv('../data/processed/heart_data.csv')
-
-    
-boxplot_age <- grid_boxplot(heart_data, age, "Age (years)", "A. Boxplot of degree of heart \n disease in relation to patient's \nage")
-boxplot_rest_bp <- grid_boxplot(heart_data, rest_bp, "Resting blood pressure (mmHg)", "B. Boxplot of degree of heart \ndisease in relation to patient's \nresting blood pressure")
-boxplot_max_heart_rate <- grid_boxplot(heart_data, max_heart_rate, "Maximum heart rate (BPM)", "C. Boxplot of degree of heart \ndisease in relation to patient's \nmaximum heart rate")
-options(repr.plot.width = 20, repr.plot.height = 10)
-boxplots <- plot_grid(boxplot_age, boxplot_rest_bp, boxplot_max_heart_rate, ncol=3)
-show(boxplots)
-ggsave("../figures/boxplot.png")
-
-
-
-
-

Figure 1.

-

These boxplots in Figure 1. are our inital visualizations to see if there really is a correlation between severity of heart disease and our predictors. From looking at all 3 predictors, Figure 1A. age, Figure 1B. rest_bp, and Figure 1C. max_heart_rate, we can see that there is a range of weakly positive and weakly negative to no relationship between the different diagnosed severities of heart disease (diagnosis_f)and the predictors.

-

Figure 1A. shows there is a slight positive relation between age and heart disease severity, meaning the older a patient is, the more severe their heart disease would be.

-

Figure 1B. shows there is no clear relationship between resting blood pressure and how severe a patients heart disease is. All the medians at different levels of severity are relatively level.

-

Figure 1C. shows there is a slight negative relationship between maximum heart rate and the severity of heart disease. This means a patient with no heart disease (0) or low severity (1) are able to acheive a higher maximum heart rate. This is because their heart is more healthy and able to pump blood efficiently when compared to a patient with high severity (4) heart disease.

-

These visualizations are taken into consideration when making our classification model. We will see if these predictors used together will in fact give an accurate diagnosis for someone being examined for heart disease based on given dataset. We chose to proceed with these predictors because of our literature reseach support. In practice, these predictors are conditions that doctors use to give an initial diagnosis of heart disease. Our research question as to whether these predictors work to accurately predict the severity is analysed in the remainder of the project report.

+
+_images/boxplot.png +
+

Fig. 1 Initial visualization comparing degree of heart disease to various factors in the data.#

+
+
+

These boxplots in Figure 1. are our initial visualizations to see if there really is a correlation between severity of heart disease and our predictors. From looking at all 3 predictors, Figure 1A. age, Figure 1B. rest_bp, and Figure 1C. max_heart_rate, we can see that there is a range of weakly positive and weakly negative to no relationship between the different diagnosed severities of heart disease (diagnosis_f)and the predictors.

+

Figure 1A. shows there is a slight positive relation between age and heart disease severity, meaning the older a patient is, the more severe their heart disease would be.

+

Figure 1B. shows there is no clear relationship between resting blood pressure and how severe a patients heart disease is. All the medians at different levels of severity are relatively level.

+

Figure 1C. shows there is a slight negative relationship between maximum heart rate and the severity of heart disease. This means a patient with no heart disease (0) or low severity (1) are able to achieve a higher maximum heart rate. This is because their heart is more healthy and able to pump blood efficiently when compared to a patient with high severity (4) heart disease.

+

These visualizations are taken into consideration when making our classification model. We will see if these predictors used together will in fact give an accurate diagnosis for someone being examined for heart disease based on given dataset. We chose to proceed with these predictors because of our literature research support. In practice, these predictors are conditions that doctors use to give an initial diagnosis of heart disease. Our research question as to whether these predictors work to accurately predict the severity is analyzed in the remainder of the project report.

Forward Selection#

-

To visualize the effectiveness of our chosen predictors on our data set, we used the process of forward selection. We chose to add this step to confirm that the choices of our predictors will work using this data, as Figure 1. failed to show any significant correlation.

+

To visualize the effectiveness of our chosen predictors on our data set, we used the process of forward selection. We chose to add this step to confirm that the choices of our predictors will work using this data, as Figure 1 failed to show any significant correlation.

Forward selection is used to predict accuracy of a classifier that will be made using different predictors to create the model. Based on our literature research detailed above, we will be using forward selection on the variables age, resting blood pressure, and maximum heart rate. We made sure to use our training data set in the forward selection process so that the testing data is never seen by the classifier.

Additionally we chose to run forward selection on chest pain type (chest_pain) and sex (sex) to get an idea of what our classifier would look like using more variables.

-
# Creating data subsets for forward selection model using training data
-heart_data_subset<-heart_training%>%
-    select(diagnosis_f, age, rest_bp, max_heart_rate, chest_pain, sex) %>%
-    na.omit()
+
# # Creating data subsets for forward selection model using training data
+# heart_data_subset<-heart_training%>%
+#     select(diagnosis_f, age, rest_bp, max_heart_rate, chest_pain, sex) %>%
+#     na.omit()
 
-# heart_data_subset
-write_csv(heart_data_subset, '../data/modelling/forward_selection_subset.csv')
+# # heart_data_subset
+# write_csv(heart_data_subset, '../data/modelling/forward_selection_subset.csv')
 
@@ -513,34 +482,21 @@

Forward Selection
-
accuracies <- forwardSelection(heart_data_subset)
-accuracies
+
# accuracies <- forwardSelection(heart_data_subset)
+# accuracies
 

Table 2. Forward selection results

From Table 2. above, we can see that the accuracy increases with every added predictor. To make this result more clear, a visualization of accuracy compared to the number of predictors is included below.

-
-
-
# visualization of number of predictors and accuracy based on forward selection
-options(repr.plot.width = 7, repr.plot.height = 7)
-forward_visualization <- ggplot(accuracies, aes(x = size, y = accuracy)) +
-    geom_line() +
-    geom_point() +
-    labs(x = 'Number of predictors used',
-         y = 'Estimated accuracy using forward selection',
-         title = 'Number of different predictors compared \nto the accuracy of classifier model') +
-    theme(text = element_text(size = 20)) +
-    ylim(c(0,1))
-
-forward_visualization
-
-
-
-
-

Figure 2.

-

Figure 2. shows us that all five of our predictors increase the estimated accuracy of our classifier. However we can also see that the accuracy plateau’s at the fourth and fifth predictor (chest_pain and sex).

+
+_images/classifier_accuracies.png +
+

Fig. 2 Accuracy of model based on the number of predictors used to build the model.#

+
+
+

Figure 2. shows us that all five of our predictors increase the estimated accuracy of our classifier. However we can also see that the accuracy plateau’s at the fourth and fifth predictor (chest_pain and sex).

According to this visualization our pre-chosen predictors should be accurate predictors for the severity of heart disease. It also tells us that with any more predictors our classifier would not be benefitted and with any less we would have drastically lower accuracy.

To conclude, we chose resting blood pressure, age and maximum heart rate as our predictors for the severity of heart disease as seen in row 3 of Table 2.

@@ -549,21 +505,21 @@

Completing Data tidyingage, max_heart_rate and rest_bp to predict diagnosis_f have been chosen, we can further tidy our data by eliminating the unused columns. Additionally, all the rows containing NA were removed. Since our data has already been split into training and testing sets we will tidy both of the subsets.

-
# Selecting chosen predictors within training and testing data
-heart_training <- heart_training %>%
-    select(rest_bp, age, max_heart_rate, diagnosis_f) %>%
-    na.omit()
-heart_training
+
# # Selecting chosen predictors within training and testing data
+# heart_training <- heart_training %>%
+#     select(rest_bp, age, max_heart_rate, diagnosis_f) %>%
+#     na.omit()
+# heart_training
 
-# Adding training set to directory
-write_csv(heart_training, '../data/modelling/training_split.csv')
+# # Adding training set to directory
+# write_csv(heart_training, '../data/modelling/training_split.csv')
 
-heart_testing <- heart_testing %>%
-    select(rest_bp, age, max_heart_rate, diagnosis_f) %>%
-    na.omit()
+# heart_testing <- heart_testing %>%
+#     select(rest_bp, age, max_heart_rate, diagnosis_f) %>%
+#     na.omit()
 
-# Adding testing set to directory
-write_csv(heart_testing, '../data/modelling/testing_split.csv')
+# # Adding testing set to directory
+# write_csv(heart_testing, '../data/modelling/testing_split.csv')
 
@@ -575,40 +531,38 @@

Majority Classifier
-
# majority classifier and visualization
-set.seed(1)
-total_rows<-nrow(heart_training)
-
-number_of_columns<-heart_training%>%
-    group_by(diagnosis_f)%>%
-    summarize(number=n())%>%
-    select(number)
+
# # majority classifier and visualization
+# set.seed(1)
+# total_rows<-nrow(heart_training)
+
+# number_of_columns<-heart_training%>%
+#     group_by(diagnosis_f)%>%
+#     summarize(number=n())%>%
+#     select(number)
     
 
-majority_classifier<-heart_training%>%
-    group_by(diagnosis_f)%>%   
-    summarize(percent_outcomes=n()/total_rows*100)%>%
-     arrange(desc(percent_outcomes))%>%
-     bind_cols(number_of_columns)
-#slice(1)
-majority_classifier
+# majority_classifier<-heart_training%>%
+#     group_by(diagnosis_f)%>%   
+#     summarize(percent_outcomes=n()/total_rows*100)%>%
+#      arrange(desc(percent_outcomes))%>%
+#      bind_cols(number_of_columns)
+# #slice(1)
+# majority_classifier
 
-# write csv to data/modelling
-write_csv(majority_classifier, '../data/modelling/majority_classifier.csv')
+# # write csv to data/modelling
+# write_csv(majority_classifier, '../data/modelling/majority_classifier.csv')
 

Table 4. Majority classifier showing the number of people with each severity level of heart disease in the training set

-
-
-
majority_classifier_vis_function(majority_classifier)
-
-
-
-
-

Figure 3.

-

Table 4. and Figure 3. give insight into the proportion of patients from the training set with each level of heart disease. The most common diagnosis in our data set is severity 1 with 31%. This value sets a baseline accuracy that our model should exceed to be deemed an acceptable classifier. In other words, if our model can predict more accurately than simply picking the most likely outcome every time, then we are on the right track in terms of accuracy.

+
+_images/majority_classifier_vis.png +
+

Fig. 3 Percentage of patients in data that have each level of heart disease severity.#

+
+
+

Table 4. and Figure 3. give insight into the proportion of patients from the training set with each level of heart disease. The most common diagnosis in our data set is severity 1 with 31%. This value sets a baseline accuracy that our model should exceed to be deemed an acceptable classifier. In other words, if our model can predict more accurately than simply picking the most likely outcome every time, then we are on the right track in terms of accuracy.

Table 4. also shows us that none of the percent outcomes are over 50%, and the outcomes for severity 1, 2, 3, and 0 are within 15% of each other. This means our data set is distributed evenly enough to build a decent classifier model. Knowing the frequency of each outcome also enables us to set an upper bound on our number of neighbors which is something we will discuss in further detail in subsequent cells.

@@ -622,39 +576,35 @@

Classification Modelworkflow() to determine various accuracies found using different \(K\) values. This workflow does the cross-validation work that was described above using our now split training data. This workflow will include our model and recipe that were formed above. We tested \(K\) values from one to twenty-one because this is the lowest frequency of diagnoses (category 4 appeared 21 times in the training set). If we were to use a number of neighbors greater than twenty-one the majority voting used in \(Knn\) classification would be skewed against diagnosis 4.

-
# Cross validation to find optimal K value
-source('../R/classification_model.R')
+
# # Cross validation to find optimal K value
+# source('../R/classification_model.R')
 
-heart_data_accuracies <- classifier(heart_training)
-heart_data_accuracies
+# heart_data_accuracies <- classifier(heart_training)
+# heart_data_accuracies
 

Table 5. Parameter values that help select a k value

To make this table easier to understand, we made a visualization of the mean column and the number of neighbours. The mean represents an accuracy estimate of the model when different \(K\) values are used. The optimal \(K\) value has the highest accuracy and has neighbouring \(K\) values of similar accuracy.

+
+_images/classification_model_visualization.png +
+

Fig. 4 Accuracy kNN model as number of neighbors is increased to classify the severity of heart disease#

+
+
+

Setting the number of neighbours to \(K\) = 2 will give the highest accuracy, as seen in Figure 4. The shape of Figure 4. is not what we expected to see because of the huge drop in the accuracy after \(K\) = 2. This means that there is a high risk of losing model accuracy after \(K\) = 2. Choosing \(K\) = 1 would also work considering the accuracy; however, it is a small number and it could lead to overfitting our classifier.

+

Figure 4 shows that choosing a \(K\) higher than two results in a drastically lower estimated accuracy. We experimented with testing the accuracy of models with higher \(K\) values, but they decreased the accuracy even further. For example, when we used three neighbours instead of two, the accuracy decreased by about 15%, and it continued to decrease the higher the \(K\) value we used. We also checked for spikes at much higher K values, but the accuracy continued to level off around 0.40. To make this table easier to understand, we made a visualization of the mean column and the number of neighbours. The mean represents an accuracy estimate of the model when different \(K\) values are used. The optimal \(K\) value has the highest accuracy and has neighbouring \(K\) values of similar accuracy.

+

After our initial analysis in Figure 4 we decided to continue our analysis despite the suspicious shape of Figure 4 This next step pulls optimal the \(K\) value based on the above cross validation to choose the appropriate number of neighbors.

-
# K visualization
-source('../R/model_visualization.R')
-knn_visualization(heart_data_accuracies)
-
-
-
-
-

Figure 4.

-

Setting the number of neighbours to \(K\) = 2 will give the highest accuracy, as seen in Figure 4. The shape of Figure 4. is not what we expected to see because of the huge drop in the accuracy after \(K\) = 2. This means that there is a high risk of losing model accuracy after \(K\) = 2. Choosing \(K\) = 1 would also work considering the accuracy; however, it is a small number and it could lead to overfitting our classifier.

-

Figure 4. shows that choosing a \(K\) higher than two results in a drastically lower estimated accuracy. We experimented with testing the accuracy of models with higher \(K\) values, but they decreased the accuracy even further. For example, when we used three neighbours instead of two, the accuracy decreased by about 15%, and it continued to decrease the higher the \(K\) value we used. We also checked for spikes at much higher K values, but the accuracy continued to level off around 0.40. To make this table easier to understand, we made a visualization of the mean column and the number of neighbours. The mean represents an accuracy estimate of the model when different \(K\) values are used. The optimal \(K\) value has the highest accuracy and has neighbouring \(K\) values of similar accuracy.

-

After our initial analysis in Figure 4. we decided to continue our analysis despite the suspicious shape of Figure 4. This next step pulls optimal the \(K\) value based on the above cross validation to choose the appropriate number of neighbors.

-
-
-
# Pulling optimal K value based on above cross validation
-set.seed(1)
-best_k<-heart_data_accuracies%>%
-    arrange(desc(mean))%>%
-    slice(2)%>%
-    pull(neighbors)
-# best_k
+
# # Pulling optimal K value based on above cross validation
+# set.seed(1)
+# best_k<-heart_data_accuracies%>%
+#     arrange(desc(mean))%>%
+#     slice(2)%>%
+#     pull(neighbors)
+# # best_k
 
@@ -662,11 +612,11 @@

Classification Model\(K\) value we continued to build our classifier and started by building a new model using best_k.

-
# New classifier model using optimal K values
-set.seed(1)
-heart_data_spec_final<- nearest_neighbor(weight_func="rectangular", neighbors=best_k)%>%
-    set_engine("kknn")%>%
-    set_mode("classification")
+
# # New classifier model using optimal K values
+# set.seed(1)
+# heart_data_spec_final<- nearest_neighbor(weight_func="rectangular", neighbors=best_k)%>%
+#     set_engine("kknn")%>%
+#     set_mode("classification")
 
@@ -674,12 +624,12 @@

Classification Model
-
# Final workflow for classifier using new model.
-set.seed(1)
-heart_data_final_fit<-workflow()%>%
-    add_recipe(heart_data_recipe)%>%
-    add_model(heart_data_spec_final)%>%
-    fit(data=heart_training)
+
# # Final workflow for classifier using new model.
+# set.seed(1)
+# heart_data_final_fit<-workflow()%>%
+#     add_recipe(heart_data_recipe)%>%
+#     add_model(heart_data_spec_final)%>%
+#     fit(data=heart_training)
     
 #heart_data_final_fit
 
@@ -691,51 +641,46 @@

Testing the Model
-
# Testing our classifier using the testing set
-set.seed(1)
-heart_data_summary<-heart_data_final_fit%>%
-    predict(heart_testing)%>%
-    bind_cols(heart_testing)%>%
-    metrics(truth=diagnosis_f, estimate=.pred_class)%>%
-    filter(.metric == 'accuracy')
-heart_data_summary
-
-heart_data_predict <- heart_data_final_fit %>%
-    predict(heart_testing) %>%
-    bind_cols(heart_testing)
-
-write_csv(heart_data_predict, '../data/modelling/predict_data.csv')
+
# # Testing our classifier using the testing set
+# set.seed(1)
+# heart_data_summary<-heart_data_final_fit%>%
+#     predict(heart_testing)%>%
+#     bind_cols(heart_testing)%>%
+#     metrics(truth=diagnosis_f, estimate=.pred_class)%>%
+#     filter(.metric == 'accuracy')
+# heart_data_summary
+
+# heart_data_predict <- heart_data_final_fit %>%
+#     predict(heart_testing) %>%
+#     bind_cols(heart_testing)
+
+# write_csv(heart_data_predict, '../data/modelling/predict_data.csv')
 

Table 6. Model accuracy with testing set

The accuracy is a reasonable number that shows that even though our predictors within our model produce a strange \(K\)-nearest neighbour graph, we still built a model that will diagnose patients with ~80% accuracy.

-

We know this is a reasonable accuracy for our classifier from looking at Figure 3. As discussed in the preceding paragraph, we are looking for a classifier with higher accuracy than that of the majority classifier. In our case, the majority label made up ~30% of our dataset, so the accuracy of ~80% is more than double that of our majority label. Therefore, our classifier is reasonably good.

+

We know this is a reasonable accuracy for our classifier from looking at Figure 3. As discussed in the preceding paragraph, we are looking for a classifier with higher accuracy than that of the majority classifier. In our case, the majority label made up ~30% of our dataset, so the accuracy of ~80% is more than double that of our majority label. Therefore, our classifier is reasonably good.

To test the accuracy of the model we built, we also provide a confusion matrix; a table of predicted and correct labels, using the conf_mat function. This enables us to easily see false positives and false negatives of diagnosis, as well as what was predicted accurately.

A heatmap based on the confusion matrix was made to more easily understand what is being displayed above.

-
-
-
# confusion matrix heat map visualization
-source('../R/confusion_matrix.R')
-
-confusion_matrix(heart_data_predict)
-
-
-
-
-

Figure 5.

-

The confusion matrix (Figure 5.) shows that 22 individuals were correctly diagnosed with no presence of heart disease, 39 were correctly diagnosed with low severity of heart disease, 22 were correctly diagnosed with medium severity of heart disease, 20 were correctly diagnosed with high severity of heart disease, and 4 were correctly diagnosed with extreme severity of heart disease. Therefore, the classifier labeled \(22 + 39 + 21 + 20 + 4 = 106\) diagnoses correctly. This is a rather good result as the proportions of each heart disease class diagnosed correctly mirror the proportions seen in the dataset. Our classifier is therefore not favouring one diagnosis over the other.

+
+_images/confusion_matrix.png +
+

Fig. 5 The confusion matrix illustrates the number of correct predictions made by the kNN model to the number of incorrect predictions. The darker the color of the square the more predictions that landed in that category.#

+
+
+

The confusion matrix (Figure 5) shows that 22 individuals were correctly diagnosed with no presence of heart disease, 39 were correctly diagnosed with low severity of heart disease, 22 were correctly diagnosed with medium severity of heart disease, 20 were correctly diagnosed with high severity of heart disease, and 4 were correctly diagnosed with extreme severity of heart disease. Therefore, the classifier labeled \(22 + 39 + 21 + 20 + 4 = 106\) diagnoses correctly. This is a rather good result as the proportions of each heart disease class diagnosed correctly mirror the proportions seen in the dataset. Our classifier is therefore not favouring one diagnosis over the other.

Unfortunately, the classifier also made errors and classified a total of 18 patients with a false positive, meaning the patient’s heart disease was worse than it actually was. Moreover, the classifier labelled six patients with false negatives, meaning the patients’ heart disease was actually worse than what was predicted. A discussion as to the false positive and false negative results is in the discussion section.

Conclusion#

-

The predictors, age, max_heart_rate, and rest_bp, have high accuracy and a good chance of accurately predicting a patient’s heart disease severity. However, some results indicate that these predictors may not be the best in actual practice. For instance, Figure 1. shows that these predictors do not have significant correlations with a diagnosis of severity of heart disease. Additionally, there was a significant drop-off after two neighbours in our \(K\) graph, proposing that our accuracy results could be due to luck. However, our confusion matrix reveals promising results.

+

The predictors, age, max_heart_rate, and rest_bp, have high accuracy and a good chance of accurately predicting a patient’s heart disease severity. However, some results indicate that these predictors may not be the best in actual practice. For instance, Figure 1 shows that these predictors do not have significant correlations with a diagnosis of severity of heart disease. Additionally, there was a significant drop-off after two neighbours in our \(K\) graph, proposing that our accuracy results could be due to luck. However, our confusion matrix reveals promising results.

Is this what you expected to find?#

We expected to find that the larger the numerical value of a patient’s age and resting blood pressure and the lower the maximum heart rate, the greater at risk a person is to have worsened heart disease. We actually found that these predictors have a weak correlation with the outcome variable. However, our model still predicts heart disease severity accurately.

-

From our confusion matrix in Figure 5., we were more likely to predict a false positive than a false negative. This is good because, with a health condition like heart disease that generates ranging severity, it is better to be given a false positive and be treated as if the disease were worse than be given a false negative and not be treated at all or to a lower care level than what is needed. A reason we see 18 false positives could be because of the predictors we chose to use in our model. We saw in Figure 1. that these predictors are not ideal because of the weak relationships they show with the severities of heart disease. This can also be said as to why we have 6 false negatives. However, considering that the accuracy of our model is good, this is a reasonable number of false negatives. These values for the false positives and false negatives also relate to our research question and conclusion that our selected predictors are primarily good at predicting the preliminary severity of a patient’s heart disease. However, a diagnosis cannot be concluded off these factors alone. Unfortunately, false negatives and false positives are given in medicine in the real world, but from actual research and examples like we were able to display in our classification, it is more likely that a patient will have a proper diagnosis than a false positive or negative.

+

From our confusion matrix in Figure 5, we were more likely to predict a false positive than a false negative. This is good because, with a health condition like heart disease that generates ranging severity, it is better to be given a false positive and be treated as if the disease were worse than be given a false negative and not be treated at all or to a lower care level than what is needed. A reason we see 18 false positives could be because of the predictors we chose to use in our model. We saw in Figure 1 that these predictors are not ideal because of the weak relationships they show with the severities of heart disease. This can also be said as to why we have 6 false negatives. However, considering that the accuracy of our model is good, this is a reasonable number of false negatives. These values for the false positives and false negatives also relate to our research question and conclusion that our selected predictors are primarily good at predicting the preliminary severity of a patient’s heart disease. However, a diagnosis cannot be concluded off these factors alone. Unfortunately, false negatives and false positives are given in medicine in the real world, but from actual research and examples like we were able to display in our classification, it is more likely that a patient will have a proper diagnosis than a false positive or negative.

What impact could such findings have?#

diff --git a/notebooks/_build/html/objects.inv b/notebooks/_build/html/objects.inv index 67314ed670aeea23460b06860c9d35b33d0176bf..87c5d3a00ed2a9fd03ea5ed71cca1a5121d15376 100644 GIT binary patch delta 525 zcmV+o0`mQ?0`~-vb$^q=Zrd;nhVOm~0y`(buDf}Owi#&Mz;*-dRM3)Q3y~#HlCyYE zKU#LSq$!Y_ME)c{QWP50qgNh$5MPAlu=)(R*w$_6G_Za8^qN*#{vFcI=Cw#SKjGyY z>zoNZyB7FqiBiIq^jL|3+{pk#YiWL1>^U};goHh(KwS~AFT*ilNBS7lP$ zbFXc9Q(Y4wG}cnzVSHL-t4Wp_6%=YXDLg2WTa_077|* zUP7>NB84419FPa=JSYR9l^`(SI^i0Q6fewRHXHZ%XJ~#~0$4<@A z)zVGXxphwR0KJn!@o9vff`o*6jLKu4LuUomrMcaPD)T|`IsyoEM-qj|qHUB<7yoNO zC*!fRbhxe>=cCaGDdq>ED<|T{I-178y5H!;qggDnIDd(h^T8n>r{Z%9HBDH6HSZc( zD5gyqCINL?4@!%LlOoqiBaI@o^KJ2qb^avTbWD!s;fs;vmhk_S(O-cXshYNq8#?U~ zcM=!AxO(a^ztLr9?zSnRoF7p45V`yoZH_=qr(RSYi&bB$G Poc%lcB?ie~lPH%L4Z!<< delta 193 zcmV;y06zcs1g-**b$^b_3WG2ZMfZNi{D6gSyGwQ227Hl3q07_+6{0ECLjC(zqfnvH z-Ehx6!iB_@J) +ERROR: Error in `reporter$stop_if_needed()`: +! Test failed + diff --git a/notebooks/_build/html/searchindex.js b/notebooks/_build/html/searchindex.js index 9787ccb..d939c0e 100644 --- a/notebooks/_build/html/searchindex.js +++ b/notebooks/_build/html/searchindex.js @@ -1 +1 @@ -Search.setIndex({docnames:["analysis"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":5,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":3,"sphinx.domains.rst":2,"sphinx.domains.std":2,"sphinx.ext.intersphinx":1,"sphinxcontrib.bibtex":9,sphinx:56},filenames:["analysis.ipynb"],objects:{},objnames:{},objtypes:{},terms:{"0":0,"000":0,"0002":0,"01":0,"01034037preprocessor1_model20":[],"011210":[],"01359131preprocessor1_model19":[],"018":[],"01992470preprocessor1_model21":[],"02":0,"02120650preprocessor1_model01":[],"02120650preprocessor1_model02":[],"02483969preprocessor1_model03":[],"03":0,"054":0,"06":0,"0967":[],"1":0,"10":0,"100":0,"1016":0,"105":0,"106":0,"1097":[],"10na3":[],"11066":[],"1152":0,"13":0,"130441270":[],"131":[],"136":0,"1375":0,"1386":0,"140701573":[],"143":0,"14565":[],"148":0,"15":0,"159420":[],"16":0,"160":[],"160651223":[],"170":[],"17063":[],"18":0,"18483165":0,"1989":0,"1998":0,"19accuracymulticlass0":[],"1a":0,"1accuracymulticlass0":[],"1b":0,"1c":0,"1diagnosis_f":[],"1mattach":[],"1mcolumn":[],"1mconflict":[],"1mdelimit":[],"1mrow":[],"2":0,"20":0,"200":0,"2008":0,"2016":0,"2017":0,"2019":[],"2021":0,"2022":[],"20accuracymulticlass0":[],"20also":0,"20angina":0,"20arteri":0,"20blood":0,"20by":0,"20call":0,"20can":0,"20damag":0,"20make":0,"20pain":0,"20pressur":0,"20them":0,"20your":0,"21":0,"21accuracymulticlass0":[],"22":0,"222":[],"22m":[],"23":[],"24":0,"25":0,"27":[],"29":0,"2accuracymulticlass0":[],"2c":0,"2diagnosis_f":[],"3":0,"30":0,"303":0,"304":0,"31":0,"310":0,"31030":[],"31m":[],"321":[],"32m":[],"32mdbl":[],"32mdiscard":[],"32medition_get":[],"32mfilter":[],"32mfix":[],"32mhttp":[],"32mis_nul":[],"32mlag":[],"32mlocal_edit":[],"32mmatch":[],"32mspec":[],"32mstep":[],"32mtest":[],"32mtidymodels_pref":[],"330239550":[],"335744450":[],"33m":[],"33mfold2":[],"342944650":[],"34m":[],"34m414":[],"34m6":[],"34mbroom":[],"34mdial":[],"34mdplyr":[],"34mforcat":[],"34mggplot2":[],"34minfer":[],"34mmodeldata":[],"34mparsnip":[],"34mpurrr":[],"34mreadr":[],"34mrecip":[],"34mrsampl":[],"34mscale":[],"34mstat":[],"34mstringr":[],"34mtestthat":[],"34mtibbl":[],"34mtidyr":[],"34mtune":[],"34mworkflow":[],"34mworkflowset":[],"34myardstick":[],"363":0,"36m":[],"36m\u2139":[],"39":0,"39m":[],"3accuracymulticlass0":[],"3diagnosis_f":[],"4":0,"40":0,"414":[],"425":0,"4462406":[],"4845":[],"497585":[],"4diagnosis_f":[],"5":0,"50":0,"55":0,"555556":[],"599892450":[],"5diagnosis_f":[],"6":0,"64":0,"659":0,"673":[],"68":0,"7":0,"720":[],"749423450":[],"75":0,"7610736":[],"7611596":[],"7658033":[],"7680744":[],"78":[],"8":0,"80":0,"8308824":[],"840580":[],"844":[],"89":0,"9":0,"90401":0,"90524":0,"9149":0,"946860129":[],"95":[],"990":[],"\u03b2":0,"case":0,"class":0,"do":0,"final":0,"function":0,"import":0,"int":[],"long":0,"new":0,"public":0,"try":0,"while":0,A:0,As:0,For:0,If:0,In:0,Is:[],It:0,No:[],The:0,These:0,To:0,With:0,abil:0,abl:0,about:0,abov:0,accept:0,accompani:0,accord:0,accur:0,accuracymulticlass0:[],acheiv:0,across:[],action:0,actual:0,ad:0,adapt:0,add:0,add_model:0,add_recip:0,addit:0,addition:0,administr:0,adrenerg:0,advantag:0,ae:0,after:0,against:0,age0:[],aggreg:0,al:0,algorithm:0,all:0,alli:0,alon:0,alreadi:0,also:0,alwai:0,american:0,an:0,analys:0,andra:0,angina:[],angiographi:0,ani:0,anoth:[],appear:0,appli:0,applic:0,appropri:0,ar:0,archiv:0,around:0,arrang:0,arrhythmia:0,arteri:0,articl:0,arxiv:0,ask:0,asoci:0,aspect:0,associ:0,attach:[],attack:0,author:0,awai:0,awar:0,b:0,base:0,basel:0,baselin:0,beach:0,becaus:0,becom:0,been:0,befor:0,begin:0,being:0,below:0,benefit:0,best:0,best_k:0,better:0,between:0,billion:0,bind_col:0,biom:0,biomed:[],bloodpressur:0,bodi:0,both:0,bound:0,boxplot:0,boxplot_ag:0,boxplot_max_heart_r:0,boxplot_rest_bp:0,bpm:0,br:0,british:[],budapest:[],build:0,built:0,bupadepest:0,c:0,ca:[],california:0,call:[],can:0,cannot:0,cardiac:0,cardiolog:0,cardiovascular:0,care:0,caret:0,casei:0,categori:0,caus:0,cdc:0,cell:0,center:0,chanc:0,chang:0,check:0,chest:0,chest_pain:0,choic:0,cholesterol:0,choos:0,chose:0,chosen:0,chr:[],christou:0,chronic:[],citizen:0,classification_model:0,clear:0,cleveland:0,clinic:0,code:0,collect:0,colleg:0,column:0,com:0,combin:0,come:0,common:0,compar:0,comput:0,conclud:0,conclus:[],condit:0,conduct:0,conf_mat:0,config:[],confirm:0,conflict:[],confus:0,confusion_matrix:0,consid:0,consider:0,contain:0,continu:0,contribut:0,control:[],coronari:0,correct:0,correctli:0,correl:0,cost:0,could:[],cowplot:0,creat:0,crick:0,cross:0,cs08:0,csaba:0,csv:0,d:0,daili:0,damag:0,daniel:0,dataset:0,dbl:[],death:0,decent:0,decid:0,decreas:0,deem:0,deeper:[],definit:0,degre:0,demetra:0,desc:0,describ:0,despit:0,detail:0,detect:[],determin:0,detrano:0,develop:0,dg17:0,dheeru:0,diagnos:0,diagnosi:0,diagnosis_f:0,diagnosis_fpercent_outcomesnumb:[],differ:0,dig:[],directori:0,dis21:0,discard:[],discuss:0,displai:0,distanc:0,distinguish:0,distribut:0,divis:[],dj:0,doctor:0,doe:0,doi:0,done:0,doubl:0,dougla:0,down:0,dplyr:[],drastic:0,drop:0,drug:0,dua:0,due:0,e1071:0,e:[],each:0,easier:0,easili:0,edition_get:[],edu:0,effect:0,effici:0,element_text:0,elimin:0,elvira:0,emerson:0,enabl:0,encourag:0,enough:0,ensur:0,eric:0,error:0,estim:0,estimatormeannstd_err:[],et:0,even:0,evenli:0,everi:0,examin:0,exampl:0,exce:0,exercis:0,exist:[],expect:[],experi:0,explain:0,extrem:0,facil:0,fact:0,factor:0,fail:0,failur:0,fals:0,favour:0,fct:[],februari:[],feel:0,fifth:0,figur:0,file:0,fill:[],filter:0,find:[],finit:[],first:0,fit:0,five:0,fix:[],flow:0,fold:0,follow:0,forc:0,form:0,forward_selection_subset:0,forward_visu:0,forwardselect:0,found:0,foundat:[],four:0,fourth:0,foward:0,frame:0,frequenc:0,froelich:0,from:0,full:[],further:0,futur:[],gener:0,geom_lin:0,geom_point:0,get:0,ggplot2:0,ggplot:0,ggsave:0,give:0,given:0,gmm:0,good:0,gosmanova:0,gov:0,govern:0,graff:0,graph:0,greater:0,grid_boxplot:0,group:0,group_bi:0,gt:[],guppi:0,h:0,ha:0,hard:0,harder:0,have:[],health:0,healthi:0,heart_data:0,heart_data_accuraci:0,heart_data_final_fit:0,heart_data_predict:0,heart_data_recip:0,heart_data_spec_fin:0,heart_data_subset:0,heart_data_summari:0,heart_split:0,heart_test:0,heart_train:0,heartdiseas:[],heat:0,heatmap:0,height:0,help:0,high:0,higher:0,highest:0,hospit:0,how:0,howev:0,htm:0,http:0,huge:0,hungari:[],hungarian:0,hungary4414130209011270:[],hungary6014132218011401:[],hungary6314140260011121:[],ic:0,idea:0,ideal:0,ignor:[],imag:[],immit:0,impact:[],includ:0,increas:0,indic:0,individu:0,influenc:0,inform:0,init:0,initial_split:0,initial_visu:0,input:0,insight:0,instanc:0,instead:0,institut:0,intern:0,internet:0,intrins:0,irvin:[],is_nul:[],issn:[],iter:0,its:0,j:0,jacc:0,jakob:0,janosi:0,janowicz:0,japplphysiol:0,johann:0,join_csv:0,joining_data:0,journal:0,jun:0,june:0,k:0,kalantar:0,kamyar:0,kern:0,kill:0,kknn:0,knn:0,knn_visual:0,know:0,kovesdi:0,l:0,lab:0,label:0,lag:[],larg:0,larger:0,later:0,lattic:[],lead:[],learn:0,lee:0,lenar:0,less:0,lessen:0,letter:0,leung:0,level:0,librari:0,lift:[],like:0,line:0,load:0,local_edit:[],longer:0,look:0,lose:0,low:0,lower:0,lowest:0,lt:[],lu:0,luck:0,m:[],machin:0,made:0,mai:0,majority_classifi:0,majority_classifier_funct:0,majority_classifier_vis_funct:0,make:0,mani:0,map:0,march:[],margit:0,mask:[],match:[],matrix:0,matthia:0,max:0,max_heart_r:0,maxim:0,mean:0,measur:0,median:0,medic:0,medicin:0,medium:0,messag:[],metric:0,might:0,mikkelsen:0,miklo:0,mirror:0,miss:0,ml:0,mmhg:0,model_visu:0,molnar:0,more:0,moreov:0,mortal:0,most:0,movement:0,much:0,must:0,n:0,na013na202:[],na014010nana0:[],na0:[],na112na10nana1:[],na214011nana2:[],na:0,nage:0,nation:[],natur:0,ncol:0,ndiseas:0,nearest:0,nearest_neighbor:0,need:0,neg:0,neighbor:0,neighbour:0,never:0,next:0,nmaximum:0,nn:0,non:[],none:0,noninvas:0,now:0,nrest:0,nrow:0,nto:0,number:0,number_of_column:0,numer:0,o:0,object:[],observ:[],obtain:0,off:0,ohio:0,older:0,omit:0,onc:0,one:0,onli:0,optim:0,option:0,order:0,org:0,origin:0,other:0,our:0,outcom:0,over:0,overfit:0,p:0,packag:0,pain:0,paragraph:0,paramet:0,parsnip:[],part:0,partial:0,partit:0,pass:0,peopl:0,percent:0,percent_outcom:0,permut:[],person:0,pfister:0,ph:[],physcial:0,physiolog:0,pick:0,piec:0,pii:0,place_data:0,placeagesexchest_painrest_bpcholestoral_mmhgfasting_bsrest_ecgmax_heart_rateexercis:[],plateau:0,plot:0,plot_grid:0,plug:0,pmid:0,png:0,point:0,posit:0,practic:0,pre:0,precaut:0,preced:0,precis:[],pred_class:0,predict_data:0,preform:0,preprocess:0,presenc:0,present:[],prevent:0,primarili:0,probabl:0,proce:0,procedur:0,process:0,produc:0,profession:0,project:0,promis:0,promot:[],prop:0,proper:0,proport:0,propos:0,provid:0,pull:0,pump:0,purrr:[],question:[],quiet:[],r:0,random:0,rang:0,rather:0,read:0,read_csv:0,readr:[],real:0,realli:0,reason:0,recal:[],recip:0,rectangular:0,reduc:0,reduct:0,refer:[],rel:0,relat:0,relationship:0,remain:0,remaind:0,remov:0,renal:0,repeat:0,replac:[],report:0,repositori:0,repr:0,repres:0,reproduc:0,requir:[],reseach:0,resolv:[],respons:0,rest_bp:0,rest_bpagemax_heart_ratediagnosis_f:[],result:0,retriev:[],reveal:0,revers:0,right:0,risk:0,robert:0,rof98:0,roff:0,row:0,rsampl:[],run:0,s0735109716346071:0,s:0,said:0,sam:0,sandhu:0,sarbjit:0,save:[],saw:0,scale:0,schmid:0,school:[],sci:0,scienc:0,sciencedirect:0,script:0,seal:0,search:[],section:0,see:0,seed:0,seek:0,seen:0,selection_forward_funct:0,send:0,sensit:0,separ:0,sequenc:0,set_engin:0,set_mod:0,sex:0,shape:0,shift:0,should:0,show:0,show_col_typ:[],signific:0,similar:0,simpli:0,sinc:0,six:0,size:0,sizemodel_stringaccuraci:[],skew:0,slice:0,slight:0,slope:0,small:0,so:0,some:0,someon:0,someth:0,sourc:0,spec:[],specif:0,specifi:0,spike:0,split:0,st_dep:0,stai:0,standard:0,start:0,startup:[],stat_boxplot:[],state:0,statu:0,steinbrunn:0,stella:0,step:0,still:0,straight:0,strang:0,strata:0,stratifi:0,stroke:0,subelj:0,subsequ:0,subset:0,summar:0,support:0,suppresspackagestartupmessag:[],sure:0,suspect:0,suspici:0,switzerland72131600na21140:[],switzerland73031600:[],switzerland74121450na11230:[],switzerland:0,symptom:0,systol:0,t:0,tabl:0,take:0,taken:0,taut:0,tell:0,term:0,testing_split:0,testthat:[],text:0,thaldiagnosissex_fchest_pain_ffasting_bs_frest_ecg_fexercise_fmajor_vessels_fthal_fdiagnosis_f:[],than:0,thei:0,them:0,theme:0,therefor:0,thi:[],thorn:0,those:0,though:0,three:0,through:0,throughout:0,tibbl:[],tidymodel:0,tidymodels_conflict:[],tidyr:[],tidyvers:0,tidyverse_conflict:[],time:0,tire:0,titl:0,tmwr:[],togeth:0,too:0,top:0,total:0,total_row:0,track:0,training_split:0,treat:0,truth:0,tune:0,twenti:0,two:0,type:0,uci:0,unclear:0,undergo:0,understand:0,unfortun:0,unhealthi:0,unit:0,univers:0,unus:0,up:0,upper:0,url:0,us:0,usag:0,v:[],va:0,valid:0,valu:0,variou:0,vessel:0,veteran:0,victor:0,view:0,vote:0,w:[],wa:0,walter:0,want:0,warn:[],watch:0,we:0,weak:0,weaker:0,weakli:0,weight_func:0,well:0,were:0,what:[],when:0,whether:0,which:0,who:0,why:0,width:0,william:[],within:0,word:0,work:0,workflow:0,world:0,wors:0,worsen:0,would:0,write:0,write_csv:0,www:0,x:0,y:0,yardstick:[],year:0,yessayan:0,ylim:0,you:[],younger:0,your:[],z:0,zadeh:0,ziva:0,zurich:0},titles:["EVALUATING ACCURACY OF PREDETERMINED VARIABLES TO PREDICT SEVERITY OF HEART DISEASE IN PATIENTS"],titleterms:{IN:0,Is:0,OF:0,TO:0,accuraci:0,achiev:0,ag:0,analysi:0,blood:0,classif:0,classifi:0,complet:0,conclus:0,content:[],could:0,data:0,discuss:[],diseas:0,evalu:0,expect:0,exploratori:0,find:0,forward:0,futur:0,have:0,heart:0,impact:0,initi:0,introduct:0,lead:0,literatur:0,major:0,maximum:0,model:0,patient:0,predetermin:0,predict:0,predictor:0,preliminari:0,pressur:0,question:0,rate:0,refer:0,research:0,rest:0,select:0,set:0,sever:0,tabl:[],test:0,thi:0,tidi:0,train:0,variabl:0,visual:0,what:0,you:0}}) \ No newline at end of file +Search.setIndex({docnames:["analysis"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":5,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":3,"sphinx.domains.rst":2,"sphinx.domains.std":2,"sphinx.ext.intersphinx":1,"sphinxcontrib.bibtex":9,sphinx:56},filenames:["analysis.ipynb"],objects:{},objnames:{},objtypes:{},terms:{"0":0,"000":0,"0002":0,"00nana1":[],"01":[],"01034037preprocessor1_model20":[],"011210":[],"01270":[],"01301":[],"01359131preprocessor1_model19":[],"018":[],"01992470preprocessor1_model21":[],"01na":[],"02":0,"02120650preprocessor1_model01":[],"02120650preprocessor1_model02":[],"02483969preprocessor1_model03":[],"03":[],"04":[],"05":[],"054":0,"06":0,"07":[],"08":[],"0967":[],"0na":[],"1":0,"10":0,"100":0,"1016":0,"105":0,"106":0,"1097":[],"10na3":[],"110":0,"11066":[],"115":0,"1152":0,"125":0,"127":0,"13":0,"130":0,"130441270":[],"131":[],"136":0,"1375":0,"1386":0,"140701573":[],"143":0,"14565":[],"148":0,"15":0,"154":0,"156":0,"159420":[],"16":0,"160":[],"160651223":[],"166":0,"170":[],"17063":[],"18":0,"18483165":0,"1989":0,"1998":0,"19accuracymulticlass0":[],"1a":0,"1accuracymulticlass0":[],"1b":0,"1c":0,"1diagnosis_f":[],"1mattach":[],"1mcolumn":0,"1mconflict":[],"1mdelimit":0,"1mrow":0,"1nana1":[],"2":0,"20":0,"200":0,"2008":0,"2016":0,"2017":0,"2019":[],"2021":0,"2022":[],"20accuracymulticlass0":[],"20also":0,"20angina":0,"20arteri":0,"20blood":0,"20by":0,"20call":0,"20can":0,"20damag":0,"20make":0,"20pain":0,"20pressur":0,"20them":0,"20your":0,"21":0,"21accuracymulticlass0":[],"22":0,"222":[],"22m":0,"23":[],"24":0,"25":0,"27":[],"29":0,"2accuracymulticlass0":[],"2c":0,"2diagnosis_f":[],"3":0,"30":0,"303":0,"304":0,"31":0,"310":0,"31030":[],"31m":[],"31mchr":0,"32":0,"321":[],"32m":[],"32mdbl":0,"32mdiscard":[],"32medition_get":[],"32mfilter":[],"32mfix":[],"32mhttp":[],"32mis_nul":[],"32mlag":[],"32mlocal_edit":[],"32mmatch":[],"32mspec":[],"32mstep":[],"32mtest":[],"32mtidymodels_pref":[],"330239550":[],"335744450":[],"33m":[],"33mfold2":[],"34":0,"342944650":[],"34m":[],"34m21":0,"34m414":[],"34m6":[],"34m720":0,"34mbroom":[],"34mdial":[],"34mdplyr":[],"34mforcat":[],"34mggplot2":[],"34minfer":[],"34mmodeldata":[],"34mparsnip":[],"34mpurrr":[],"34mreadr":[],"34mrecip":[],"34mrsampl":[],"34mscale":[],"34mstat":[],"34mstringr":[],"34mtestthat":[],"34mtibbl":[],"34mtidyr":[],"34mtune":[],"34mworkflow":[],"34mworkflowset":[],"34myardstick":[],"35":0,"36":0,"363":0,"36m":0,"36m\u2139":0,"38":0,"39":0,"39m":0,"3accuracymulticlass0":[],"3diagnosis_f":[],"4":0,"40":0,"414":[],"425":0,"4462406":[],"4845":[],"497585":[],"4diagnosis_f":[],"5":0,"50":0,"55":0,"555556":[],"599892450":[],"5diagnosis_f":[],"6":0,"62":[],"621411":[],"64":0,"659":0,"673":[],"68":0,"7":0,"720":[],"73":[],"7314na":[],"749423450":[],"75":0,"7610736":[],"7611596":[],"7658033":[],"7680744":[],"78":[],"8":0,"80":0,"8308824":[],"840580":[],"844":[],"89":0,"9":0,"90401":0,"90524":0,"9149":0,"93":[],"946860129":[],"95":0,"950na":[],"990":[],"\u03b2":0,"case":0,"class":0,"do":0,"final":0,"function":0,"import":0,"int":[],"long":0,"new":0,"public":0,"try":0,"while":0,A:0,As:0,For:0,If:0,In:0,Is:[],It:0,No:[],The:0,These:0,To:0,With:0,abil:0,abl:0,about:0,abov:0,accept:0,accompani:0,accord:0,accur:0,accuracymulticlass0:[],acheiv:[],across:[],action:0,actual:0,ad:0,adapt:0,add:0,add_model:0,add_recip:0,addit:0,addition:0,administr:0,adrenerg:0,advantag:0,ae:[],after:0,against:0,age0:[],aggreg:0,al:0,algorithm:0,all:0,alli:0,alon:0,alreadi:0,also:0,alwai:0,american:0,an:0,analys:[],analyz:0,andra:0,angina:[],angiographi:0,ani:0,anoth:[],appear:0,appli:0,applic:0,appropri:0,ar:0,archiv:0,around:0,arrang:0,arrhythmia:0,arteri:0,articl:0,arxiv:0,ask:0,asoci:0,aspect:0,associ:0,attach:[],attack:0,author:0,awai:0,awar:0,b:[],base:0,basel:0,baselin:0,beach:0,becaus:0,becom:0,been:0,befor:0,begin:0,being:0,below:0,benefit:0,best:0,best_k:0,better:0,between:0,billion:0,bind_col:0,biom:0,biomed:[],bloodpressur:0,bodi:0,both:0,bound:0,boxplot:0,boxplot_ag:[],boxplot_max_heart_r:[],boxplot_rest_bp:[],bpm:[],br:0,british:[],budapest:[],build:0,build_classification_model:[],build_confusion_matrix:[],build_heart_data:[],built:0,bupadepest:0,c:0,ca:[],california:0,call:[],can:0,cannot:0,cardiac:0,cardiolog:0,cardiovascular:0,care:0,caret:[],casei:0,cat:0,categori:0,caus:0,cdc:0,cell:0,center:0,chanc:0,chang:0,check:0,chest:0,chest_pain:0,chest_pain_f:0,choic:0,cholesterol:0,cholestoral_mmhg:0,choos:0,chose:0,chosen:0,chr:[],christou:0,chronic:[],citizen:0,classification_model:0,clear:0,cleveland:0,clinic:0,code:0,collaps:0,collect:0,colleg:0,color:0,column:0,com:0,combin:0,come:0,common:0,compar:0,comput:0,conclud:0,conclus:[],condit:0,conduct:0,conf_mat:0,config:[],confirm:0,conflict:[],confus:0,confusion_matrix:[],connect:[],consid:0,consider:0,contain:0,continu:0,contribut:0,control:[],coronari:0,correct:0,correctli:0,correl:0,cost:0,could:[],cowplot:[],creat:0,crick:0,cross:0,cs08:0,csaba:0,csv:0,d:0,daili:0,damag:0,daniel:0,darker:0,data_split:[],data_tidi:[],dataset:0,dbl:[],death:0,decent:0,decid:0,decreas:0,deem:0,deeper:[],definit:0,degre:0,demetra:0,desc:0,describ:0,despit:0,detail:0,detect:[],determin:0,detrano:0,develop:0,df:0,dg17:0,dheeru:0,diagnos:0,diagnosi:0,diagnosis_f:0,diagnosis_fpercent_outcomesnumb:[],differ:0,dig:[],directori:0,dis21:0,discard:[],discuss:0,displai:0,distanc:0,distinguish:0,distribut:0,divis:[],dj:0,doctor:0,doe:0,doi:0,done:0,doubl:0,dougla:0,down:0,dplyr:[],drastic:0,drop:0,drug:0,dsci310:[],dsci:[],dua:0,due:0,e1071:[],e:[],each:0,easier:0,easili:0,edition_get:[],edu:0,effect:0,effici:0,ei:[],element_text:[],elimin:0,elvira:0,emerson:0,enabl:0,encod:[],encourag:0,enough:0,ensur:0,envir:[],eric:0,error:0,estim:0,estimatormeannstd_err:[],et:0,eval:[],even:0,evenli:0,everi:0,examin:0,exampl:0,exce:0,exercis:0,exercise_f:0,exist:[],expect:[],experi:0,explain:0,extrem:0,facil:0,fact:0,factor:0,fail:0,failur:0,fals:0,fasting_b:0,fasting_bs_f:0,favour:0,fct:[],februari:[],feel:0,fifth:0,figur:0,file:[],filenam:[],fill:[],filter:0,find:[],finit:[],first:0,fit:0,five:0,fix:[],flow:0,fold:0,follow:0,forc:0,form:0,forward_selection_data:[],forward_selection_subset:0,forward_selection_visu:[],forward_visu:[],forwardselect:0,found:0,foundat:[],four:0,fourth:0,foward:0,frame:0,frequenc:0,froelich:0,from:0,full:0,further:0,futur:[],gener:0,geom_lin:[],geom_point:[],get:0,getwd:[],ggplot2:[],ggplot:[],ggsave:[],git:[],give:0,given:0,gmm:0,good:0,gosmanova:0,gov:0,govern:0,graff:0,graph:0,greater:0,grid_boxplot:[],group:0,group_bi:0,gt:[],guppi:0,h:0,ha:0,hard:0,harder:0,have:[],head:0,health:0,healthi:0,heart_data:0,heart_data_accuraci:0,heart_data_final_fit:0,heart_data_final_workflow:[],heart_data_predict:0,heart_data_recip:0,heart_data_spec_fin:0,heart_data_subset:0,heart_data_summari:0,heart_split:[],heart_test:0,heart_train:0,heartdiseas:[],heat:[],heatmap:0,height:[],help:0,high:0,higher:0,highest:0,hospit:0,how:0,howev:0,htm:0,http:0,huge:0,hungari:[],hungarian:0,hungary4414130209011270:[],hungary551412222311100:[],hungary5814:[],hungary6014132218011401:[],hungary621212025402:[],hungary6314140260011121:[],ic:0,idea:0,ideal:0,ignor:[],illustr:0,imag:[],immit:0,impact:[],includ:0,incorrect:0,increas:0,indic:0,individu:0,influenc:0,inform:0,init:[],initial_split:[],initial_visu:[],input:0,insight:0,instanc:0,instead:0,institut:0,intern:0,internet:[],intrins:0,irvin:[],is_nul:[],issn:[],iter:0,its:0,j:0,jacc:0,jakob:0,janosi:0,janowicz:0,japplphysiol:0,johann:0,join_csv:[],joining_data:[],journal:0,jun:0,june:0,k:0,kalantar:0,kamyar:0,kern:0,kill:0,kknn:0,knn:0,knn_img:[],knn_visual:[],know:0,kovesdi:0,l:0,lab:[],label:0,lag:[],land:0,larg:0,larger:0,later:0,lattic:[],lead:[],learn:0,lee:0,lenar:0,length:0,less:0,lessen:0,letter:0,leung:0,level:0,librari:[],lift:[],like:0,line:0,load:0,local_edit:[],longer:0,look:0,lose:0,low:0,lower:0,lowest:0,lt:[],lu:0,luck:0,m:[],machin:0,made:0,mai:0,major_classifier_data:[],major_classifier_visu:[],major_vessel:0,major_vessels_f:0,majority_classifi:0,majority_classifier_funct:[],majority_classifier_vis_funct:[],make:0,mani:0,map:[],march:[],margit:0,mask:[],match:[],matrix:0,matthia:0,max:0,max_heart_r:0,maxim:0,md_tabl:0,mean:0,measur:0,median:0,medic:0,medicin:0,medium:0,messag:0,metric:0,might:0,mikkelsen:0,miklo:0,mirror:0,miss:0,ml:0,mmhg:[],model_visu:[],molnar:0,more:0,moreov:0,mortal:0,most:0,movement:0,much:0,must:0,n:0,na013na202:[],na014010nana0:[],na01412nanana0:[],na0:[],na0na:[],na111na:[],na11202:[],na112na10nana1:[],na114nana0nana1:[],na214011nana2:[],na38512:[],na:0,nage:[],name:0,nana:[],nation:[],natur:0,ncol:[],ndiseas:[],nearest:0,nearest_neighbor:0,need:0,neg:0,neighbor:0,neighbour:0,never:0,next:0,nmaximum:[],nn:0,non:[],none:0,noninvas:0,notebook:[],now:0,nrest:[],nrow:0,nto:[],number:0,number_of_column:0,numer:0,o:0,object:[],observ:[],obtain:0,off:0,ohio:0,older:0,omit:0,onc:0,one:0,onli:0,open:[],optim:0,option:[],order:0,org:0,origin:0,other:0,our:0,outcom:0,over:0,overfit:0,p:0,packag:0,pain:0,paragraph:0,paramet:0,parsnip:[],part:0,partial:0,partit:0,pass:0,past:0,paste0:0,peopl:0,percent:0,percent_outcom:0,percentag:0,permut:[],person:0,pfister:0,ph:[],physcial:0,physiolog:0,pick:0,piec:0,pii:0,place:0,place_data:[],placeagesexchest_painrest_bpcholestoral_mmhgfasting_bsrest_ecgmax_heart_rateexercis:[],plateau:0,plot:[],plot_grid:[],plug:0,pmid:0,png:[],point:0,posit:0,practic:0,pre:0,precaut:0,preced:0,precis:[],pred_class:0,predict_data:0,preform:0,preprocess:0,presenc:0,present:[],prevent:0,primarili:0,probabl:0,proce:0,procedur:0,process:0,produc:0,profession:0,project:0,promis:0,promot:[],prop:[],proper:0,proport:0,propos:0,provid:0,pull:0,pump:0,purrr:[],question:[],quiet:0,r:0,random:0,rang:0,rather:0,read:[],read_csv:0,readr:[],real:0,realli:0,reason:0,recal:[],recip:0,rectangular:0,reduc:0,reduct:0,refer:[],rel:0,relat:0,relationship:0,remain:0,remaind:0,remov:0,renal:0,rep:0,repeat:0,replac:[],report:0,repositori:0,repr:[],repres:0,reproduc:0,requir:[],reseach:[],resolv:[],respons:0,rest_:0,rest_bp:0,rest_bpagemax_heart_ratediagnosis_f:[],rest_ecg:0,rest_ecg_f:0,result:0,retriev:0,reveal:0,revers:0,right:0,risk:0,robert:0,rof98:0,roff:0,row:0,rsampl:[],run:0,s0735109716346071:0,s:0,said:0,sam:0,sandhu:0,sarbjit:0,save:[],saw:0,scale:0,schmid:0,school:[],sci:0,scienc:0,sciencedirect:0,script:0,seal:0,search:[],section:0,see:0,seed:0,seek:0,seen:0,selection_forward_funct:[],send:0,sensit:0,sep:0,separ:0,sequenc:0,set_engin:0,set_mod:0,sex:0,sex_f:0,shape:0,shift:0,should:0,show:0,show_col_typ:0,signific:0,similar:0,simpli:0,sinc:0,six:0,size:[],sizemodel_stringaccuraci:[],skew:0,slice:0,slight:0,slope:0,small:0,so:0,some:0,someon:0,someth:0,sourc:0,spec:0,spec_tbl_df:[],specif:0,specifi:0,spike:0,split:0,spread:[],squar:0,st_dep:0,stai:0,standard:0,start:0,startup:[],stat_boxplot:[],state:0,statu:0,steinbrunn:0,stella:0,step:0,still:0,straight:0,strang:0,strata:[],stratifi:0,stroke:0,subelj:0,subsequ:0,subset:0,subset_training_data:[],summar:0,support:0,suppresspackagestartupmessag:[],sure:0,suspect:0,suspici:0,switzerland3211:[],switzerland34141150nana1540:[],switzerland3514:[],switzerland72131600na21140:[],switzerland73031600:[],switzerland74121450na11230:[],switzerland:0,symptom:0,systol:0,t:0,tabl:0,take:0,taken:0,taut:0,tell:0,term:0,test_classifi:[],testing_split:0,testthat:[],text:0,thal:0,thal_f:0,thaldiagnosissex_fchest_pain_ffasting_bs_frest_ecg_fexercise_fmajor_vessels_fthal_fdiagnosis_f:[],than:0,thei:0,them:0,theme:[],therefor:0,thi:[],thorn:0,those:0,though:0,three:0,through:0,throughout:0,tibbl:[],tidymodel:0,tidymodels_conflict:[],tidyr:[],tidyvers:[],tidyverse_conflict:[],time:0,tire:0,titl:[],tmwr:[],togeth:0,too:0,top:0,total:0,total_row:0,traceback:[],track:0,training_split:0,treat:0,truth:0,tune:0,twenti:0,two:0,type:0,uci:0,unclear:0,undergo:0,understand:0,unfortun:0,unhealthi:0,unit:0,univers:0,unus:0,up:0,upper:0,url:0,us:0,usag:0,user:[],v:[],va:0,valid:0,valu:0,variou:0,vessel:0,veteran:0,victor:0,view:0,visualize_classification_model:[],vote:0,w:[],wa:0,walter:0,want:0,warn:[],watch:0,we:0,weak:0,weaker:0,weakli:0,weight_func:0,well:0,were:0,what:[],when:0,whether:0,which:0,who:0,why:0,width:[],william:[],within:0,withvis:[],word:0,work:0,workflow:0,world:0,wors:0,worsen:0,would:0,write:0,write_csv:0,www:0,x:0,y:0,yardstick:[],year:0,yessayan:0,ylim:[],you:[],younger:0,your:[],z:0,zadeh:0,ziva:0,zurich:0},titles:["EVALUATING ACCURACY OF PREDETERMINED VARIABLES TO PREDICT SEVERITY OF HEART DISEASE IN PATIENTS"],titleterms:{IN:0,Is:0,OF:0,TO:0,accuraci:0,achiev:0,ag:0,analysi:0,blood:0,classif:0,classifi:0,complet:0,conclus:0,content:[],could:0,data:0,discuss:[],diseas:0,evalu:0,expect:0,exploratori:0,find:0,forward:0,futur:0,have:0,heart:0,impact:0,initi:0,introduct:0,lead:0,literatur:0,major:0,maximum:0,model:0,patient:0,predetermin:0,predict:0,predictor:0,preliminari:0,pressur:0,question:0,rate:0,refer:0,research:0,rest:0,select:0,set:0,sever:0,tabl:[],test:0,thi:0,tidi:0,train:0,variabl:0,visual:0,what:0,you:0}}) \ No newline at end of file diff --git a/notebooks/_build/jupyter_execute/analysis.ipynb b/notebooks/_build/jupyter_execute/analysis.ipynb index 93f19a2..7d2cd04 100644 --- a/notebooks/_build/jupyter_execute/analysis.ipynb +++ b/notebooks/_build/jupyter_execute/analysis.ipynb @@ -63,7 +63,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "── \u001b[1mAttaching packages\u001b[22m ─────────────────────────────────────── tidyverse 1.3.2 ──\n" + "── \u001b[1mAttaching packages\u001b[22m ──────────────────────────────────────────────────────────────────────────────────── tidyverse 1.3.2 ──\n" ] }, { @@ -80,7 +80,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "── \u001b[1mConflicts\u001b[22m ────────────────────────────────────────── tidyverse_conflicts() ──\n", + "── \u001b[1mConflicts\u001b[22m ─────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──\n", "\u001b[31m✖\u001b[39m \u001b[34mreadr\u001b[39m::\u001b[32medition_get()\u001b[39m masks \u001b[34mtestthat\u001b[39m::edition_get()\n", "\u001b[31m✖\u001b[39m \u001b[34mdplyr\u001b[39m::\u001b[32mfilter()\u001b[39m masks \u001b[34mstats\u001b[39m::filter()\n", "\u001b[31m✖\u001b[39m \u001b[34mpurrr\u001b[39m::\u001b[32mis_null()\u001b[39m masks \u001b[34mtestthat\u001b[39m::is_null()\n", @@ -93,71 +93,27 @@ "name": "stdout", "output_type": "stream", "text": [ - "\u001b[32mTest passed\u001b[39m 😀\n", - "\u001b[32mTest passed\u001b[39m 😸\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "── \u001b[1mAttaching packages\u001b[22m ────────────────────────────────────── tidymodels 1.0.0 ──\n", - "\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[32m✔\u001b[39m \u001b[34mbroom \u001b[39m 1.0.1 \u001b[32m✔\u001b[39m \u001b[34mrsample \u001b[39m 1.1.1\n", - "\u001b[32m✔\u001b[39m \u001b[34mdials \u001b[39m 1.1.0 \u001b[32m✔\u001b[39m \u001b[34mtune \u001b[39m 1.0.1\n", - "\u001b[32m✔\u001b[39m \u001b[34minfer \u001b[39m 1.0.4 \u001b[32m✔\u001b[39m \u001b[34mworkflows \u001b[39m 1.1.2\n", - "\u001b[32m✔\u001b[39m \u001b[34mmodeldata \u001b[39m 1.0.1 \u001b[32m✔\u001b[39m \u001b[34mworkflowsets\u001b[39m 1.0.0\n", - "\u001b[32m✔\u001b[39m \u001b[34mparsnip \u001b[39m 1.0.3 \u001b[32m✔\u001b[39m \u001b[34myardstick \u001b[39m 1.1.0\n", - "\u001b[32m✔\u001b[39m \u001b[34mrecipes \u001b[39m 1.0.4 \n", - "\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "── \u001b[1mConflicts\u001b[22m ───────────────────────────────────────── tidymodels_conflicts() ──\n", - "\u001b[31m✖\u001b[39m \u001b[34mscales\u001b[39m::\u001b[32mdiscard()\u001b[39m masks \u001b[34mpurrr\u001b[39m::discard()\n", - "\u001b[31m✖\u001b[39m \u001b[34mdplyr\u001b[39m::\u001b[32mfilter()\u001b[39m masks \u001b[34mstats\u001b[39m::filter()\n", - "\u001b[31m✖\u001b[39m \u001b[34mrecipes\u001b[39m::\u001b[32mfixed()\u001b[39m masks \u001b[34mstringr\u001b[39m::fixed()\n", - "\u001b[31m✖\u001b[39m \u001b[34mpurrr\u001b[39m::\u001b[32mis_null()\u001b[39m masks \u001b[34mtestthat\u001b[39m::is_null()\n", - "\u001b[31m✖\u001b[39m \u001b[34mdplyr\u001b[39m::\u001b[32mlag()\u001b[39m masks \u001b[34mstats\u001b[39m::lag()\n", - "\u001b[31m✖\u001b[39m \u001b[34mrsample\u001b[39m::\u001b[32mmatches()\u001b[39m masks \u001b[34mdplyr\u001b[39m::matches(), \u001b[34mtidyr\u001b[39m::matches(), \u001b[34mtestthat\u001b[39m::matches()\n", - "\u001b[31m✖\u001b[39m \u001b[34myardstick\u001b[39m::\u001b[32mspec()\u001b[39m masks \u001b[34mreadr\u001b[39m::spec()\n", - "\u001b[31m✖\u001b[39m \u001b[34mrecipes\u001b[39m::\u001b[32mstep()\u001b[39m masks \u001b[34mstats\u001b[39m::step()\n", - "\u001b[34m•\u001b[39m Learn how to get started at \u001b[32mhttps://www.tidymodels.org/start/\u001b[39m\n", + "── \u001b[1m\u001b[33mError\u001b[39m (???): X-axis label is not the same!\u001b[22m ──────────────────────────────────\n", + "Error: 'data/modelling/training_split_new.csv' does not exist in current working directory ('/Users/Sam/git/dsci310/dsci-310-group-18/notebooks').\n", + "\u001b[1mBacktrace:\u001b[22m\n", + "\u001b[90m 1. \u001b[39m\u001b[1mglobal\u001b[22m majority_classifier_vis_function(majority_classifier)\n", + "\u001b[90m 6. \u001b[39m\u001b[1mvroom\u001b[22m (local) ``(\"data/modelling/training_split_new.csv\")\n", + "\u001b[90m 7. \u001b[39mvroom:::check_path(path)\n", "\n" ] }, { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[1mRows: \u001b[22m\u001b[34m414\u001b[39m \u001b[1mColumns: \u001b[22m\u001b[34m6\u001b[39m\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[36m──\u001b[39m \u001b[1mColumn specification\u001b[22m \u001b[36m────────────────────────────────────────────────────────\u001b[39m\n", - "\u001b[1mDelimiter:\u001b[22m \",\"\n", - "\u001b[32mdbl\u001b[39m (6): diagnosis_f, age, rest_bp, max_heart_rate, chest_pain, sex\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "\u001b[36mℹ\u001b[39m Use `spec()` to retrieve the full column specification for this data.\n", - "\u001b[36mℹ\u001b[39m Specify the column types or set `show_col_types = FALSE` to quiet this message.\n" + "ename": "ERROR", + "evalue": "\u001b[1m\u001b[33mError\u001b[39m in `reporter$stop_if_needed()`:\u001b[22m\n\u001b[33m!\u001b[39m Test failed\n", + "output_type": "error", + "traceback": [ + "\u001b[1m\u001b[33mError\u001b[39m in `reporter$stop_if_needed()`:\u001b[22m\n\u001b[33m!\u001b[39m Test failed\nTraceback:\n", + "1. source(\"../tests/tests.R\")", + "2. withVisible(eval(ei, envir))", + "3. eval(ei, envir)", + "4. eval(ei, envir)", + "5. test_that(\"X-axis label is not the same!\", {\n . majority_classifier <- read_csv(\"../data/modelling/majority_classifier.csv\")\n . plot <- majority_classifier_vis_function(majority_classifier)\n . expect_identical(plot$labels$x, \"Heart disease degree of severity\")\n . })", + "6. (function (envir) \n . {\n . handlers <- get_handlers(envir)\n . errors <- list()\n . for (handler in handlers) {\n . tryCatch(eval(handler$expr, handler$envir), error = function(e) {\n . errors[[length(errors) + 1]] <<- e\n . })\n . }\n . attr(envir, \"withr_handlers\") <- NULL\n . for (error in errors) {\n . stop(error)\n . }\n . })()" ] } ], @@ -165,35 +121,6 @@ "source('../tests/tests.R')" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "# STEP IN 01 R SCRIPT\n", - "\n", - "library(tidyverse)\n", - "library(repr)\n", - "library(tidymodels)\n", - "library(cowplot)\n", - "library(ggplot2)\n", - "library(caret)\n", - "library(e1071)\n", - "options(repr.matrix.max.rows = 6)\n", - "set.seed(1)\n", - "source(\"../R/selection_forward_function.R\")\n", - "source(\"../R/majority_classifier_function.R\")\n", - "\n", - "# Reading data off internet to make csv files\n", - "source(\"../R/place_data.R\")\n", - "source(\"../R/joining_data.R\")" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -210,19 +137,52 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": { "vscode": { "languageId": "r" } }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[1mRows: \u001b[22m\u001b[34m720\u001b[39m \u001b[1mColumns: \u001b[22m\u001b[34m21\u001b[39m\n", + "\u001b[36m──\u001b[39m \u001b[1mColumn specification\u001b[22m \u001b[36m────────────────────────────────────────────────────────\u001b[39m\n", + "\u001b[1mDelimiter:\u001b[22m \",\"\n", + "\u001b[31mchr\u001b[39m (1): place\n", + "\u001b[32mdbl\u001b[39m (20): age, sex, chest_pain, rest_bp, cholestoral_mmHg, fasting_bs, rest_...\n", + "\n", + "\u001b[36mℹ\u001b[39m Use `spec()` to retrieve the full column specification for this data.\n", + "\u001b[36mℹ\u001b[39m Specify the column types or set `show_col_types = FALSE` to quiet this message.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "|place|age|sex|chest_pain|rest_bp|cholestoral_mmHg|fasting_bs|rest_ECG|max_heart_rate|exercise|major_vessels|thal|diagnosis|sex_f|chest_pain_f|fasting_bs_f|rest_ECG_f|exercise_f|major_vessels_f|thal_f|diagnosis_f|\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "|switzerland|32|1|1|95|0|NA|0|127|0|NA|NA|1|1|1|NA|0|0|NA|NA|1|\n", + "|switzerland|34|1|4|115|0|NA|NA|154|0|NA|NA|1|1|4|NA|NA|0|NA|NA|1|\n", + "|switzerland|35|1|4|NA|0|NA|0|130|1|NA|7|3|1|4|NA|0|1|NA|7|3|\n", + "|switzerland|36|1|4|110|0|NA|0|125|1|NA|6|1|1|4|NA|0|1|NA|6|1|\n", + "|switzerland|38|0|4|105|0|NA|0|166|0|NA|NA|2|0|4|NA|0|0|NA|NA|2|\n", + "|switzerland|38|0|4|110|0|0|0|156|0|NA|3|1|0|4|0|0|0|NA|3|1|" + ] + } + ], "source": [ "# STEP IN 02 R SCRIPT\n", + "md_table <- function(df){\n", + " paste0('|', paste(names(df), collapse = '|'), '|\\n|', \n", + " paste(rep('---', length(df)), collapse = '|'), '|\\n|', \n", + " paste(Reduce(function(x, y){paste(x, y, sep = '|')}, df), collapse = '|\\n|'), '|')\n", + "}\n", "\n", - "\n", - "heart_data <- join_csv()\n", - "heart_data" + "heart_data <- read_csv('../data/processed/heart_data.csv')\n", + "cat(md_table(head(heart_data)))" ] }, { @@ -248,26 +208,6 @@ "We set the seed with the `set.seed` function in order to make the randomized processes throughout our analysis reproducible. A seed is a numerical starting value, which determines the sequence of random numbers R will generate. Throughout the analysis the `set.seed` function will be at the top of each cell that completes a randomizing action. " ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "vscode": { - "languageId": "r" - } - }, - "outputs": [], - "source": [ - "# STEP IN 03 R SCRIPT\n", - "\n", - "\n", - "# Splitting data into training and testing sets\n", - "set.seed(1)\n", - "heart_split<-initial_split(heart_data, prop=0.75, strata=diagnosis_f)\n", - "heart_training<-training(heart_split)\n", - "heart_testing<-testing(heart_split)" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -331,51 +271,31 @@ "## Initial Visualizations of Predictors" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "vscode": { - "languageId": "r" - } - }, - "outputs": [], - "source": [ - "# SCRIPTED IN 02.1-INITIAL_VISUALIZATION.R\n", - "\n", - "# Boxplot visualizations for each of our predictors and heart diagnosis\n", - "heart_data <- read_csv('../data/processed/heart_data.csv')\n", - "\n", - " \n", - "boxplot_age <- grid_boxplot(heart_data, age, \"Age (years)\", \"A. Boxplot of degree of heart \\n disease in relation to patient's \\nage\")\n", - "boxplot_rest_bp <- grid_boxplot(heart_data, rest_bp, \"Resting blood pressure (mmHg)\", \"B. Boxplot of degree of heart \\ndisease in relation to patient's \\nresting blood pressure\")\n", - "boxplot_max_heart_rate <- grid_boxplot(heart_data, max_heart_rate, \"Maximum heart rate (BPM)\", \"C. Boxplot of degree of heart \\ndisease in relation to patient's \\nmaximum heart rate\")\n", - "options(repr.plot.width = 20, repr.plot.height = 10)\n", - "boxplots <- plot_grid(boxplot_age, boxplot_rest_bp, boxplot_max_heart_rate, ncol=3)\n", - "show(boxplots)\n", - "ggsave(\"../figures/boxplot.png\")" - ] - }, { "cell_type": "markdown", "metadata": {}, "source": [ - "***Figure 1.***" + "```{figure} ../figures/boxplot.png\n", + "---\n", + "name: boxplot_img\n", + "---\n", + "Initial visualization comparing degree of heart disease to various factors in the data.\n", + "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "These boxplots in Figure 1. are our inital visualizations to see if there really is a correlation between severity of heart disease and our predictors. From looking at all 3 predictors, Figure 1A. `age`, Figure 1B. `rest_bp`, and Figure 1C. `max_heart_rate`, we can see that there is a range of weakly positive and weakly negative to no relationship between the different diagnosed severities of heart disease (`diagnosis_f`)and the predictors.\n", + "These boxplots in {numref}`Figure {number} `. are our initial visualizations to see if there really is a correlation between severity of heart disease and our predictors. From looking at all 3 predictors, Figure 1A. `age`, {numref}`Figure {number}B `. `rest_bp`, and {numref}`Figure {number}C `. `max_heart_rate`, we can see that there is a range of weakly positive and weakly negative to no relationship between the different diagnosed severities of heart disease (`diagnosis_f`)and the predictors.\n", "\n", - "Figure 1A. shows there is a slight positive relation between age and heart disease severity, meaning the older a patient is, the more severe their heart disease would be.\n", + "{numref}`Figure {number}A `. shows there is a slight positive relation between age and heart disease severity, meaning the older a patient is, the more severe their heart disease would be.\n", "\n", - "Figure 1B. shows there is no clear relationship between resting blood pressure and how severe a patients heart disease is. All the medians at different levels of severity are relatively level.\n", + "{numref}`Figure {number}B `. shows there is no clear relationship between resting blood pressure and how severe a patients heart disease is. All the medians at different levels of severity are relatively level.\n", "\n", - "Figure 1C. shows there is a slight negative relationship between maximum heart rate and the severity of heart disease. This means a patient with no heart disease (0) or low severity (1) are able to acheive a higher maximum heart rate. This is because their heart is more healthy and able to pump blood efficiently when compared to a patient with high severity (4) heart disease.\n", + "{numref}`Figure {number}C `. shows there is a slight negative relationship between maximum heart rate and the severity of heart disease. This means a patient with no heart disease (0) or low severity (1) are able to achieve a higher maximum heart rate. This is because their heart is more healthy and able to pump blood efficiently when compared to a patient with high severity (4) heart disease.\n", "\n", - "These visualizations are taken into consideration when making our classification model. We will see if these predictors used together will in fact give an accurate diagnosis for someone being examined for heart disease based on given dataset. We chose to proceed with these predictors because of our literature reseach support. In practice, these predictors are conditions that doctors use to give an **initial diagnosis** of heart disease. Our research question as to whether these predictors work to accurately predict the severity is analysed in the remainder of the project report." + "These visualizations are taken into consideration when making our classification model. We will see if these predictors used together will in fact give an accurate diagnosis for someone being examined for heart disease based on given dataset. We chose to proceed with these predictors because of our literature research support. In practice, these predictors are conditions that doctors use to give an **initial diagnosis** of heart disease. Our research question as to whether these predictors work to accurately predict the severity is analyzed in the remainder of the project report." ] }, { @@ -389,7 +309,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "To visualize the effectiveness of our chosen predictors on our data set, we used the process of forward selection. We chose to add this step to confirm that the choices of our predictors will work using this data, as Figure 1. failed to show any significant correlation.\n", + "To visualize the effectiveness of our chosen predictors on our data set, we used the process of forward selection. We chose to add this step to confirm that the choices of our predictors will work using this data, as {numref}`Figure {number} ` failed to show any significant correlation.\n", "\n", "Forward selection is used to predict accuracy of a classifier that will be made using different predictors to create the model. Based on our literature research detailed above, we will be using forward selection on the variables age, resting blood pressure, and maximum heart rate. We made sure to use our training data set in the forward selection process so that the testing data is never seen by the classifier.\n", "\n", @@ -406,13 +326,13 @@ }, "outputs": [], "source": [ - "# Creating data subsets for forward selection model using training data\n", - "heart_data_subset<-heart_training%>%\n", - " select(diagnosis_f, age, rest_bp, max_heart_rate, chest_pain, sex) %>%\n", - " na.omit()\n", + "# # Creating data subsets for forward selection model using training data\n", + "# heart_data_subset<-heart_training%>%\n", + "# select(diagnosis_f, age, rest_bp, max_heart_rate, chest_pain, sex) %>%\n", + "# na.omit()\n", "\n", - "# heart_data_subset\n", - "write_csv(heart_data_subset, '../data/modelling/forward_selection_subset.csv')" + "# # heart_data_subset\n", + "# write_csv(heart_data_subset, '../data/modelling/forward_selection_subset.csv')" ] }, { @@ -434,8 +354,8 @@ }, "outputs": [], "source": [ - "accuracies <- forwardSelection(heart_data_subset)\n", - "accuracies" + "# accuracies <- forwardSelection(heart_data_subset)\n", + "# accuracies" ] }, { @@ -453,41 +373,26 @@ ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": { "vscode": { "languageId": "r" } }, - "outputs": [], - "source": [ - "# visualization of number of predictors and accuracy based on forward selection\n", - "options(repr.plot.width = 7, repr.plot.height = 7)\n", - "forward_visualization <- ggplot(accuracies, aes(x = size, y = accuracy)) +\n", - " geom_line() +\n", - " geom_point() +\n", - " labs(x = 'Number of predictors used',\n", - " y = 'Estimated accuracy using forward selection',\n", - " title = 'Number of different predictors compared \\nto the accuracy of classifier model') +\n", - " theme(text = element_text(size = 20)) +\n", - " ylim(c(0,1))\n", - "\n", - "forward_visualization" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, "source": [ - "***Figure 2.***" + "```{figure} ../figures/classifier_accuracies.png\n", + "---\n", + "name: forward_img\n", + "---\n", + "Accuracy of model based on the number of predictors used to build the model.\n", + "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Figure 2. shows us that all five of our predictors increase the estimated accuracy of our classifier. However we can also see that the accuracy plateau's at the fourth and fifth predictor (`chest_pain` and `sex`). \n", + "{numref}`Figure {number} `. shows us that all five of our predictors increase the estimated accuracy of our classifier. However we can also see that the accuracy plateau's at the fourth and fifth predictor (`chest_pain` and `sex`). \n", "\n", "According to this visualization our pre-chosen predictors should be accurate predictors for the severity of heart disease. It also tells us that with any more predictors our classifier would not be benefitted and with any less we would have drastically lower accuracy. \n", "\n", @@ -518,21 +423,21 @@ }, "outputs": [], "source": [ - "# Selecting chosen predictors within training and testing data\n", - "heart_training <- heart_training %>%\n", - " select(rest_bp, age, max_heart_rate, diagnosis_f) %>%\n", - " na.omit()\n", - "heart_training\n", + "# # Selecting chosen predictors within training and testing data\n", + "# heart_training <- heart_training %>%\n", + "# select(rest_bp, age, max_heart_rate, diagnosis_f) %>%\n", + "# na.omit()\n", + "# heart_training\n", "\n", - "# Adding training set to directory\n", - "write_csv(heart_training, '../data/modelling/training_split.csv')\n", + "# # Adding training set to directory\n", + "# write_csv(heart_training, '../data/modelling/training_split.csv')\n", "\n", - "heart_testing <- heart_testing %>%\n", - " select(rest_bp, age, max_heart_rate, diagnosis_f) %>%\n", - " na.omit()\n", + "# heart_testing <- heart_testing %>%\n", + "# select(rest_bp, age, max_heart_rate, diagnosis_f) %>%\n", + "# na.omit()\n", "\n", - "# Adding testing set to directory\n", - "write_csv(heart_testing, '../data/modelling/testing_split.csv')" + "# # Adding testing set to directory\n", + "# write_csv(heart_testing, '../data/modelling/testing_split.csv')" ] }, { @@ -566,26 +471,26 @@ }, "outputs": [], "source": [ - "# majority classifier and visualization\n", - "set.seed(1)\n", - "total_rows<-nrow(heart_training)\n", + "# # majority classifier and visualization\n", + "# set.seed(1)\n", + "# total_rows<-nrow(heart_training)\n", "\n", - "number_of_columns<-heart_training%>%\n", - " group_by(diagnosis_f)%>%\n", - " summarize(number=n())%>%\n", - " select(number)\n", + "# number_of_columns<-heart_training%>%\n", + "# group_by(diagnosis_f)%>%\n", + "# summarize(number=n())%>%\n", + "# select(number)\n", " \n", "\n", - "majority_classifier<-heart_training%>%\n", - " group_by(diagnosis_f)%>% \n", - " summarize(percent_outcomes=n()/total_rows*100)%>%\n", - " arrange(desc(percent_outcomes))%>%\n", - " bind_cols(number_of_columns)\n", - "#slice(1)\n", - "majority_classifier\n", + "# majority_classifier<-heart_training%>%\n", + "# group_by(diagnosis_f)%>% \n", + "# summarize(percent_outcomes=n()/total_rows*100)%>%\n", + "# arrange(desc(percent_outcomes))%>%\n", + "# bind_cols(number_of_columns)\n", + "# #slice(1)\n", + "# majority_classifier\n", "\n", - "# write csv to data/modelling\n", - "write_csv(majority_classifier, '../data/modelling/majority_classifier.csv')" + "# # write csv to data/modelling\n", + "# write_csv(majority_classifier, '../data/modelling/majority_classifier.csv')" ] }, { @@ -596,30 +501,26 @@ ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": { "vscode": { "languageId": "r" } }, - "outputs": [], "source": [ - "majority_classifier_vis_function(majority_classifier)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "***Figure 3.***" + "```{figure} ../figures/majority_classifier_vis.png\n", + "---\n", + "name: class_prop_img\n", + "---\n", + "Percentage of patients in data that have each level of heart disease severity. \n", + "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Table 4. and Figure 3. give insight into the proportion of patients from the training set with each level of heart disease. The most common diagnosis in our data set is severity 1 with 31%. This value sets a baseline accuracy that our model should exceed to be deemed an acceptable classifier. In other words, if our model can predict more accurately than simply picking the most likely outcome every time, then we are on the right track in terms of accuracy.\n", + "Table 4. and {numref}`Figure {number} `. give insight into the proportion of patients from the training set with each level of heart disease. The most common diagnosis in our data set is severity 1 with 31%. This value sets a baseline accuracy that our model should exceed to be deemed an acceptable classifier. In other words, if our model can predict more accurately than simply picking the most likely outcome every time, then we are on the right track in terms of accuracy.\n", "\n", "Table 4. also shows us that none of the percent outcomes are over 50%, and the outcomes for severity 1, 2, 3, and 0 are within 15% of each other. This means our data set is distributed evenly enough to build a decent classifier model. Knowing the frequency of each outcome also enables us to set an upper bound on our number of neighbors which is something we will discuss in further detail in subsequent cells." ] @@ -674,11 +575,11 @@ }, "outputs": [], "source": [ - "# Cross validation to find optimal K value\n", - "source('../R/classification_model.R')\n", + "# # Cross validation to find optimal K value\n", + "# source('../R/classification_model.R')\n", "\n", - "heart_data_accuracies <- classifier(heart_training)\n", - "heart_data_accuracies" + "# heart_data_accuracies <- classifier(heart_training)\n", + "# heart_data_accuracies" ] }, { @@ -696,41 +597,35 @@ ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": { "vscode": { "languageId": "r" } }, - "outputs": [], "source": [ - "# K visualization\n", - "source('../R/model_visualization.R')\n", - "knn_visualization(heart_data_accuracies)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "***Figure 4.***" + "```{figure} ../figures/classification_model_visualization.png\n", + "---\n", + "name: knn_img\n", + "---\n", + "Accuracy kNN model as number of neighbors is increased to classify the severity of heart disease\n", + "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Setting the number of neighbours to $K$ = 2 will give the highest accuracy, as seen in Figure 4. The shape of Figure 4. is not what we expected to see because of the huge drop in the accuracy after $K$ = 2. This means that there is a high risk of losing model accuracy after $K$ = 2. Choosing $K$ = 1 would also work considering the accuracy; however, it is a small number and it could lead to overfitting our classifier.\n", + "Setting the number of neighbours to $K$ = 2 will give the highest accuracy, as seen in {numref}`Figure {number} `. The shape of {numref}`Figure {number} `. is not what we expected to see because of the huge drop in the accuracy after $K$ = 2. This means that there is a high risk of losing model accuracy after $K$ = 2. Choosing $K$ = 1 would also work considering the accuracy; however, it is a small number and it could lead to overfitting our classifier.\n", "\n", - "Figure 4. shows that choosing a $K$ higher than two results in a drastically lower estimated accuracy. We experimented with testing the accuracy of models with higher $K$ values, but they decreased the accuracy even further. For example, when we used three neighbours instead of two, the accuracy decreased by about 15%, and it continued to decrease the higher the $K$ value we used. We also checked for spikes at much higher K values, but the accuracy continued to level off around 0.40. To make this table easier to understand, we made a visualization of the mean column and the number of neighbours. The mean represents an accuracy estimate of the model when different $K$ values are used. The optimal $K$ value has the highest accuracy and has neighbouring $K$ values of similar accuracy." + "{numref}`Figure {number} ` shows that choosing a $K$ higher than two results in a drastically lower estimated accuracy. We experimented with testing the accuracy of models with higher $K$ values, but they decreased the accuracy even further. For example, when we used three neighbours instead of two, the accuracy decreased by about 15%, and it continued to decrease the higher the $K$ value we used. We also checked for spikes at much higher K values, but the accuracy continued to level off around 0.40. To make this table easier to understand, we made a visualization of the mean column and the number of neighbours. The mean represents an accuracy estimate of the model when different $K$ values are used. The optimal $K$ value has the highest accuracy and has neighbouring $K$ values of similar accuracy." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "After our initial analysis in Figure 4. we decided to continue our analysis despite the suspicious shape of Figure 4. This next step pulls optimal the $K$ value based on the above cross validation to choose the appropriate number of neighbors." + "After our initial analysis in {numref}`Figure {number} ` we decided to continue our analysis despite the suspicious shape of {numref}`Figure {number} ` This next step pulls optimal the $K$ value based on the above cross validation to choose the appropriate number of neighbors." ] }, { @@ -743,13 +638,13 @@ }, "outputs": [], "source": [ - "# Pulling optimal K value based on above cross validation\n", - "set.seed(1)\n", - "best_k<-heart_data_accuracies%>%\n", - " arrange(desc(mean))%>%\n", - " slice(2)%>%\n", - " pull(neighbors)\n", - "# best_k" + "# # Pulling optimal K value based on above cross validation\n", + "# set.seed(1)\n", + "# best_k<-heart_data_accuracies%>%\n", + "# arrange(desc(mean))%>%\n", + "# slice(2)%>%\n", + "# pull(neighbors)\n", + "# # best_k" ] }, { @@ -769,11 +664,11 @@ }, "outputs": [], "source": [ - "# New classifier model using optimal K values\n", - "set.seed(1)\n", - "heart_data_spec_final<- nearest_neighbor(weight_func=\"rectangular\", neighbors=best_k)%>%\n", - " set_engine(\"kknn\")%>%\n", - " set_mode(\"classification\")" + "# # New classifier model using optimal K values\n", + "# set.seed(1)\n", + "# heart_data_spec_final<- nearest_neighbor(weight_func=\"rectangular\", neighbors=best_k)%>%\n", + "# set_engine(\"kknn\")%>%\n", + "# set_mode(\"classification\")" ] }, { @@ -793,12 +688,12 @@ }, "outputs": [], "source": [ - "# Final workflow for classifier using new model.\n", - "set.seed(1)\n", - "heart_data_final_fit<-workflow()%>%\n", - " add_recipe(heart_data_recipe)%>%\n", - " add_model(heart_data_spec_final)%>%\n", - " fit(data=heart_training)\n", + "# # Final workflow for classifier using new model.\n", + "# set.seed(1)\n", + "# heart_data_final_fit<-workflow()%>%\n", + "# add_recipe(heart_data_recipe)%>%\n", + "# add_model(heart_data_spec_final)%>%\n", + "# fit(data=heart_training)\n", " \n", "#heart_data_final_fit" ] @@ -827,20 +722,20 @@ }, "outputs": [], "source": [ - "# Testing our classifier using the testing set\n", - "set.seed(1)\n", - "heart_data_summary<-heart_data_final_fit%>%\n", - " predict(heart_testing)%>%\n", - " bind_cols(heart_testing)%>%\n", - " metrics(truth=diagnosis_f, estimate=.pred_class)%>%\n", - " filter(.metric == 'accuracy')\n", - "heart_data_summary\n", + "# # Testing our classifier using the testing set\n", + "# set.seed(1)\n", + "# heart_data_summary<-heart_data_final_fit%>%\n", + "# predict(heart_testing)%>%\n", + "# bind_cols(heart_testing)%>%\n", + "# metrics(truth=diagnosis_f, estimate=.pred_class)%>%\n", + "# filter(.metric == 'accuracy')\n", + "# heart_data_summary\n", "\n", - "heart_data_predict <- heart_data_final_fit %>%\n", - " predict(heart_testing) %>%\n", - " bind_cols(heart_testing)\n", + "# heart_data_predict <- heart_data_final_fit %>%\n", + "# predict(heart_testing) %>%\n", + "# bind_cols(heart_testing)\n", "\n", - "write_csv(heart_data_predict, '../data/modelling/predict_data.csv')" + "# write_csv(heart_data_predict, '../data/modelling/predict_data.csv')" ] }, { @@ -856,7 +751,7 @@ "source": [ "The accuracy is a reasonable number that shows that even though our predictors within our model produce a strange $K$-nearest neighbour graph, we still built a model that will diagnose patients with ~80% accuracy.\n", "\n", - "We know this is a reasonable accuracy for our classifier from looking at Figure 3. As discussed in the preceding paragraph, we are looking for a classifier with higher accuracy than that of the majority classifier. In our case, the majority label made up ~30% of our dataset, so the accuracy of ~80% is more than double that of our majority label. Therefore, our classifier is reasonably good. " + "We know this is a reasonable accuracy for our classifier from looking at {numref}`Figure {number} `. As discussed in the preceding paragraph, we are looking for a classifier with higher accuracy than that of the majority classifier. In our case, the majority label made up ~30% of our dataset, so the accuracy of ~80% is more than double that of our majority label. Therefore, our classifier is reasonably good. " ] }, { @@ -874,33 +769,26 @@ ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": { "vscode": { "languageId": "r" } }, - "outputs": [], "source": [ - "# confusion matrix heat map visualization\n", - "source('../R/confusion_matrix.R')\n", - "\n", - "confusion_matrix(heart_data_predict)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "***Figure 5.***" + "```{figure} ../figures/confusion_matrix.png\n", + "---\n", + "name: confusion_img\n", + "---\n", + "The confusion matrix illustrates the number of correct predictions made by the kNN model to the number of incorrect predictions. The darker the color of the square the more predictions that landed in that category. \n", + "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "The confusion matrix (Figure 5.) shows that 22 individuals were correctly diagnosed with no presence of heart disease, 39 were correctly diagnosed with low severity of heart disease, 22 were correctly diagnosed with medium severity of heart disease, 20 were correctly diagnosed with high severity of heart disease, and 4 were correctly diagnosed with extreme severity of heart disease. Therefore, the classifier labeled $22 + 39 + 21 + 20 + 4 = 106$ diagnoses correctly. This is a rather good result as the proportions of each heart disease class diagnosed correctly mirror the proportions seen in the dataset. Our classifier is therefore not favouring one diagnosis over the other.\n", + "The confusion matrix ({numref}`Figure {number} `) shows that 22 individuals were correctly diagnosed with no presence of heart disease, 39 were correctly diagnosed with low severity of heart disease, 22 were correctly diagnosed with medium severity of heart disease, 20 were correctly diagnosed with high severity of heart disease, and 4 were correctly diagnosed with extreme severity of heart disease. Therefore, the classifier labeled $22 + 39 + 21 + 20 + 4 = 106$ diagnoses correctly. This is a rather good result as the proportions of each heart disease class diagnosed correctly mirror the proportions seen in the dataset. Our classifier is therefore not favouring one diagnosis over the other.\n", "\n", "Unfortunately, the classifier also made errors and classified a total of 18 patients with a false positive, meaning the patient's heart disease was worse than it actually was. Moreover, the classifier labelled six patients with false negatives, meaning the patients' heart disease was actually worse than what was predicted. A discussion as to the false positive and false negative results is in the discussion section." ] @@ -911,13 +799,13 @@ "source": [ "## Conclusion\n", "\n", - "The predictors, `age`, `max_heart_rate`, and `rest_bp`, have high accuracy and a good chance of accurately predicting a patient's heart disease severity. However, some results indicate that these predictors may not be the best in actual practice. For instance, Figure 1. shows that these predictors do not have significant correlations with a diagnosis of severity of heart disease. Additionally, there was a significant drop-off after two neighbours in our $K$ graph, proposing that our accuracy results could be due to luck. However, our confusion matrix reveals promising results.\n", + "The predictors, `age`, `max_heart_rate`, and `rest_bp`, have high accuracy and a good chance of accurately predicting a patient's heart disease severity. However, some results indicate that these predictors may not be the best in actual practice. For instance, {numref}`Figure {number} ` shows that these predictors do not have significant correlations with a diagnosis of severity of heart disease. Additionally, there was a significant drop-off after two neighbours in our $K$ graph, proposing that our accuracy results could be due to luck. However, our confusion matrix reveals promising results.\n", "\n", "### Is this what you expected to find?\n", "\n", "We expected to find that the larger the numerical value of a patient's age and resting blood pressure and the lower the maximum heart rate, the greater at risk a person is to have worsened heart disease. We actually found that these predictors have a weak correlation with the outcome variable. However, our model still predicts heart disease severity accurately.\n", "\n", - "From our confusion matrix in Figure 5., we were more likely to predict a false positive than a false negative. This is good because, with a health condition like heart disease that generates ranging severity, it is better to be given a false positive and be treated as if the disease were worse than be given a false negative and not be treated at all or to a lower care level than what is needed. A reason we see 18 false positives could be because of the predictors we chose to use in our model. We saw in Figure 1. that these predictors are not ideal because of the weak relationships they show with the severities of heart disease. This can also be said as to why we have 6 false negatives. However, considering that the accuracy of our model is good, this is a reasonable number of false negatives. These values for the false positives and false negatives also relate to our research question and conclusion that our selected predictors are primarily good at predicting the preliminary severity of a patient's heart disease. However, a diagnosis cannot be concluded off these factors alone. Unfortunately, false negatives and false positives are given in medicine in the real world, but from actual research and examples like we were able to display in our classification, it is more likely that a patient will have a proper diagnosis than a false positive or negative.\n", + "From our confusion matrix in {numref}`Figure {number} `, we were more likely to predict a false positive than a false negative. This is good because, with a health condition like heart disease that generates ranging severity, it is better to be given a false positive and be treated as if the disease were worse than be given a false negative and not be treated at all or to a lower care level than what is needed. A reason we see 18 false positives could be because of the predictors we chose to use in our model. We saw in {numref}`Figure {number} ` that these predictors are not ideal because of the weak relationships they show with the severities of heart disease. This can also be said as to why we have 6 false negatives. However, considering that the accuracy of our model is good, this is a reasonable number of false negatives. These values for the false positives and false negatives also relate to our research question and conclusion that our selected predictors are primarily good at predicting the preliminary severity of a patient's heart disease. However, a diagnosis cannot be concluded off these factors alone. Unfortunately, false negatives and false positives are given in medicine in the real world, but from actual research and examples like we were able to display in our classification, it is more likely that a patient will have a proper diagnosis than a false positive or negative.\n", "\n", "### What impact could such findings have?\n", "\n", diff --git a/notebooks/analysis.ipynb b/notebooks/analysis.ipynb index f0f492f..5441dfe 100644 --- a/notebooks/analysis.ipynb +++ b/notebooks/analysis.ipynb @@ -7,90 +7,6 @@ "# EVALUATING ACCURACY OF PREDETERMINED VARIABLES TO PREDICT SEVERITY OF HEART DISEASE IN PATIENTS" ] }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Warning message:\n", - "“Removed 170 rows containing non-finite values (stat_boxplot).”\n", - "Warning message:\n", - "“Removed 160 rows containing non-finite values (stat_boxplot).”\n", - "Saving 7 x 7 in image\n", - "\n", - "\u001b[1mRows: \u001b[22m\u001b[34m403\u001b[39m \u001b[1mColumns: \u001b[22m\u001b[34m6\u001b[39m\n", - "\u001b[36m──\u001b[39m \u001b[1mColumn specification\u001b[22m \u001b[36m────────────────────────────────────────────────────────\u001b[39m\n", - "\u001b[1mDelimiter:\u001b[22m \",\"\n", - "\u001b[32mdbl\u001b[39m (6): diagnosis_f, age, rest_bp, max_heart_rate, chest_pain, sex\n", - "\n", - "\u001b[36mℹ\u001b[39m Use `spec()` to retrieve the full column specification for this data.\n", - "\u001b[36mℹ\u001b[39m Specify the column types or set `show_col_types = FALSE` to quiet this message.\n", - "\u001b[1mRows: \u001b[22m\u001b[34m5\u001b[39m \u001b[1mColumns: \u001b[22m\u001b[34m3\u001b[39m\n", - "\u001b[36m──\u001b[39m \u001b[1mColumn specification\u001b[22m \u001b[36m────────────────────────────────────────────────────────\u001b[39m\n", - "\u001b[1mDelimiter:\u001b[22m \",\"\n", - "\u001b[31mchr\u001b[39m (1): model_string\n", - "\u001b[32mdbl\u001b[39m (2): size, accuracy\n", - "\n", - "\u001b[36mℹ\u001b[39m Use `spec()` to retrieve the full column specification for this data.\n", - "\u001b[36mℹ\u001b[39m Specify the column types or set `show_col_types = FALSE` to quiet this message.\n", - "Saving 7 x 7 in image\n", - "\n", - "\u001b[1mRows: \u001b[22m\u001b[34m5\u001b[39m \u001b[1mColumns: \u001b[22m\u001b[34m3\u001b[39m\n", - "\u001b[36m──\u001b[39m \u001b[1mColumn specification\u001b[22m \u001b[36m────────────────────────────────────────────────────────\u001b[39m\n", - "\u001b[1mDelimiter:\u001b[22m \",\"\n", - "\u001b[32mdbl\u001b[39m (3): diagnosis_f, percent_outcomes, number\n", - "\n", - "\u001b[36mℹ\u001b[39m Use `spec()` to retrieve the full column specification for this data.\n", - "\u001b[36mℹ\u001b[39m Specify the column types or set `show_col_types = FALSE` to quiet this message.\n", - "Saving 7 x 7 in image\n", - "\n", - "\u001b[1mRows: \u001b[22m\u001b[34m21\u001b[39m \u001b[1mColumns: \u001b[22m\u001b[34m7\u001b[39m\n", - "\u001b[36m──\u001b[39m \u001b[1mColumn specification\u001b[22m \u001b[36m────────────────────────────────────────────────────────\u001b[39m\n", - "\u001b[1mDelimiter:\u001b[22m \",\"\n", - "\u001b[31mchr\u001b[39m (3): .metric, .estimator, .config\n", - "\u001b[32mdbl\u001b[39m (4): neighbors, mean, n, std_err\n", - "\n", - "\u001b[36mℹ\u001b[39m Use `spec()` to retrieve the full column specification for this data.\n", - "\u001b[36mℹ\u001b[39m Specify the column types or set `show_col_types = FALSE` to quiet this message.\n", - "Saving 7 x 7 in image\n", - "\n", - "\u001b[1mRows: \u001b[22m\u001b[34m147\u001b[39m \u001b[1mColumns: \u001b[22m\u001b[34m5\u001b[39m\n", - "\u001b[36m──\u001b[39m \u001b[1mColumn specification\u001b[22m \u001b[36m────────────────────────────────────────────────────────\u001b[39m\n", - "\u001b[1mDelimiter:\u001b[22m \",\"\n", - "\u001b[32mdbl\u001b[39m (5): .pred_class, rest_bp, age, max_heart_rate, diagnosis_f\n", - "\n", - "\u001b[36mℹ\u001b[39m Use `spec()` to retrieve the full column specification for this data.\n", - "\u001b[36mℹ\u001b[39m Specify the column types or set `show_col_types = FALSE` to quiet this message.\n", - "Scale for 'fill' is already present. Adding another scale for 'fill', which\n", - "will replace the existing scale.\n", - "\n", - "Saving 7 x 7 in image\n", - "\n" - ] - } - ], - "source": [ - "source('../R/01-loading.R')\n", - "source('../R/02-build_heart_data.R')\n", - "source('../R/02.1-initial_visualization.R')\n", - "source('../R/03-data_splitting.R')\n", - "source('../R/04.0-subset_training_data.R')\n", - "source('../R/04.1-forward_selection_data.R')\n", - "source('../R/04.2-forward_selection_visualization.R')\n", - "source('../R/05-data_tidying.R')\n", - "source('../R/06.0-major_classifier_data.R')\n", - "source('../R/06.1-major_classifier_visualization.R')\n", - "source('../R/07.0-build_classification_model.R')\n", - "source('../R/07.1-visualize_classification_model.R')\n", - "source('../R/07.2-heart_data_final_workflow.R')\n", - "source('../R/08.0-test_classifier.R')\n", - "source('../R/08.1-build_confusion_matrix.R')" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -147,35 +63,6 @@ "source('../tests/tests.R')" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "# STEP IN 01 R SCRIPT\n", - "\n", - "library(tidyverse)\n", - "library(repr)\n", - "library(tidymodels)\n", - "library(cowplot)\n", - "library(ggplot2)\n", - "library(caret)\n", - "library(e1071)\n", - "options(repr.matrix.max.rows = 6)\n", - "set.seed(1)\n", - "source(\"../R/selection_forward_function.R\")\n", - "source(\"../R/majority_classifier_function.R\")\n", - "\n", - "# Reading data off internet to make csv files\n", - "source(\"../R/place_data.R\")\n", - "source(\"../R/joining_data.R\")" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -192,19 +79,52 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": { "vscode": { "languageId": "r" } }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[1mRows: \u001b[22m\u001b[34m720\u001b[39m \u001b[1mColumns: \u001b[22m\u001b[34m21\u001b[39m\n", + "\u001b[36m──\u001b[39m \u001b[1mColumn specification\u001b[22m \u001b[36m────────────────────────────────────────────────────────\u001b[39m\n", + "\u001b[1mDelimiter:\u001b[22m \",\"\n", + "\u001b[31mchr\u001b[39m (1): place\n", + "\u001b[32mdbl\u001b[39m (20): age, sex, chest_pain, rest_bp, cholestoral_mmHg, fasting_bs, rest_...\n", + "\n", + "\u001b[36mℹ\u001b[39m Use `spec()` to retrieve the full column specification for this data.\n", + "\u001b[36mℹ\u001b[39m Specify the column types or set `show_col_types = FALSE` to quiet this message.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "|place|age|sex|chest_pain|rest_bp|cholestoral_mmHg|fasting_bs|rest_ECG|max_heart_rate|exercise|major_vessels|thal|diagnosis|sex_f|chest_pain_f|fasting_bs_f|rest_ECG_f|exercise_f|major_vessels_f|thal_f|diagnosis_f|\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "|switzerland|32|1|1|95|0|NA|0|127|0|NA|NA|1|1|1|NA|0|0|NA|NA|1|\n", + "|switzerland|34|1|4|115|0|NA|NA|154|0|NA|NA|1|1|4|NA|NA|0|NA|NA|1|\n", + "|switzerland|35|1|4|NA|0|NA|0|130|1|NA|7|3|1|4|NA|0|1|NA|7|3|\n", + "|switzerland|36|1|4|110|0|NA|0|125|1|NA|6|1|1|4|NA|0|1|NA|6|1|\n", + "|switzerland|38|0|4|105|0|NA|0|166|0|NA|NA|2|0|4|NA|0|0|NA|NA|2|\n", + "|switzerland|38|0|4|110|0|0|0|156|0|NA|3|1|0|4|0|0|0|NA|3|1|" + ] + } + ], "source": [ "# STEP IN 02 R SCRIPT\n", + "md_table <- function(df){\n", + " paste0('|', paste(names(df), collapse = '|'), '|\\n|', \n", + " paste(rep('---', length(df)), collapse = '|'), '|\\n|', \n", + " paste(Reduce(function(x, y){paste(x, y, sep = '|')}, df), collapse = '|\\n|'), '|')\n", + "}\n", "\n", - "\n", - "heart_data <- join_csv()\n", - "heart_data" + "heart_data <- read_csv('../data/processed/heart_data.csv')\n", + "cat(md_table(head(heart_data)))" ] }, { @@ -230,26 +150,6 @@ "We set the seed with the `set.seed` function in order to make the randomized processes throughout our analysis reproducible. A seed is a numerical starting value, which determines the sequence of random numbers R will generate. Throughout the analysis the `set.seed` function will be at the top of each cell that completes a randomizing action. " ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "vscode": { - "languageId": "r" - } - }, - "outputs": [], - "source": [ - "# STEP IN 03 R SCRIPT\n", - "\n", - "\n", - "# Splitting data into training and testing sets\n", - "set.seed(1)\n", - "heart_split<-initial_split(heart_data, prop=0.75, strata=diagnosis_f)\n", - "heart_training<-training(heart_split)\n", - "heart_testing<-testing(heart_split)" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -313,51 +213,31 @@ "## Initial Visualizations of Predictors" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "vscode": { - "languageId": "r" - } - }, - "outputs": [], - "source": [ - "# SCRIPTED IN 02.1-INITIAL_VISUALIZATION.R\n", - "\n", - "# Boxplot visualizations for each of our predictors and heart diagnosis\n", - "heart_data <- read_csv('../data/processed/heart_data.csv')\n", - "\n", - " \n", - "boxplot_age <- grid_boxplot(heart_data, age, \"Age (years)\", \"A. Boxplot of degree of heart \\n disease in relation to patient's \\nage\")\n", - "boxplot_rest_bp <- grid_boxplot(heart_data, rest_bp, \"Resting blood pressure (mmHg)\", \"B. Boxplot of degree of heart \\ndisease in relation to patient's \\nresting blood pressure\")\n", - "boxplot_max_heart_rate <- grid_boxplot(heart_data, max_heart_rate, \"Maximum heart rate (BPM)\", \"C. Boxplot of degree of heart \\ndisease in relation to patient's \\nmaximum heart rate\")\n", - "options(repr.plot.width = 20, repr.plot.height = 10)\n", - "boxplots <- plot_grid(boxplot_age, boxplot_rest_bp, boxplot_max_heart_rate, ncol=3)\n", - "show(boxplots)\n", - "ggsave(\"../figures/boxplot.png\")" - ] - }, { "cell_type": "markdown", "metadata": {}, "source": [ - "***Figure 1.***" + "```{figure} ../figures/boxplot.png\n", + "---\n", + "name: boxplot_img\n", + "---\n", + "Initial visualization comparing degree of heart disease to various factors in the data.\n", + "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "These boxplots in Figure 1. are our inital visualizations to see if there really is a correlation between severity of heart disease and our predictors. From looking at all 3 predictors, Figure 1A. `age`, Figure 1B. `rest_bp`, and Figure 1C. `max_heart_rate`, we can see that there is a range of weakly positive and weakly negative to no relationship between the different diagnosed severities of heart disease (`diagnosis_f`)and the predictors.\n", + "These boxplots in {numref}`Figure {number} `. are our initial visualizations to see if there really is a correlation between severity of heart disease and our predictors. From looking at all 3 predictors, Figure 1A. `age`, {numref}`Figure {number}B `. `rest_bp`, and {numref}`Figure {number}C `. `max_heart_rate`, we can see that there is a range of weakly positive and weakly negative to no relationship between the different diagnosed severities of heart disease (`diagnosis_f`)and the predictors.\n", "\n", - "Figure 1A. shows there is a slight positive relation between age and heart disease severity, meaning the older a patient is, the more severe their heart disease would be.\n", + "{numref}`Figure {number}A `. shows there is a slight positive relation between age and heart disease severity, meaning the older a patient is, the more severe their heart disease would be.\n", "\n", - "Figure 1B. shows there is no clear relationship between resting blood pressure and how severe a patients heart disease is. All the medians at different levels of severity are relatively level.\n", + "{numref}`Figure {number}B `. shows there is no clear relationship between resting blood pressure and how severe a patients heart disease is. All the medians at different levels of severity are relatively level.\n", "\n", - "Figure 1C. shows there is a slight negative relationship between maximum heart rate and the severity of heart disease. This means a patient with no heart disease (0) or low severity (1) are able to acheive a higher maximum heart rate. This is because their heart is more healthy and able to pump blood efficiently when compared to a patient with high severity (4) heart disease.\n", + "{numref}`Figure {number}C `. shows there is a slight negative relationship between maximum heart rate and the severity of heart disease. This means a patient with no heart disease (0) or low severity (1) are able to achieve a higher maximum heart rate. This is because their heart is more healthy and able to pump blood efficiently when compared to a patient with high severity (4) heart disease.\n", "\n", - "These visualizations are taken into consideration when making our classification model. We will see if these predictors used together will in fact give an accurate diagnosis for someone being examined for heart disease based on given dataset. We chose to proceed with these predictors because of our literature reseach support. In practice, these predictors are conditions that doctors use to give an **initial diagnosis** of heart disease. Our research question as to whether these predictors work to accurately predict the severity is analysed in the remainder of the project report." + "These visualizations are taken into consideration when making our classification model. We will see if these predictors used together will in fact give an accurate diagnosis for someone being examined for heart disease based on given dataset. We chose to proceed with these predictors because of our literature research support. In practice, these predictors are conditions that doctors use to give an **initial diagnosis** of heart disease. Our research question as to whether these predictors work to accurately predict the severity is analyzed in the remainder of the project report." ] }, { @@ -371,7 +251,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "To visualize the effectiveness of our chosen predictors on our data set, we used the process of forward selection. We chose to add this step to confirm that the choices of our predictors will work using this data, as Figure 1. failed to show any significant correlation.\n", + "To visualize the effectiveness of our chosen predictors on our data set, we used the process of forward selection. We chose to add this step to confirm that the choices of our predictors will work using this data, as {numref}`Figure {number} ` failed to show any significant correlation.\n", "\n", "Forward selection is used to predict accuracy of a classifier that will be made using different predictors to create the model. Based on our literature research detailed above, we will be using forward selection on the variables age, resting blood pressure, and maximum heart rate. We made sure to use our training data set in the forward selection process so that the testing data is never seen by the classifier.\n", "\n", @@ -388,13 +268,13 @@ }, "outputs": [], "source": [ - "# Creating data subsets for forward selection model using training data\n", - "heart_data_subset<-heart_training%>%\n", - " select(diagnosis_f, age, rest_bp, max_heart_rate, chest_pain, sex) %>%\n", - " na.omit()\n", + "# # Creating data subsets for forward selection model using training data\n", + "# heart_data_subset<-heart_training%>%\n", + "# select(diagnosis_f, age, rest_bp, max_heart_rate, chest_pain, sex) %>%\n", + "# na.omit()\n", "\n", - "# heart_data_subset\n", - "write_csv(heart_data_subset, '../data/modelling/forward_selection_subset.csv')" + "# # heart_data_subset\n", + "# write_csv(heart_data_subset, '../data/modelling/forward_selection_subset.csv')" ] }, { @@ -416,8 +296,8 @@ }, "outputs": [], "source": [ - "accuracies <- forwardSelection(heart_data_subset)\n", - "accuracies" + "# accuracies <- forwardSelection(heart_data_subset)\n", + "# accuracies" ] }, { @@ -435,41 +315,26 @@ ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": { "vscode": { "languageId": "r" } }, - "outputs": [], - "source": [ - "# visualization of number of predictors and accuracy based on forward selection\n", - "options(repr.plot.width = 7, repr.plot.height = 7)\n", - "forward_visualization <- ggplot(accuracies, aes(x = size, y = accuracy)) +\n", - " geom_line() +\n", - " geom_point() +\n", - " labs(x = 'Number of predictors used',\n", - " y = 'Estimated accuracy using forward selection',\n", - " title = 'Number of different predictors compared \\nto the accuracy of classifier model') +\n", - " theme(text = element_text(size = 20)) +\n", - " ylim(c(0,1))\n", - "\n", - "forward_visualization" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, "source": [ - "***Figure 2.***" + "```{figure} ../figures/classifier_accuracies.png\n", + "---\n", + "name: forward_img\n", + "---\n", + "Accuracy of model based on the number of predictors used to build the model.\n", + "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Figure 2. shows us that all five of our predictors increase the estimated accuracy of our classifier. However we can also see that the accuracy plateau's at the fourth and fifth predictor (`chest_pain` and `sex`). \n", + "{numref}`Figure {number} `. shows us that all five of our predictors increase the estimated accuracy of our classifier. However we can also see that the accuracy plateau's at the fourth and fifth predictor (`chest_pain` and `sex`). \n", "\n", "According to this visualization our pre-chosen predictors should be accurate predictors for the severity of heart disease. It also tells us that with any more predictors our classifier would not be benefitted and with any less we would have drastically lower accuracy. \n", "\n", @@ -500,21 +365,21 @@ }, "outputs": [], "source": [ - "# Selecting chosen predictors within training and testing data\n", - "heart_training <- heart_training %>%\n", - " select(rest_bp, age, max_heart_rate, diagnosis_f) %>%\n", - " na.omit()\n", - "heart_training\n", + "# # Selecting chosen predictors within training and testing data\n", + "# heart_training <- heart_training %>%\n", + "# select(rest_bp, age, max_heart_rate, diagnosis_f) %>%\n", + "# na.omit()\n", + "# heart_training\n", "\n", - "# Adding training set to directory\n", - "write_csv(heart_training, '../data/modelling/training_split.csv')\n", + "# # Adding training set to directory\n", + "# write_csv(heart_training, '../data/modelling/training_split.csv')\n", "\n", - "heart_testing <- heart_testing %>%\n", - " select(rest_bp, age, max_heart_rate, diagnosis_f) %>%\n", - " na.omit()\n", + "# heart_testing <- heart_testing %>%\n", + "# select(rest_bp, age, max_heart_rate, diagnosis_f) %>%\n", + "# na.omit()\n", "\n", - "# Adding testing set to directory\n", - "write_csv(heart_testing, '../data/modelling/testing_split.csv')" + "# # Adding testing set to directory\n", + "# write_csv(heart_testing, '../data/modelling/testing_split.csv')" ] }, { @@ -548,26 +413,26 @@ }, "outputs": [], "source": [ - "# majority classifier and visualization\n", - "set.seed(1)\n", - "total_rows<-nrow(heart_training)\n", + "# # majority classifier and visualization\n", + "# set.seed(1)\n", + "# total_rows<-nrow(heart_training)\n", "\n", - "number_of_columns<-heart_training%>%\n", - " group_by(diagnosis_f)%>%\n", - " summarize(number=n())%>%\n", - " select(number)\n", + "# number_of_columns<-heart_training%>%\n", + "# group_by(diagnosis_f)%>%\n", + "# summarize(number=n())%>%\n", + "# select(number)\n", " \n", "\n", - "majority_classifier<-heart_training%>%\n", - " group_by(diagnosis_f)%>% \n", - " summarize(percent_outcomes=n()/total_rows*100)%>%\n", - " arrange(desc(percent_outcomes))%>%\n", - " bind_cols(number_of_columns)\n", - "#slice(1)\n", - "majority_classifier\n", + "# majority_classifier<-heart_training%>%\n", + "# group_by(diagnosis_f)%>% \n", + "# summarize(percent_outcomes=n()/total_rows*100)%>%\n", + "# arrange(desc(percent_outcomes))%>%\n", + "# bind_cols(number_of_columns)\n", + "# #slice(1)\n", + "# majority_classifier\n", "\n", - "# write csv to data/modelling\n", - "write_csv(majority_classifier, '../data/modelling/majority_classifier.csv')" + "# # write csv to data/modelling\n", + "# write_csv(majority_classifier, '../data/modelling/majority_classifier.csv')" ] }, { @@ -578,30 +443,26 @@ ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": { "vscode": { "languageId": "r" } }, - "outputs": [], "source": [ - "majority_classifier_vis_function(majority_classifier)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "***Figure 3.***" + "```{figure} ../figures/majority_classifier_vis.png\n", + "---\n", + "name: class_prop_img\n", + "---\n", + "Percentage of patients in data that have each level of heart disease severity. \n", + "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Table 4. and Figure 3. give insight into the proportion of patients from the training set with each level of heart disease. The most common diagnosis in our data set is severity 1 with 31%. This value sets a baseline accuracy that our model should exceed to be deemed an acceptable classifier. In other words, if our model can predict more accurately than simply picking the most likely outcome every time, then we are on the right track in terms of accuracy.\n", + "Table 4. and {numref}`Figure {number} `. give insight into the proportion of patients from the training set with each level of heart disease. The most common diagnosis in our data set is severity 1 with 31%. This value sets a baseline accuracy that our model should exceed to be deemed an acceptable classifier. In other words, if our model can predict more accurately than simply picking the most likely outcome every time, then we are on the right track in terms of accuracy.\n", "\n", "Table 4. also shows us that none of the percent outcomes are over 50%, and the outcomes for severity 1, 2, 3, and 0 are within 15% of each other. This means our data set is distributed evenly enough to build a decent classifier model. Knowing the frequency of each outcome also enables us to set an upper bound on our number of neighbors which is something we will discuss in further detail in subsequent cells." ] @@ -656,11 +517,11 @@ }, "outputs": [], "source": [ - "# Cross validation to find optimal K value\n", - "source('../R/classification_model.R')\n", + "# # Cross validation to find optimal K value\n", + "# source('../R/classification_model.R')\n", "\n", - "heart_data_accuracies <- classifier(heart_training)\n", - "heart_data_accuracies" + "# heart_data_accuracies <- classifier(heart_training)\n", + "# heart_data_accuracies" ] }, { @@ -678,41 +539,35 @@ ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": { "vscode": { "languageId": "r" } }, - "outputs": [], "source": [ - "# K visualization\n", - "source('../R/model_visualization.R')\n", - "knn_visualization(heart_data_accuracies)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "***Figure 4.***" + "```{figure} ../figures/classification_model_visualization.png\n", + "---\n", + "name: knn_img\n", + "---\n", + "Accuracy kNN model as number of neighbors is increased to classify the severity of heart disease\n", + "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Setting the number of neighbours to $K$ = 2 will give the highest accuracy, as seen in Figure 4. The shape of Figure 4. is not what we expected to see because of the huge drop in the accuracy after $K$ = 2. This means that there is a high risk of losing model accuracy after $K$ = 2. Choosing $K$ = 1 would also work considering the accuracy; however, it is a small number and it could lead to overfitting our classifier.\n", + "Setting the number of neighbours to $K$ = 2 will give the highest accuracy, as seen in {numref}`Figure {number} `. The shape of {numref}`Figure {number} `. is not what we expected to see because of the huge drop in the accuracy after $K$ = 2. This means that there is a high risk of losing model accuracy after $K$ = 2. Choosing $K$ = 1 would also work considering the accuracy; however, it is a small number and it could lead to overfitting our classifier.\n", "\n", - "Figure 4. shows that choosing a $K$ higher than two results in a drastically lower estimated accuracy. We experimented with testing the accuracy of models with higher $K$ values, but they decreased the accuracy even further. For example, when we used three neighbours instead of two, the accuracy decreased by about 15%, and it continued to decrease the higher the $K$ value we used. We also checked for spikes at much higher K values, but the accuracy continued to level off around 0.40. To make this table easier to understand, we made a visualization of the mean column and the number of neighbours. The mean represents an accuracy estimate of the model when different $K$ values are used. The optimal $K$ value has the highest accuracy and has neighbouring $K$ values of similar accuracy." + "{numref}`Figure {number} ` shows that choosing a $K$ higher than two results in a drastically lower estimated accuracy. We experimented with testing the accuracy of models with higher $K$ values, but they decreased the accuracy even further. For example, when we used three neighbours instead of two, the accuracy decreased by about 15%, and it continued to decrease the higher the $K$ value we used. We also checked for spikes at much higher K values, but the accuracy continued to level off around 0.40. To make this table easier to understand, we made a visualization of the mean column and the number of neighbours. The mean represents an accuracy estimate of the model when different $K$ values are used. The optimal $K$ value has the highest accuracy and has neighbouring $K$ values of similar accuracy." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "After our initial analysis in Figure 4. we decided to continue our analysis despite the suspicious shape of Figure 4. This next step pulls optimal the $K$ value based on the above cross validation to choose the appropriate number of neighbors." + "After our initial analysis in {numref}`Figure {number} ` we decided to continue our analysis despite the suspicious shape of {numref}`Figure {number} ` This next step pulls optimal the $K$ value based on the above cross validation to choose the appropriate number of neighbors." ] }, { @@ -725,13 +580,13 @@ }, "outputs": [], "source": [ - "# Pulling optimal K value based on above cross validation\n", - "set.seed(1)\n", - "best_k<-heart_data_accuracies%>%\n", - " arrange(desc(mean))%>%\n", - " slice(2)%>%\n", - " pull(neighbors)\n", - "# best_k" + "# # Pulling optimal K value based on above cross validation\n", + "# set.seed(1)\n", + "# best_k<-heart_data_accuracies%>%\n", + "# arrange(desc(mean))%>%\n", + "# slice(2)%>%\n", + "# pull(neighbors)\n", + "# # best_k" ] }, { @@ -751,11 +606,11 @@ }, "outputs": [], "source": [ - "# New classifier model using optimal K values\n", - "set.seed(1)\n", - "heart_data_spec_final<- nearest_neighbor(weight_func=\"rectangular\", neighbors=best_k)%>%\n", - " set_engine(\"kknn\")%>%\n", - " set_mode(\"classification\")" + "# # New classifier model using optimal K values\n", + "# set.seed(1)\n", + "# heart_data_spec_final<- nearest_neighbor(weight_func=\"rectangular\", neighbors=best_k)%>%\n", + "# set_engine(\"kknn\")%>%\n", + "# set_mode(\"classification\")" ] }, { @@ -775,12 +630,12 @@ }, "outputs": [], "source": [ - "# Final workflow for classifier using new model.\n", - "set.seed(1)\n", - "heart_data_final_fit<-workflow()%>%\n", - " add_recipe(heart_data_recipe)%>%\n", - " add_model(heart_data_spec_final)%>%\n", - " fit(data=heart_training)\n", + "# # Final workflow for classifier using new model.\n", + "# set.seed(1)\n", + "# heart_data_final_fit<-workflow()%>%\n", + "# add_recipe(heart_data_recipe)%>%\n", + "# add_model(heart_data_spec_final)%>%\n", + "# fit(data=heart_training)\n", " \n", "#heart_data_final_fit" ] @@ -809,20 +664,20 @@ }, "outputs": [], "source": [ - "# Testing our classifier using the testing set\n", - "set.seed(1)\n", - "heart_data_summary<-heart_data_final_fit%>%\n", - " predict(heart_testing)%>%\n", - " bind_cols(heart_testing)%>%\n", - " metrics(truth=diagnosis_f, estimate=.pred_class)%>%\n", - " filter(.metric == 'accuracy')\n", - "heart_data_summary\n", + "# # Testing our classifier using the testing set\n", + "# set.seed(1)\n", + "# heart_data_summary<-heart_data_final_fit%>%\n", + "# predict(heart_testing)%>%\n", + "# bind_cols(heart_testing)%>%\n", + "# metrics(truth=diagnosis_f, estimate=.pred_class)%>%\n", + "# filter(.metric == 'accuracy')\n", + "# heart_data_summary\n", "\n", - "heart_data_predict <- heart_data_final_fit %>%\n", - " predict(heart_testing) %>%\n", - " bind_cols(heart_testing)\n", + "# heart_data_predict <- heart_data_final_fit %>%\n", + "# predict(heart_testing) %>%\n", + "# bind_cols(heart_testing)\n", "\n", - "write_csv(heart_data_predict, '../data/modelling/predict_data.csv')" + "# write_csv(heart_data_predict, '../data/modelling/predict_data.csv')" ] }, { @@ -838,7 +693,7 @@ "source": [ "The accuracy is a reasonable number that shows that even though our predictors within our model produce a strange $K$-nearest neighbour graph, we still built a model that will diagnose patients with ~80% accuracy.\n", "\n", - "We know this is a reasonable accuracy for our classifier from looking at Figure 3. As discussed in the preceding paragraph, we are looking for a classifier with higher accuracy than that of the majority classifier. In our case, the majority label made up ~30% of our dataset, so the accuracy of ~80% is more than double that of our majority label. Therefore, our classifier is reasonably good. " + "We know this is a reasonable accuracy for our classifier from looking at {numref}`Figure {number} `. As discussed in the preceding paragraph, we are looking for a classifier with higher accuracy than that of the majority classifier. In our case, the majority label made up ~30% of our dataset, so the accuracy of ~80% is more than double that of our majority label. Therefore, our classifier is reasonably good. " ] }, { @@ -856,33 +711,26 @@ ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": { "vscode": { "languageId": "r" } }, - "outputs": [], "source": [ - "# confusion matrix heat map visualization\n", - "source('../R/confusion_matrix.R')\n", - "\n", - "confusion_matrix(heart_data_predict)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "***Figure 5.***" + "```{figure} ../figures/confusion_matrix.png\n", + "---\n", + "name: confusion_img\n", + "---\n", + "The confusion matrix illustrates the number of correct predictions made by the kNN model to the number of incorrect predictions. The darker the color of the square the more predictions that landed in that category. \n", + "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "The confusion matrix (Figure 5.) shows that 22 individuals were correctly diagnosed with no presence of heart disease, 39 were correctly diagnosed with low severity of heart disease, 22 were correctly diagnosed with medium severity of heart disease, 20 were correctly diagnosed with high severity of heart disease, and 4 were correctly diagnosed with extreme severity of heart disease. Therefore, the classifier labeled $22 + 39 + 21 + 20 + 4 = 106$ diagnoses correctly. This is a rather good result as the proportions of each heart disease class diagnosed correctly mirror the proportions seen in the dataset. Our classifier is therefore not favouring one diagnosis over the other.\n", + "The confusion matrix ({numref}`Figure {number} `) shows that 22 individuals were correctly diagnosed with no presence of heart disease, 39 were correctly diagnosed with low severity of heart disease, 22 were correctly diagnosed with medium severity of heart disease, 20 were correctly diagnosed with high severity of heart disease, and 4 were correctly diagnosed with extreme severity of heart disease. Therefore, the classifier labeled $22 + 39 + 21 + 20 + 4 = 106$ diagnoses correctly. This is a rather good result as the proportions of each heart disease class diagnosed correctly mirror the proportions seen in the dataset. Our classifier is therefore not favouring one diagnosis over the other.\n", "\n", "Unfortunately, the classifier also made errors and classified a total of 18 patients with a false positive, meaning the patient's heart disease was worse than it actually was. Moreover, the classifier labelled six patients with false negatives, meaning the patients' heart disease was actually worse than what was predicted. A discussion as to the false positive and false negative results is in the discussion section." ] @@ -893,13 +741,13 @@ "source": [ "## Conclusion\n", "\n", - "The predictors, `age`, `max_heart_rate`, and `rest_bp`, have high accuracy and a good chance of accurately predicting a patient's heart disease severity. However, some results indicate that these predictors may not be the best in actual practice. For instance, Figure 1. shows that these predictors do not have significant correlations with a diagnosis of severity of heart disease. Additionally, there was a significant drop-off after two neighbours in our $K$ graph, proposing that our accuracy results could be due to luck. However, our confusion matrix reveals promising results.\n", + "The predictors, `age`, `max_heart_rate`, and `rest_bp`, have high accuracy and a good chance of accurately predicting a patient's heart disease severity. However, some results indicate that these predictors may not be the best in actual practice. For instance, {numref}`Figure {number} ` shows that these predictors do not have significant correlations with a diagnosis of severity of heart disease. Additionally, there was a significant drop-off after two neighbours in our $K$ graph, proposing that our accuracy results could be due to luck. However, our confusion matrix reveals promising results.\n", "\n", "### Is this what you expected to find?\n", "\n", "We expected to find that the larger the numerical value of a patient's age and resting blood pressure and the lower the maximum heart rate, the greater at risk a person is to have worsened heart disease. We actually found that these predictors have a weak correlation with the outcome variable. However, our model still predicts heart disease severity accurately.\n", "\n", - "From our confusion matrix in Figure 5., we were more likely to predict a false positive than a false negative. This is good because, with a health condition like heart disease that generates ranging severity, it is better to be given a false positive and be treated as if the disease were worse than be given a false negative and not be treated at all or to a lower care level than what is needed. A reason we see 18 false positives could be because of the predictors we chose to use in our model. We saw in Figure 1. that these predictors are not ideal because of the weak relationships they show with the severities of heart disease. This can also be said as to why we have 6 false negatives. However, considering that the accuracy of our model is good, this is a reasonable number of false negatives. These values for the false positives and false negatives also relate to our research question and conclusion that our selected predictors are primarily good at predicting the preliminary severity of a patient's heart disease. However, a diagnosis cannot be concluded off these factors alone. Unfortunately, false negatives and false positives are given in medicine in the real world, but from actual research and examples like we were able to display in our classification, it is more likely that a patient will have a proper diagnosis than a false positive or negative.\n", + "From our confusion matrix in {numref}`Figure {number} `, we were more likely to predict a false positive than a false negative. This is good because, with a health condition like heart disease that generates ranging severity, it is better to be given a false positive and be treated as if the disease were worse than be given a false negative and not be treated at all or to a lower care level than what is needed. A reason we see 18 false positives could be because of the predictors we chose to use in our model. We saw in {numref}`Figure {number} ` that these predictors are not ideal because of the weak relationships they show with the severities of heart disease. This can also be said as to why we have 6 false negatives. However, considering that the accuracy of our model is good, this is a reasonable number of false negatives. These values for the false positives and false negatives also relate to our research question and conclusion that our selected predictors are primarily good at predicting the preliminary severity of a patient's heart disease. However, a diagnosis cannot be concluded off these factors alone. Unfortunately, false negatives and false positives are given in medicine in the real world, but from actual research and examples like we were able to display in our classification, it is more likely that a patient will have a proper diagnosis than a false positive or negative.\n", "\n", "### What impact could such findings have?\n", "\n", From ab4ffe2d614b357e55231eacc71d8d887b1b71b8 Mon Sep 17 00:00:00 2001 From: samnthorne Date: Sun, 26 Mar 2023 17:30:51 -0700 Subject: [PATCH 2/2] changed gitignore to ignore notebook/_build --- .gitignore | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.gitignore b/.gitignore index 3571917..a1ddc34 100644 --- a/.gitignore +++ b/.gitignore @@ -71,4 +71,4 @@ Footer navigation .virtual_documents # ignore _build -*/_build/* \ No newline at end of file +notebooks/_build/* \ No newline at end of file