Weather events most harmful to population health and economic damage in the United States, 1997 to 2011
The three major causes of weather-related mortality and morbidity in the United States are excessive heat (18.0%), tornados (15.2%) and flash flooding (8.1%). Similar events are also among the three major causes of storm-related injuries (tornados 33.0%, flood 11.2% and excessive heat 10.5%).
Total weather-related fatalities are approximately 650 deaths annually. There are approximately 4025 storm-related injuries annually.
The three weather-related events causing the most economic damage are flood (34.3%), hurricanes (21.2%) and storm surges (15.0%). Total annual economic damage totals approximately $28.7 billion per year.
Crop damage, which is a subset of total economic damage, is also significantly affected by drought, which causes about 36% of the total $2.4 billion of weather-related crop damage occurring annually.
Data sourced from NOAA (National Weather Service), 1950-2011.
### start necessary libraries
library(tidyverse)
library(dplyr)
library(lubridate)
library(rlist)
library(gdata)
library(ggplot2)
library(knitr)
### set figure save path to figure/
knitr::opts_chunk$set(fig.path = 'figure/')
knitr::opts_chunk$set(fig.width=12, fig.height=8)
Storm Data is from the National Weather Service.
Documentation for the data can be found at the National Weather Service and National Climatic Data Center Storm Events FAQ
Data comes in the form of a comma-separated-value file compressed via the bzip2 algorithm.
### download data ZIP file if necessary, and extract if necessary
if (!file.exists('StormData.csv.bz2')) {
if (download.file('https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2','StormData.csv.bz2')) {
stop('Unable to download data file')
}
}
StormData <- as.tibble(read.csv(bzfile('StormData.csv.bz2')))
Variables of interest
Variable | Description |
---|---|
BGN_DATE | date of event starting |
BGN_TIME | time of event starting |
TIME_ZONE | time zone of event |
COUNTYNAME | name of county |
STATE | state of the United States |
EVTYPE | type of event |
FATALITIES | number of fatalities |
INJURIES | number of injuries |
PROPDMG | value of property damage in dollars |
PROPDMGEXP | property damage dollar multiplier (K thousands, M millions, B billions) |
CROPDMG | value of crop damage in dollars |
CROPDMGEXP | crop damage dollar multiplier (K thousands, M millions, B billions) |
REFNUM | unique reference number for event |
Extract time information from BGN_DATE, BGN_TIME and TIME_ZONE, and store in BEGIN_TIME.
### Information in BGN_TIME is not consistently stored
### some are in four-digit format e.g. '0000', '1300', '2350'. there is even one three-digit '000'
### others are in 11-character format e.g. '03:25:00 PM'
### convert all to 11-character format
StormData$BGN_calcTIME <- ifelse(str_length(StormData$BGN_TIME)<=4,
strftime(strptime(StormData$BGN_TIME,'%H%M'),'%I:%M:%S %p'),
as.character(StormData$BGN_TIME))
### more times which are in 'invalid' AM/PM format
### e.g. 15:30:00 PM, or 00:00:10 AM
### re-interpret these as 24-hour times
invalid.time.list <- is.na(strptime(StormData$BGN_calcTIME,'%I:%M:%S %p'))
StormData$BGN_calcTIME[invalid.time.list] <-
strftime(strptime(StormData[invalid.time.list,]$BGN_calcTIME,'%H:%M'), '%I:%M:%S %p')
### some times still remain invalid
kable(StormData[is.na(StormData$BGN_calcTIME),c('BGN_TIME','COUNTYNAME','STATE','REFNUM')],
title = 'Invalid times to be manually adjusted')
BGN_TIME COUNTYNAME STATE REFNUM
1990 SCREVEN GA 197399 9999 OHZ060 - 070>078 OH 223421 2090 FAIRFAX VA 244548 1580 KENOSHA WI 247251 0572 WASHINGTON WI 247767 13O0 PRZ001 PR 248507
### these times are 'impossible' e.g. 19:90 hr, or sometimes subsituted a '0 (zero)' for 'O (letter)'
### manually adjust these times, assuming simple transposition or substitution errors
StormData$BGN_calcTIME[StormData$REFNUM == 197399] <- '07:09:00 PM' ### was 1990
StormData$BGN_calcTIME[StormData$REFNUM == 223421] <- '12:01:00 AM' ### was 9999
StormData$BGN_calcTIME[StormData$REFNUM == 244548] <- '08:09:00 PM' ### was 2090
StormData$BGN_calcTIME[StormData$REFNUM == 247251] <- '03:08:00 PM' ### was 1580
StormData$BGN_calcTIME[StormData$REFNUM == 247767] <- '05:27:00 AM' ### was 0572
StormData$BGN_calcTIME[StormData$REFNUM == 248507] <- '01:00:00 PM' ### was 13O0
StormData$BEGIN_TIME <- as.POSIXct(strptime(paste(sub(' .*','',StormData$BGN_DATE),
StormData$BGN_calcTIME),'%m/%d/%Y %I:%M:%S %p'))
List all current timezones, and standardize capitalization
kable(unique(StormData$TIME_ZONE))
x |
---|
CST |
EST |
PST |
MST |
CDT |
PDT |
EDT |
UNK |
HST |
GMT |
MDT |
AST |
ADT |
CSt |
ESt |
CSC |
SCT |
ESY |
UTC |
SST |
AKS |
GST |
### some timezone names use 'lower-case' characters, convert all to upper-case
StormData$TIME_ZONE <- as.factor(toupper(StormData$TIME_ZONE))
kable(StormData[StormData$TIME_ZONE %in% c('UNK','CSC','ESY','SCT'), c('COUNTYNAME','STATE','TIME_ZONE','REFNUM')],
title = 'List of records with dubious timezone names')
COUNTYNAME STATE TIME_ZONE REFNUM
OCONEE GA UNK 23087 HAWAII HI UNK 27702 COLES IL UNK 30669 RUSH IN UNK 35244 HAMPDEN MA UNK 67899 LOVE OK UNK 120704 PERKINS SD UNK 143198 MCLENNAN TX UNK 154637 ARMSTRONG TX UNK 160236 CHICKASAW IA CSC 200720 IAZ033 - 034 - 045>052 - 057>068 - 070>078 - 081>089 - 092>099 IA SCT 201257 CAMBRIA PA ESY 229824 SHAWANO WI SCT 247612
Convert 'daylight saving' timezones to 'standard' timezones, as Lubridate adjusts for daylight saving times automatically.
### replace missing timezones 'UNK'
### Oconee County, Georgia
StormData$TIME_ZONE[StormData$REFNUM == 23087] <- 'EST'
### Hawaii country, Hawaii
StormData$TIME_ZONE[StormData$REFNUM == 27702] <- 'HST'
### Coles county, Illinois
StormData$TIME_ZONE[StormData$REFNUM == 30669] <- 'CST'
### Rush County, Indiana
StormData$TIME_ZONE[StormData$REFNUM == 35244] <- 'EST'
### Hampden County, Massachusetts
StormData$TIME_ZONE[StormData$REFNUM == 67899] <- 'EST'
### Love County, Oklahoma
StormData$TIME_ZONE[StormData$REFNUM == 120704] <- 'CST'
### Perkins County, South Dakota
StormData$TIME_ZONE[StormData$REFNUM == 143198] <- 'MST'
### McLennan County, Texas
StormData$TIME_ZONE[StormData$REFNUM == 154637] <- 'CST'
### Armstrong, Texas
StormData$TIME_ZONE[StormData$REFNUM == 160236] <- 'CST'
### Chickasaw, Mississippi. likely mistaken timezone 'CSC'
StormData$TIME_ZONE[StormData$REFNUM == 200720] <- 'CST'
### Cambria, Pennsylvania, likely mistaken timezone 'ESY'
StormData$TIME_ZONE[StormData$REFNUM == 229824] <- 'EST'
### Shawano, Wisconsin, likely mistaken timezone 'SCT'
StormData$TIME_ZONE[StormData$REFNUM == 247612] <- 'CST'
### IAZ033, Indiana, likely mistaken timezone 'SCT'
StormData$TIME_ZONE[StormData$REFNUM == 201257] <- 'EST'
### convert daylight saving timezones to 'standard' time
StormData$TIME_ZONE[StormData$TIME_ZONE == 'ADT'] <- 'AST'
StormData$TIME_ZONE[StormData$TIME_ZONE == 'CDT'] <- 'CST'
StormData$TIME_ZONE[StormData$TIME_ZONE == 'EDT'] <- 'EST'
StormData$TIME_ZONE[StormData$TIME_ZONE == 'MDT'] <- 'MST'
StormData$TIME_ZONE[StormData$TIME_ZONE == 'PDT'] <- 'PST'
Adjust BEGIN_TIME according to TIME_ZONE.
### adjust time zones. roll=TRUE prevents 'NA' times as result of daylight savings
StormData[StormData$TIME_ZONE == 'AKS',]$BEGIN_TIME <-
force_tz(StormData[StormData$TIME_ZONE == 'AKS',]$BEGIN_TIME, tzone = 'America/Anchorage', roll = TRUE)
StormData[StormData$TIME_ZONE == 'AST',]$BEGIN_TIME <-
force_tz(StormData[StormData$TIME_ZONE == 'AST',]$BEGIN_TIME, tzone = 'America/Halifax', roll = TRUE)
StormData[StormData$TIME_ZONE == 'CST',]$BEGIN_TIME <-
force_tz(StormData[StormData$TIME_ZONE == 'CST',]$BEGIN_TIME, tzone = 'America/Chicago', roll = TRUE)
StormData[StormData$TIME_ZONE == 'EST',]$BEGIN_TIME <-
force_tz(StormData[StormData$TIME_ZONE == 'EST',]$BEGIN_TIME, tzone = 'America/New_York', roll = TRUE)
StormData[StormData$TIME_ZONE == 'HST',]$BEGIN_TIME <-
force_tz(StormData[StormData$TIME_ZONE == 'HST',]$BEGIN_TIME, tzone = 'Pacific/Honolulu', roll = TRUE)
StormData[StormData$TIME_ZONE == 'MST',]$BEGIN_TIME <-
force_tz(StormData[StormData$TIME_ZONE == 'MST',]$BEGIN_TIME, tzone = 'America/Denver', roll = TRUE)
StormData[StormData$TIME_ZONE == 'PST',]$BEGIN_TIME <-
force_tz(StormData[StormData$TIME_ZONE == 'PST',]$BEGIN_TIME, tzone = 'America/Los_Angeles', roll = TRUE)
StormData[StormData$TIME_ZONE == 'SST',]$BEGIN_TIME <-
force_tz(StormData[StormData$TIME_ZONE == 'SST',]$BEGIN_TIME, tzone = 'Pacific/Samoa', roll = TRUE)
### other timezones 'GMT', 'GST', and 'UTC' all appear to be UTC+0, and so left alone
Some events in EVTYPE which appear to be the same are recorded with different names (synonyms)
e.g. 'TSTM WIND', 'THUNDERSTORM WIND', 'THUNDERSTORM WINDS'
These synonyms should be merged.
In this section 'close' synonyms will not be merged e.g. 'MARINE THUNDERSTORM WIND' will not be merged with 'THUNDERSTORM WIND', 'THUNDERSTORM WIND/HAIL' will not be merged into 'THUNDERSTORM WIND' and 'STRONG WIND' will not be merged into 'WIND', although arguably some of these close synonyms are the same.
### Most events are recorded in capitals ('upper case'), but some are recorded in mixed (upper and lower) case
### Covert all to upper case, strip all numbers, periods and trailing/leading whitespace
### numbers and parentheses are often used to describe sub-types within an event type e.g. size of hail
### there are some subtypes which are not yet merged with this logic e.g. 'G45' sub-types
StormData$EVTYPE <- as.factor(toupper(trimws(gsub('[0-9,.,(,)]+','',StormData$EVTYPE))))
### list of synonyms
synonyms <- list(c('THUNDERSTORM WIND','TSTM WIND','THUNDERSTORM WINDS','THUNDERSTORM WINDSS','THUNDERSTORMS WINDS','THUNDERSTROM WIND','THUNDERTSORM WIND','THUNERSTORM WINDS','TUNDERSTORM WIND','THUNDERSTORM WINS','TSTM WND'),
c('MARINE THUNDERSTORM WIND','MARINE TSTM WIND','MARINE TSTM WINDS'),
c('HIGH WIND','STRONG WIND','HIGH WINDS','STRONG WINDS'),
c('FLASH FLOOD','FLASH FLOODING','FLASH FLOODS'),
c('FLOOD','FLOODING'),
c('URBAN FLOOD','URBAN FLOODING'),
c('WILDFIRE','WILD/FOREST FIRE'),
c('RECORD HEAT','RECORD WARMTH'),
c('THUNDERSTORM WINDS HAIL','TSTM WIND/HAIL','THUNDERSTORM WINDS/HAIL'),
c('WIND GUSTS','GUSTY WIND'),
c('TORRENTIAL RAIN','TORRENTIAL RAINFALL'),
c('TORNADO','TORNADOS','TORNDAO'),
c('WIND','WND'),
c('THUNDERSTORM','THUNDERSTORMS'),
c('RIP CURRENT', 'RIP CURRENTS'),
c('HURRICANE','TYPHOON','HURRICANE/TYPHOON'))
### merge synonyms into one synonym
for (events in synonyms) {
StormData[as.character(StormData$EVTYPE) %in% events,]$EVTYPE <- events[1]
}
Calculate 'true' dollar values of economic damage, combining PROPDMG with PROPDMGEXP and CROPDMG and CROPDMGEXP
In National Weather Service there are only three recognized abbreviations for PROPDMGEXP and CROPDMGEXP, being 'K' for thousands, 'M' for millions and 'B' for billions.
### convert the property and crop damage variables to true numeric values
StormData <- StormData %>%
mutate(PropertyValue = PROPDMG * 1000^match(toupper(PROPDMGEXP),c('K','M','B'), nomatch=0)) %>%
mutate(CropValue = CROPDMG * 1000^match(toupper(CROPDMGEXP),c('K','M','B'), nomatch=0))
Data has been collected from 1950 to 2011. Has data been consistently collected during this time? Compare the change in events recorded annually from 1950 to 2011, including the total number of events and the five most commonly recorded events.
### find the most common event types
frequent.events <- StormData %>%
count(EVTYPE) %>%
arrange(desc(n))
# show the twenty most frequent event types
print(head(frequent.events,20))
## # A tibble: 20 x 2
## EVTYPE n
## <fct> <int>
## 1 THUNDERSTORM WIND 323458
## 2 HAIL 288761
## 3 TORNADO 60654
## 4 FLASH FLOOD 54992
## 5 HIGH WIND 25536
## 6 FLOOD 25447
## 7 LIGHTNING 15756
## 8 HEAVY SNOW 15708
## 9 MARINE THUNDERSTORM WIND 11987
## 10 HEAVY RAIN 11742
## 11 WINTER STORM 11433
## 12 WINTER WEATHER 7045
## 13 FUNNEL CLOUD 6845
## 14 WILDFIRE 4218
## 15 WATERSPOUT 3797
## 16 URBAN/SML STREAM FLD 3392
## 17 BLIZZARD 2719
## 18 DROUGHT 2488
## 19 ICE STORM 2006
## 20 EXCESSIVE HEAT 1678
Plot the yearly event count for the top ten events, and the total event count (the total event count includes both 'common' and 'uncommon' events)
In order to make comparison easier, the event counts are 'normalized' to the 2011 counts i.e. the 2011 counts are the 'baseline'.
# the ten most frequent events
most.frequent.events <- as.list(as.character(frequent.events[1:10,]$EVTYPE))
# count the events in 'most.frequent.events' in each year of recording
frequent.event.count <- StormData %>%
filter(EVTYPE %in% most.frequent.events) %>%
mutate(event.year = year(BEGIN_TIME)) %>%
group_by(event.year, EVTYPE) %>%
summarise(events = n())
# and the total events for each year
yearly.event.count <- StormData %>%
mutate(event.year = year(BEGIN_TIME)) %>%
group_by(event.year) %>%
summarise(events = n())
yearly.event.count[,'EVTYPE'] <- 'TOTAL'
event.count <- bind_rows(frequent.event.count,yearly.event.count)
# 'normalize the events' to the frequency observed in 2011
# store the normalized event count in 'event.norm'
event.count[,'event.norm'] <- NA
for (event in list.append(most.frequent.events,'TOTAL')) {
event.2011.count <- with(event.count, events[EVTYPE == event & event.year == 2011])
for (year in with(event.count, event.year[EVTYPE == event])) {
index <- with(event.count,(EVTYPE == event) & (event.year == year))
event.count$event.norm[index] <- (event.count$events[index]/event.2011.count)
}
}
ggplot(data=event.count,aes(x=event.year,y=event.norm,group=EVTYPE, colour=EVTYPE)) +
geom_line()+geom_point() +
labs(title = "Ten most frequent storm events by year, and total events, from 1950 to 2011",
subtitle = "NOAA storm database. Yearly event frequency in comparison to 2011 event frequency") +
labs(x = "Year", y = "Frequency in comparison to 2011 frequency") +
guides(fill = guide_legend(title="")) +
theme(legend.position=c(0.2,0.6))
Many of the frequent events are not recorded in the current form until at the mid-1990s. 'MARINE THUNDERSTORM WIND' is not even recorded until 2001.
Restrict data analysis from 1997 to 2011 (fifteen years in total)
StormSubset <- StormData[year(StormData$BEGIN_TIME)>=1997,
c('COUNTYNAME','STATE','EVTYPE','FATALITIES','INJURIES',
'PROPDMG','PROPDMGEXP','CROPDMG','CROPDMGEXP',
'REFNUM','PropertyValue','CropValue','BEGIN_TIME')]
Rank the twenty events with the greatest number of fatalities or injuries per year. Population health harm contained in variables FATALITIES and INJURIES.
### calculate the sum of fatalities and injuries for each event for each year
HealthSum <- StormSubset %>%
mutate(event.year = year(BEGIN_TIME)) %>%
group_by(event.year, EVTYPE) %>%
summarise(fatalities = sum(FATALITIES), injuries = sum(INJURIES))
### calculate the mean ('average') annual fatalities and injuries for each event
### calculate the proportion of annual fatalities or injuries caused by the event
HealthMean <- HealthSum %>%
group_by(EVTYPE) %>%
summarise(mean_fatalities = mean(fatalities), mean_injuries = mean(injuries)) %>%
mutate(proportion_fatalities = mean_fatalities/sum(mean_fatalities)*100) %>%
mutate(proportion_injuries = mean_injuries/sum(mean_injuries)*100) %>%
arrange(desc(mean_fatalities))
kable(HealthMean[1:20,c('EVTYPE','mean_fatalities','proportion_fatalities')], caption = 'Weather events causing most fatalities, annual mean fatalities, and percentage of fatalities caused by event')
Table: Weather events causing most fatalities, annual mean fatalities, and percentage of fatalities caused by event
EVTYPE mean_fatalities proportion_fatalities
EXCESSIVE HEAT 117.400000 17.968625 TORNADO 99.000000 15.152418 FLASH FLOOD 53.000000 8.111901 LIGHTNING 39.866667 6.101782 RIP CURRENT 34.466667 5.275286 FLOOD 25.466667 3.897794 HEAT 23.700000 3.627397 THUNDERSTORM WIND 23.266667 3.561073 HIGH WIND 21.000000 3.214149 AVALANCHE 14.533333 2.224395 COLD AND SNOW 14.000000 2.142766 COLD/WIND CHILL 13.571429 2.077171 EXTREME COLD/WIND CHILL 12.500000 1.913184 WINTER STORM 11.133333 1.704009 HEAVY SURF/HIGH SURF 10.500000 1.607075 EXTREME COLD 9.285714 1.421223 FOG 8.285714 1.268168 TSUNAMI 8.250000 1.262701 HYPOTHERMIA/EXPOSURE 7.000000 1.071383 HIGH SURF 6.692308 1.024289
total_mean_fatalities <- sum(HealthMean$mean_fatalities)
sprintf('Total mean number of fatalities annually: %.1f',total_mean_fatalities)
## [1] "Total mean number of fatalities annually: 653.4"
kable(arrange(HealthMean,desc(mean_injuries))[1:20,c('EVTYPE','mean_injuries','proportion_injuries')],caption = 'Weather events causing the most injuries, annual mean injuries and percentage of injuries caused by event')
Table: Weather events causing the most injuries, annual mean injuries and percentage of injuries caused by event
EVTYPE mean_injuries proportion_injuries
TORNADO 1330.80000 33.0652423 FLOOD 449.33333 11.1641986 EXCESSIVE HEAT 422.13333 10.4883836 THUNDERSTORM WIND 313.66667 7.7934057 LIGHTNING 255.06667 6.3374219 HEAT 122.20000 3.0361982 FLASH FLOOD 108.66667 2.6999471 FOG 95.71429 2.3781305 WILDFIRE 94.86667 2.3570704 HURRICANE 93.50000 2.3231140 HIGH WIND 84.60000 2.1019834 WINTER STORM 69.46667 1.7259785 GLAZE 53.00000 1.3168454 HAIL 42.06667 1.0451943 HEAVY SNOW 37.86667 0.9408405 WINTER WEATHER MIX 34.00000 0.8447687 TSUNAMI 32.25000 0.8012880 RIP CURRENT 29.20000 0.7255073 WINTER WEATHER 26.38462 0.6555558 MIXED PRECIP 26.00000 0.6459996
total_mean_injuries <- sum(HealthMean$mean_injuries)
sprintf('Total mean number of injuries annually: %.1f',total_mean_injuries)
## [1] "Total mean number of injuries annually: 4024.8"
Display results graphically of the events causing the most fatalities and injuries
### the (union) of the ten events causing the most fatalities and ten events causing the most injuries
most_health_events <- union(HealthMean$EVTYPE[1:10],arrange(HealthMean,desc(mean_injuries))$EVTYPE[1:10])
### gather data in preparation for bar-charting
HealthImpact <- HealthMean %>%
filter(HealthMean$EVTYPE %in% most_health_events) %>%
mutate(Injuries = -proportion_injuries) %>% ### negative values will be used for 'bar-negative-stack' later
rename(Fatalities = proportion_fatalities) %>%
select(one_of('EVTYPE','Injuries','Fatalities')) %>%
gather(key = 'harm', value = 'proportion', Injuries, Fatalities)
# arrange factors by fatality order
HealthImpact$EVTYPE = reorder.factor(HealthImpact$EVTYPE, new.order = arrange(HealthMean,mean_fatalities)$EVTYPE)
arrange(HealthImpact, EVTYPE)
## # A tibble: 26 x 3
## EVTYPE harm proportion
## <fct> <chr> <dbl>
## 1 WILDFIRE Injuries -2.36
## 2 WILDFIRE Fatalities 0.888
## 3 HURRICANE Injuries -2.32
## 4 HURRICANE Fatalities 0.973
## 5 FOG Injuries -2.38
## 6 FOG Fatalities 1.27
## 7 AVALANCHE Injuries -0.250
## 8 AVALANCHE Fatalities 2.22
## 9 HIGH WIND Injuries -2.10
## 10 HIGH WIND Fatalities 3.21
## # ... with 16 more rows
subtitle <- sprintf('Data from NOAA storm database 1997 to 2011\n
Total mean fatalities per year : %.1f\n
Total mean injuries per year : %.1f',
total_mean_fatalities, total_mean_injuries)
ggplot(data=HealthImpact, aes(x = EVTYPE, y = proportion, fill = harm)) +
geom_bar(stat = 'identity') + ### 'identity' needed for values (rather than counts)
labs(title = "The storm events causing the highest proportions of fatalities and injuries",
subtitle = subtitle) +
labs(x = "Event", y = "Percentage proportion of annual fatalities or injuries") +
scale_y_continuous(labels=abs) +
### remove negative values for axis for 'negative' part of chart
guides(fill = guide_legend(title="")) +
theme(legend.position=c(0.8,0.5)) +
coord_flip(ylim=c(-35,35))
Rank the twenty events with the greatest value of property or crop damage per year Economic damage information is stored in PropertyValue and CropValue.
### remove variables no longer required
DamageSubset <- StormSubset %>%
select(-c(PROPDMG,PROPDMGEXP,CROPDMG,CROPDMGEXP,FATALITIES,INJURIES))
### calculate the sum of damage for each event for each year
DamageSum <- DamageSubset %>%
mutate(event.year = year(BEGIN_TIME)) %>%
group_by(event.year, EVTYPE) %>%
summarise(property = sum(PropertyValue), crop = sum(CropValue))
### calculate the mean ('average') damage for each event (for each of property and crop)
### calculate the proportion of annual damage caused by event (for each of property and crop)
### and also calculate combined mean damage (property+crop) and proportion
DamageMean <- DamageSum %>%
group_by(EVTYPE) %>%
summarise(mean_property = mean(property), mean_crop = mean(crop)) %>%
mutate(mean_combined = mean_property + mean_crop) %>%
mutate(proportion_property = mean_property/sum(mean_property)*100) %>%
mutate(proportion_crop = mean_crop/sum(mean_crop)*100) %>%
mutate(proportion_combined = mean_combined/sum(mean_combined)*100) %>%
arrange(desc(mean_property))
kable(DamageMean[1:20,c('EVTYPE','mean_property','proportion_property')], caption = 'Weather events causing most property damage, annual mean property damage, and percentage of property damage caused by event')
Table: Weather events causing most property damage, annual mean property damage, and percentage of property damage caused by event
EVTYPE mean_property proportion_property
FLOOD 9531642097 36.2058371 HURRICANE 5738335644 21.7970045 STORM SURGE 4318594900 16.4041350 TORNADO 1593155877 6.0515850 FLASH FLOOD 945352367 3.5909105 HAIL 932133795 3.5406999 STORM SURGE/TIDE 663026857 2.5185002 WILDFIRE 512436633 1.9464849 TROPICAL STORM 506411703 1.9235993 THUNDERSTORM WIND 497588195 1.8900833 HIGH WIND 354029326 1.3447765 ICE STORM 236839987 0.8996341 WINTER STORM 99690550 0.3786735 DROUGHT 60713400 0.2306192 LIGHTNING 47244955 0.1794594 HEAVY RAIN 36684229 0.1393446 TSUNAMI 36015500 0.1368045 HEAVY SNOW 33396323 0.1268556 BLIZZARD 32326930 0.1227935 LANDSLIDE 29507091 0.1120824
total_mean_property <- sum(DamageMean$mean_property)
sprintf('Total mean value of property damage annually: $%.0f',total_mean_property)
## [1] "Total mean value of property damage annually: $26326258003"
kable(arrange(DamageMean,desc(mean_crop))[1:20,c('EVTYPE','mean_crop','proportion_crop')],caption = 'Weather events causing the most crop damage, annual mean crop damage and percentage of crop damage caused by event')
Table: Weather events causing the most crop damage, annual mean crop damage and percentage of crop damage caused by event
EVTYPE mean_crop proportion_crop
DROUGHT 857565733 35.8547176 HURRICANE 357161629 14.9328837 FLOOD 310131493 12.9665595 EXTREME COLD 162917714 6.8115696 HAIL 152800840 6.3885843 FROST/FREEZE 99471455 4.1588893 FLASH FLOOD 84755447 3.5436148 THUNDERSTORM WIND 61726533 2.5807788 HEAVY RAIN 48544387 2.0296348 TROPICAL STORM 45114067 1.8862136 HIGH WIND 39428147 1.6484860 EXCESSIVE HEAT 32826800 1.3724845 AGRICULTURAL FREEZE 28820000 1.2049606 WILDFIRE 26612009 1.1126448 FREEZE 24370833 1.0189415 TORNADO 18061054 0.7551304 THUNDERSTORM WINDS HAIL 7164464 0.2995454 HARD FREEZE 6450000 0.2696737 UNSEASONAL RAIN 5000000 0.2090494 HEAVY SNOW 4726807 0.1976272
total_mean_crop <- sum(DamageMean$mean_crop)
sprintf('Total mean value of crop damage annually: $%.0f',total_mean_crop)
## [1] "Total mean value of crop damage annually: $2391779355"
kable(arrange(DamageMean,desc(mean_combined))[1:20,c('EVTYPE','mean_combined','proportion_combined')],caption = 'Weather events causing the most economic damage, annual mean economic damage and percentage of economic damage caused by event')
Table: Weather events causing the most economic damage, annual mean economic damage and percentage of economic damage caused by event
EVTYPE mean_combined proportion_combined
FLOOD 9841773590 34.2703558 HURRICANE 6095497272 21.2253268 STORM SURGE 4318594900 15.0379180 TORNADO 1611216931 5.6104702 HAIL 1084934635 3.7778857 FLASH FLOOD 1030107814 3.5869715 DROUGHT 918279133 3.1975693 STORM SURGE/TIDE 663148286 2.3091699 THUNDERSTORM WIND 559314729 1.9476078 TROPICAL STORM 551525770 1.9204856 WILDFIRE 539048642 1.8770386 HIGH WIND 393457473 1.3700709 ICE STORM 237503987 0.8270203 EXTREME COLD 163610286 0.5697126 FROST/FREEZE 100424182 0.3496903 WINTER STORM 100243950 0.3490627 HEAVY RAIN 85228616 0.2967773 LIGHTNING 47701395 0.1661026 HEAVY SNOW 38123129 0.1327498 TSUNAMI 36020500 0.1254281
total_mean_combined <- sum(DamageMean$mean_combined)
sprintf('Total mean economic damage annually: $%.0f',total_mean_combined)
## [1] "Total mean economic damage annually: $28718037357"
Display results graphically of the events causing the most property and crop damage
### the (union) of the ten events causing the most property, crop or combined economic damage
most_damage_events <- Reduce(union, list(DamageMean$EVTYPE[1:10],arrange(DamageMean,desc(mean_combined))$EVTYPE[1:10],
arrange(DamageMean,desc(mean_combined))$EVTYPE[1:10]))
### gather data in preparation for bar-charting
DamageImpact <- DamageMean %>%
filter(DamageMean$EVTYPE %in% most_damage_events) %>%
rename(Property = proportion_property, Crop = proportion_crop, Combined = proportion_combined) %>%
select(one_of('EVTYPE','Property','Crop','Combined')) %>%
gather(key = 'damage', value = 'proportion', Property, Crop, Combined)
### order the event types by the 'mean_combined' economic impact
DamageImpact$EVTYPE <- reorder.factor(DamageImpact$EVTYPE, new.order = arrange(DamageMean,mean_combined)$EVTYPE)
DamageImpact <- arrange(DamageImpact,EVTYPE)
subtitle <- sprintf('Data from NOAA storm database 1997 to 2011\n
Total mean property damage per year \t: $%12.0f\n
Total mean crop damage per year \t\t: $%12.0f\n
Total combined damage per year \t\t: $%12.0f\n',
total_mean_property, total_mean_crop, total_mean_combined)
ggplot(data=DamageImpact, aes(x = EVTYPE, y = proportion, fill = damage)) +
geom_bar(stat = 'identity', position = 'dodge') + ### 'identity' needed for values (rather than counts)
### 'dodge' for side-by-side bar chart
labs(title = "The storm events causing the highest proportions of economic impact",
subtitle = subtitle) +
labs(x = "Event", y = "Percentage proportion of property, crop or combined value of loss") +
guides(fill = guide_legend(title="")) +
theme(legend.position=c(0.8,0.6)) +
coord_flip()