forked from OmkarPathak/Data-Structures-using-Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
P03_DetectCycleInDirectedGraph.py
65 lines (55 loc) · 2.03 KB
/
P03_DetectCycleInDirectedGraph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# Author: OMKAR PATHAK
# Time Complexity: O(|V| + |E|)
class Graph():
def __init__(self):
self.vertex = {}
# for printing the Graph vertexes
def printGraph(self):
for i in self.vertex.keys():
print(i,' -> ', ' -> '.join([str(j) for j in self.vertex[i]]))
# for adding the edge beween two vertexes
def addEdge(self, fromVertex, toVertex):
# check if vertex is already present,
if fromVertex in self.vertex.keys():
self.vertex[fromVertex].append(toVertex)
else:
# else make a new vertex
self.vertex[fromVertex] = [toVertex]
# This function will return True if graph is cyclic else return False
def checkCyclic(self):
visited = [False] * len(self.vertex)
stack = [False] * len(self.vertex)
for vertex in range(len(self.vertex)):
if visited[vertex] == False:
if self.checkCyclicRec(visited, stack, vertex) == True:
return True
return False
# Recursive function for finding the cycle
def checkCyclicRec(self, visited, stack, vertex):
# Mark the current node in visited and also add it to the stack
visited[vertex] = True
stack[vertex] = True
# mark all adjacent nodes of the current node
for adjacentNode in self.vertex[vertex]:
if visited[adjacentNode] == False:
if self.checkCyclicRec(visited, stack, adjacentNode) == True:
return True
elif stack[adjacentNode] == True:
return True
# The node needs to be poped from
# recursion stack before function ends
stack[vertex] = False
return False
if __name__ == '__main__':
graph = Graph()
graph.addEdge(0, 1)
graph.addEdge(0, 2)
graph.addEdge(1, 2)
graph.addEdge(2, 0)
graph.addEdge(2, 3)
graph.addEdge(3, 3)
graph.printGraph()
if graph.checkCyclic() == 1:
print ("Graph has a cycle")
else:
print ("Graph has no cycle")