-
Notifications
You must be signed in to change notification settings - Fork 0
/
RUN_ME.m
83 lines (64 loc) · 2.71 KB
/
RUN_ME.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
%% SCRIPT: RUN_ME.m shows how to run LHS and AM Algorithm:
%% (1) Latin hypercube pre-exploration of parameters space with a
%% uniform prior.
%% (2) Use the Latin hypercube pre-exploration to form initial
%% estimates for application of Adaptive metropolis.
%% (3) Shows how to print the estimated parameter values
%% Author: Fabian Santiago
%% Last Edit: 5/30/24
%% Email: [email protected]
% Clear workspace
clear
% Add Latin hypercube sampling code to path
addpath('code_LHS/')
% Add Likelihood code to path
addpath('code_LL/')
% Add Adaptive Metropolis code to path
addpath('code_AM/')
% Add Model to path
% Model 01: Main model considered in the main text
% Model 02: Alternate model considered in the main text
% Comment addpath('Models/M01') and uncomment addpath('Models/M02') to run
% estimates for model two.
addpath('Models/M01')
% addpath('Models/M02')
%%%%%%%%%%%%%%%%% RUN LATIN HYPERCUBE SAMPLING PARAMETERS %%%%%%%%%%%%%%%%%
DataIdx = 3; % 1 = Dataset 1, 2 = Dataset 2, 3 = Dataset 1 and 2
NumSmps = 3000; % 600 LHS Samples
NumBlks = 6; % Number of blocks for parallelization
% Generate Latin hypercube samples and break up into samples
fun_process_lhs_params_to_blocks(DataIdx,NumSmps,NumBlks)
% Compute the LogLikelihood for each parameter set, per block
parfor block_idx = 1:NumBlks
fun_sub_lhs_by_mat_block(DataIdx,block_idx,NumSmps,NumBlks)
end
% Combine all LHS blocks
fun_sub_combine_lhs_blocks(DataIdx,NumSmps,NumBlks)
%%%%%%%%%%%%%%% RUN ADAPTIVE METROPOLIS SAMPLING PARAMETERS %%%%%%%%%%%%%%%
% Set number Metropolis and Adaptive Metropolis iterations
ItrsMA = 20000; % Metropolis algorithm
ItrsAM = 60000; % Adaptive Metropolis algorithm
% Use LHS parameters to create initial matrices for Adaptive metropolis
% Estimates will be saved to AM_Ests_Model# folder
fun_sub_lhs_and_am_all_data(DataIdx,NumSmps,NumBlks,ItrsMA,ItrsAM)
% Contents of AM_Ests folder and parameter estimates file
% AM_ParamEsts_Dataset1and2:
% > PRMS: Parameter estimates by iterations. Each column represents one
% parameter and each row is an accepted sample.
% > Cmat1: Intial covariance
% > Cmat2: Covariance during AM
% > LL_Vec: log-likelihood values per iteration
% Load AM samples
load('AM_Ests_M01/AM_ParamEsts_Dataset1and2.mat','PRMS')
% Compute median of samples for each column
med_prms = median(PRMS,1);
% Print medians. false is a placeholder for the log-likelihood value
fun_print_parameter_est([med_prms false])
% Remove Latin hypercube sampling code from path
addpath('code_LHS/')
% Remove LogLikelihood code from path
addpath('code_LL/')
% Remove Adaptive Metropolis code from path
addpath('code_AM/')
% Remove model from path
addpath('Models/M01')