forked from SaloniSingh1601/RAKSHA
-
Notifications
You must be signed in to change notification settings - Fork 3
/
scoring.py
98 lines (77 loc) · 3.01 KB
/
scoring.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import keras
import imageio
import os
import cv2
import numpy as np
import random
#from tensorflow_docs.vis import embed
MAX_SEQ_LENGTH = 100
NUM_FEATURES = 2048
IMG_SIZE = 224
model = keras.models.load_model('./model/')
def crop_center_square(frame):
y, x = frame.shape[0:2]
min_dim = min(y, x)
start_x = (x // 2) - (min_dim // 2)
start_y = (y // 2) - (min_dim // 2)
return frame[start_y : start_y + min_dim, start_x : start_x + min_dim]
def load_video(path, max_frames=0, resize=(IMG_SIZE, IMG_SIZE)):
cap = cv2.VideoCapture(path)
#cap.set(cv2.CAP_PROP_POS_MSEC, 20000)
frames = []
j = 0
try:
while True:
ret, frame = cap.read()
if not ret:
break
frame = crop_center_square(frame)
frame = cv2.resize(frame, resize)
frame = frame[:, :, [2, 1, 0]]
frames.append(frame)
#cv2.imwrite(data_root+"/train/"+str(j)+".jpg", img)
if len(frames) == max_frames:
break
finally:
cap.release()
return np.array(frames)
def build_feature_extractor():
feature_extractor = keras.applications.InceptionV3(
weights="imagenet",
include_top=False,
pooling="avg",
input_shape=(IMG_SIZE, IMG_SIZE, 3),
)
preprocess_input = keras.applications.inception_v3.preprocess_input
inputs = keras.Input((IMG_SIZE, IMG_SIZE, 3))
preprocessed = preprocess_input(inputs)
outputs = feature_extractor(preprocessed)
return keras.Model(inputs, outputs, name="feature_extractor")
def prepare_video(frames):
frames = frames[None, ...]
frame_mask = np.zeros(shape=(1, MAX_SEQ_LENGTH,), dtype="bool")
frame_featutes = np.zeros(shape=(1, MAX_SEQ_LENGTH, NUM_FEATURES), dtype="float32")
feature_extractor = build_feature_extractor()
for i, batch in enumerate(frames):
video_length = batch.shape[1]
length = min(MAX_SEQ_LENGTH, video_length)
for j in range(length):
frame_featutes[i, j, :] = feature_extractor.predict(batch[None, j, :])
frame_mask[i, :length] = 1 # 1 = not masked, 0 = masked
return frame_featutes, frame_mask
def sequence_prediction(path, category):
# class vocabulary
classes = ['','Hammer Strike','Groin Kick','Heel Palm Strike','Elbow Strike','Escape Bear Hug Attack','Escape Hands Trapped','Escape Side Headlock','Eye Strike','Knee strike','Ready Stance','Two handed choked']
class_vocab = ['', '0', '1', '10', '2', '3', '4', '5', '6', '7', '8', '9']
try:
frames = load_video(path)
frame_features, frame_mask = prepare_video(frames)
probabilities = model.predict([frame_features, frame_mask])[0]
return probabilities[classes.index(category)]
except:
# just incase some exception occurs with the video, or it gets corrupted
return random.randint(1, 11)
def get_score(category):
res = int(sequence_prediction('./output.mp4', category))
print(res)
return res