-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluate_model.py
94 lines (79 loc) · 3.38 KB
/
evaluate_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
from statsmodels.graphics.gofplots import ProbPlot
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import itertools
from sklearn import metrics
class clf_eval:
def __init__(self):
self.message = 'Running'
def __repr__(self):
return self.message
@staticmethod
def plot_loss_acc_curves(history):
"""Plot the loss and accuracy curves for training and validation data"""
fig, ax = plt.subplots(2,1)
ax[0].plot(history.history['loss'], color='b', label="Training loss")
ax[0].plot(history.history['val_loss'], color='r', label="validation loss",axes =ax[0])
legend = ax[0].legend(loc='best', shadow=True)
ax[1].plot(history.history['acc'], color='b', label="Training accuracy")
ax[1].plot(history.history['val_acc'], color='r',label="Validation accuracy")
legend = ax[1].legend(loc='best', shadow=True)
plt.show()
@staticmethod
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=90)
plt.yticks(tick_marks, classes)
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, cm[i, j],
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.show()
@staticmethod
def Clf_report(model,Ytrue,YPred):
print("Classification report for classifier %s:\n%s\n"
% (model, metrics.classification_report(Ytrue, YPred)))
class reg_eval:
@staticmethod
def adjusted_r2(r2,x,y):
return 1 - (1-r2)*(len(y)-1)/(len(y)-x.shape[1]-1)
@staticmethod
def residual_plot(actual_y,predicted_y):
res_plot = plt.figure(1)
res_plot.set_figheight(8)
res_plot.set_figwidth(12)
res_plot.axes[0] = sns.residplot(predicted_y, actual_y,
lowess=True,
scatter_kws={'alpha': 0.5},
line_kws={'color': 'red', 'lw': 1, 'alpha': 0.8})
res_plot.axes[0].set_title('Residuals vs Fitted')
res_plot.axes[0].set_xlabel('Fitted values')
res_plot.axes[0].set_ylabel('Residuals')
plt.show()
@staticmethod
def qq_plot(residual_norm):
QQ = ProbPlot(residual_norm)
res_plot = QQ.qqplot(line='45', alpha=0.5, color='#4C72B0', lw=1)
res_plot.set_figheight(8)
res_plot.set_figwidth(12)
res_plot.axes[0].set_title('Normal Q-Q')
res_plot.axes[0].set_xlabel('Theoretical Quantiles')
res_plot.axes[0].set_ylabel('Standardized Residuals')
plt.show()