-
Notifications
You must be signed in to change notification settings - Fork 0
/
Closest pair of points in log^2n.cpp
128 lines (108 loc) · 3.76 KB
/
Closest pair of points in log^2n.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
#include <stdio.h>
#include <float.h>
#include <stdlib.h>
#include <math.h>
// A structure to represent a Point in 2D plane
struct Point
{
int x, y;
};
/* Following two functions are needed for library function qsort().
Refer: http://www.cplusplus.com/reference/clibrary/cstdlib/qsort/ */
// Needed to sort array of points according to X coordinate
int compareX(const void* a, const void* b)
{
Point *p1 = (Point *)a, *p2 = (Point *)b;
return (p1->x - p2->x);
}
// Needed to sort array of points according to Y coordinate
int compareY(const void* a, const void* b)
{
Point *p1 = (Point *)a, *p2 = (Point *)b;
return (p1->y - p2->y);
}
// A utility function to find the distance between two points
float dist(Point p1, Point p2)
{
return sqrt( (p1.x - p2.x)*(p1.x - p2.x) +
(p1.y - p2.y)*(p1.y - p2.y)
);
}
// A Brute Force method to return the smallest distance between two points
// in P[] of size n
float bruteForce(Point P[], int n)
{
float min = FLT_MAX;
for (int i = 0; i < n; ++i)
for (int j = i+1; j < n; ++j)
if (dist(P[i], P[j]) < min)
min = dist(P[i], P[j]);
return min;
}
// A utility function to find minimum of two float values
float min(float x, float y)
{
return (x < y)? x : y;
}
// A utility function to find the distance beween the closest points of
// strip of given size. All points in strip[] are sorted accordint to
// y coordinate. They all have an upper bound on minimum distance as d.
// Note that this method seems to be a O(n^2) method, but it's a O(n)
// method as the inner loop runs at most 6 times
float stripClosest(Point strip[], int size, float d)
{
float min = d; // Initialize the minimum distance as d
qsort(strip, size, sizeof(Point), compareY);
// Pick all points one by one and try the next points till the difference
// between y coordinates is smaller than d.
// This is a proven fact that this loop runs at most 6 times
for (int i = 0; i < size; ++i)
for (int j = i+1; j < size && (strip[j].y - strip[i].y) < min; ++j)
if (dist(strip[i],strip[j]) < min)
min = dist(strip[i], strip[j]);
return min;
}
// A recursive function to find the smallest distance. The array P contains
// all points sorted according to x coordinate
float closestUtil(Point P[], int n)
{
// If there are 2 or 3 points, then use brute force
if (n <= 3)
return bruteForce(P, n);
// Find the middle point
int mid = n/2;
Point midPoint = P[mid];
// Consider the vertical line passing through the middle point
// calculate the smallest distance dl on left of middle point and
// dr on right side
float dl = closestUtil(P, mid);
float dr = closestUtil(P + mid, n-mid);
// Find the smaller of two distances
float d = min(dl, dr);
// Build an array strip[] that contains points close (closer than d)
// to the line passing through the middle point
Point strip[n];
int j = 0;
for (int i = 0; i < n; i++)
if (abs(P[i].x - midPoint.x) < d)
strip[j] = P[i], j++;
// Find the closest points in strip. Return the minimum of d and closest
// distance is strip[]
return min(d, stripClosest(strip, j, d) );
}
// The main functin that finds the smallest distance
// This method mainly uses closestUtil()
float closest(Point P[], int n)
{
qsort(P, n, sizeof(Point), compareX);
// Use recursive function closestUtil() to find the smallest distance
return closestUtil(P, n);
}
// Driver program to test above functions
int main()
{
Point P[] = {{2, 3}, {12, 30}, {40, 50}, {5, 1}, {12, 10}, {3, 4}};
int n = sizeof(P) / sizeof(P[0]);
printf("The smallest distance is %f ", closest(P, n));
return 0;
}