-
Notifications
You must be signed in to change notification settings - Fork 161
/
merge_peft_adapter.py
45 lines (34 loc) · 1.7 KB
/
merge_peft_adapter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from dataclasses import dataclass, field
from typing import Optional
import torch
from peft import PeftConfig, PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser
@dataclass
class ScriptArguments:
"""The input names representing the Adapter and Base model fine-tuned with
PEFT, and the output name representing the merged model."""
adapter_model_name: Optional[str] = field(
default=None, metadata={'help': 'the adapter name'})
base_model_name: Optional[str] = field(
default=None, metadata={'help': 'the base model name'})
output_name: Optional[str] = field(
default=None, metadata={'help': 'the merged model name'})
parser = HfArgumentParser(ScriptArguments)
script_args = parser.parse_args_into_dataclasses()[0]
assert script_args.adapter_model_name is not None, 'please provide the name of the Adapter you would like to merge' # noqa: E501
assert script_args.base_model_name is not None, 'please provide the name of the Base model' # noqa: E501
assert script_args.output_name is not None, 'please provide the output name of the merged model' # noqa: E501
peft_config = PeftConfig.from_pretrained(script_args.adapter_model_name)
model = AutoModelForCausalLM.from_pretrained(
script_args.base_model_name,
return_dict=True,
torch_dtype=torch.bfloat16,
trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(
script_args.base_model_name, trust_remote_code=True)
# Load the PEFT model
model = PeftModel.from_pretrained(model, script_args.adapter_model_name)
model.eval()
model = model.merge_and_unload()
model.save_pretrained(f'{script_args.output_name}')
tokenizer.save_pretrained(f'{script_args.output_name}')