forked from vbezgachev/tf_serving_example
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
68 lines (54 loc) · 1.97 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import os
from os.path import isfile
from six.moves import urllib
from urllib.request import urlretrieve
#from urllib import urlretrieve
from scipy.io import loadmat
from dl_progress import DLProgress
'''
Diverse utilities
'''
# constants
data_dir = 'data/'
def download_train_and_test_data():
'''
Downloads SVNH train and test data if it is not done yet
'''
if not os.path.exists(data_dir):
os.makedirs(data_dir)
if not isfile(data_dir + "train_32x32.mat"):
with DLProgress(unit='B', unit_scale=True, miniters=1, desc='SVHN Training Set') as pbar:
urlretrieve(
'http://ufldl.stanford.edu/housenumbers/train_32x32.mat',
data_dir + 'train_32x32.mat',
pbar.hook)
if not isfile(data_dir + "test_32x32.mat"):
with DLProgress(unit='B', unit_scale=True, miniters=1, desc='SVHN Training Set') as pbar:
urlretrieve(
'http://ufldl.stanford.edu/housenumbers/test_32x32.mat',
data_dir + 'test_32x32.mat',
pbar.hook)
def load_data_sets():
'''
Loads train and test sets from the Matlab format
:return: Dictionaries of the train and test datasets. Keys are
'X' or 'y', image shape is (width, height, channels, dataset_size)
'''
if not os.path.exists(data_dir):
raise Exception("Data directory doesn't exist!")
train_set = loadmat(data_dir + 'train_32x32.mat')
test_set = loadmat(data_dir + 'test_32x32.mat')
return train_set, test_set
def scale(x, feature_range=(-1, 1)):
'''
Scales the image pixels to be in a range of [-1, 1]
:param x: Input image with RGB values
:param feature_range: Desired range for the scaled pixels
:return: Scaled image. All pixles are in a range of [-1, 1]
'''
# scale to (0, 1)
x = ((x - x.min())/(255 - x.min()))
# scale to feature_range
min_val, max_val = feature_range
x = x * (max_val - min_val) + min_val
return x