We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
learning_curve
X, y = make_blobs() model = (@load RandomForestClassifier pkg=DecisionTree)() mach = machine(model, X, y) r = range(model, :n_trees, lower=10, upper=70, scale=:log10) many_curves = learning_curve(mach, range=r, resampling=Holdout(), measure=cross_entropy, rng_name=:rng, rngs=1) Evaluating Learning curve with 1 rngs: 0%[> ] ETA: N/A┌ Error: Problem fi tting the machine Machine{RandomForestClassifier,…}. └ @ MLJBase ~/.julia/packages/MLJBase/HZmTU/src/machines.jl:533 [ Info: Running type checks... [ Info: Type checks okay. ┌ Error: Problem fitting the machine Machine{Resampler{Holdout},…}. └ @ MLJBase ~/.julia/packages/MLJBase/HZmTU/src/machines.jl:533 [ Info: Running type checks... [ Info: Type checks okay. ┌ Error: Problem fitting the machine Machine{ProbabilisticTunedModel{Grid,…},…}. └ @ MLJBase ~/.julia/packages/MLJBase/HZmTU/src/machines.jl:533 [ Info: Running type checks... [ Info: Type checks okay. ERROR: TaskFailedException Stacktrace: [1] wait @ ./task.jl:322 [inlined] [2] threading_run(func::Function) @ Base.Threads ./threadingconstructs.jl:34 [3] macro expansion @ ./threadingconstructs.jl:93 [inlined] [4] build_forest(labels::Vector{UInt32}, features::Matrix{Float64}, n_subfeatures::Int64, n_trees::Int64, partial_sampling::Float64, max_depth::Int64, min_samples_leaf::Int64, min_samples_split::Int64, min_purity_increase::Float64; rng::Random.MersenneTwister) @ DecisionTree ~/.julia/packages/DecisionTree/iWCbW/src/classification/main.jl:223 [5] fit(m::MLJDecisionTreeInterface.RandomForestClassifier, verbosity::Int64, X::DataFrames.DataFrame, y::CategoricalVector{Int64, UInt32, Int64, CategoricalValue{Int64, UInt32}, Union{}}) @ MLJDecisionTreeInterface ~/.julia/packages/MLJDecisionTreeInterface/RZmUr/src/MLJDecisionTreeInterface.jl:200 [6] fit_only!(mach::Machine{MLJDecisionTreeInterface.RandomForestClassifier, true}; rows:: Vector{Int64}, verbosity::Int64, force::Bool) @ MLJBase ~/.julia/packages/MLJBase/HZmTU/src/machines.jl:531 [7] #fit!#103 @ ~/.julia/packages/MLJBase/HZmTU/src/machines.jl:598 [inlined] [8] fit_and_extract_on_fold @ ~/.julia/packages/MLJBase/HZmTU/src/resampling.jl:1088 [inlined] [9] (::MLJBase.var"#276#277"{MLJBase.var"#fit_and_extract_on_fold#299"{Vector{Tuple{Vector{Int64}, Vector{Int64}}}, Nothing, Nothing, Int64, Vector{LogLoss{Float64}}, Vector{typeof(predict)}, Bool, Bool, CategoricalVector{Int64, UInt32, Int64, CategoricalValue{Int64, UInt32}, Union{}}, DataFrames.DataFrame}, Machine{MLJDecisionTreeInterface.RandomForestClassifier, true}, Int64, ProgressMeter.Progress})(k::Int64) @ MLJBase ~/.julia/packages/MLJBase/HZmTU/src/resampling.jl:932 [10] mapreduce_first @ ./reduce.jl:392 [inlined] [11] _mapreduce(f::MLJBase.var"#276#277"{MLJBase.var"#fit_and_extract_on_fold#299"{Vector{Tuple{Vector{Int64}, Vector{Int64}}}, Nothing, Nothing, Int64, Vector{LogLoss{Float64}}, Vector{typeof(predict)}, Bool, Bool, CategoricalVector{Int64, UInt32, Int64, CategoricalValue{Int64, UInt32}, Union{}}, DataFrames.DataFrame}, Machine{MLJDecisionTreeInterface.RandomForestClassifier, true}, Int64, ProgressMeter.Progress}, op::typeof(vcat), #unused#::IndexLinear, A::UnitRange{Int64}) @ Base ./reduce.jl:403 [12] _mapreduce_dim @ ./reducedim.jl:318 [inlined] [13] #mapreduce#672 @ ./reducedim.jl:310 [inlined] [14] mapreduce @ ./reducedim.jl:310 [inlined] [15] _evaluate!(func::MLJBase.var"#fit_and_extract_on_fold#299"{Vector{Tuple{Vector{Int64}, Vector{Int64}}}, Nothing, Nothing, Int64, Vector{LogLoss{Float64}}, Vector{typeof(predict)}, Bool, Bool, CategoricalVector{Int64, UInt32, Int64, CategoricalValue{Int64, UInt32}, Union{}}, DataFrames.DataFrame}, mach::Machine{MLJDecisionTreeInterface.RandomForestClassifier, true}, #unused#::CPU1{Nothing}, nfolds::Int64, verbosity::Int64) @ MLJBase ~/.julia/packages/MLJBase/HZmTU/src/resampling.jl:931 [16] evaluate!(mach::Machine{MLJDecisionTreeInterface.RandomForestClassifier, true}, resampling::Vector{Tuple{Vector{Int64}, Vector{Int64}}}, weights::Nothing, class_weights::Nothing, rows::Nothing, verbosity::Int64, repeats::Int64, measures::Vector{LogLoss{Float64}}, operations::Vector{typeof(predict)}, acceleration::CPU1{Nothing}, force::Bool) @ MLJBase ~/.julia/packages/MLJBase/HZmTU/src/resampling.jl:1126 [17] evaluate!(::Machine{MLJDecisionTreeInterface.RandomForestClassifier, true}, ::Holdout, ::Nothing, ::Nothing, ::Nothing, ::Int64, ::Int64, ::Vector{LogLoss{Float64}}, ::Vector{typeof(predict)}, ::CPU1{Nothing}, ::Bool) @ MLJBase ~/.julia/packages/MLJBase/HZmTU/src/resampling.jl:1193 [18] fit(::Resampler{Holdout}, ::Int64, ::DataFrames.DataFrame, ::CategoricalVector{Int64, UInt32, Int64, CategoricalValue{Int64, UInt32}, Union{}}) @ MLJBase ~/.julia/packages/MLJBase/HZmTU/src/resampling.jl:1337 [19] fit_only!(mach::Machine{Resampler{Holdout}, false}; rows::Nothing, verbosity::Int64, force::Bool) @ MLJBase ~/.julia/packages/MLJBase/HZmTU/src/machines.jl:531 [20] #fit!#103 @ ~/.julia/packages/MLJBase/HZmTU/src/machines.jl:598 [inlined] [21] event!(metamodel::MLJDecisionTreeInterface.RandomForestClassifier, resampling_machine::Machine{Resampler{Holdout}, false}, verbosity::Int64, tuning::Grid, history::Nothing, state ::NamedTuple{(:models, :fields, :parameter_scales, :models_delivered), Tuple{Vector{MLJDecisionTreeInterface.RandomForestClassifier}, Vector{Symbol}, Vector{Symbol}, Bool}}) @ MLJTuning ~/.julia/packages/MLJTuning/efiDR/src/tuned_models.jl:395 [22] #35 @ ~/.julia/packages/MLJTuning/efiDR/src/tuned_models.jl:433 [inlined] [23] iterate @ ./generator.jl:47 [inlined] [24] _collect(c::Vector{MLJDecisionTreeInterface.RandomForestClassifier}, itr::Base.Generator{Vector{MLJDecisionTreeInterface.RandomForestClassifier}, MLJTuning.var"#35#36"{Machine{Resampler{Holdout}, false}, Int64, Grid, Nothing, NamedTuple{(:models, :fields, :parameter_scales, :models_delivered), Tuple{Vector{MLJDecisionTreeInterface.RandomForestClassifier}, Vector{Symbol}, Vector{Symbol}, Bool}}, ProgressMeter.Progress}}, #unused#::Base.EltypeUnknown, isz::Base.HasShape{1}) @ Base ./array.jl:695 [25] collect_similar @ ./array.jl:606 [inlined] [26] map @ ./abstractarray.jl:2294 [inlined] [27] assemble_events!(metamodels::Vector{MLJDecisionTreeInterface.RandomForestClassifier}, resampling_machine::Machine{Resampler{Holdout}, false}, verbosity::Int64, tuning::Grid, history::Nothing, state::NamedTuple{(:models, :fields, :parameter_scales, :models_delivered), Tuple{Vector{MLJDecisionTreeInterface.RandomForestClassifier}, Vector{Symbol}, Vector{Symbol}, Bool}}, acceleration::CPU1{Nothing}) @ MLJTuning ~/.julia/packages/MLJTuning/efiDR/src/tuned_models.jl:432 [28] build!(history::Nothing, n::Int64, tuning::Grid, model::MLJDecisionTreeInterface.RandomForestClassifier, model_buffer::Channel{Any}, state::NamedTuple{(:models, :fields, :parameter_scales, :models_delivered), Tuple{Vector{MLJDecisionTreeInterface.RandomForestClassifier}, Vector{Symbol}, Vector{Symbol}, Bool}}, verbosity::Int64, acceleration::CPU1{Nothing}, resampling_machine::Machine{Resampler{Holdout}, false}) @ MLJTuning ~/.julia/packages/MLJTuning/efiDR/src/tuned_models.jl:625 [29] fit(::MLJTuning.ProbabilisticTunedModel{Grid, MLJDecisionTreeInterface.RandomForestClassifier}, ::Int64, ::DataFrames.DataFrame, ::CategoricalVector{Int64, UInt32, Int64, CategoricalValue{Int64, UInt32}, Union{}}) @ MLJTuning ~/.julia/packages/MLJTuning/efiDR/src/tuned_models.jl:704 [30] fit_only!(mach::Machine{MLJTuning.ProbabilisticTunedModel{Grid, MLJDecisionTreeInterface.RandomForestClassifier}, true}; rows::Nothing, verbosity::Int64, force::Bool) @ MLJBase ~/.julia/packages/MLJBase/HZmTU/src/machines.jl:531 [31] #fit!#103 @ ~/.julia/packages/MLJBase/HZmTU/src/machines.jl:598 [inlined] [32] (::MLJTuning.var"#61#62"{Machine{MLJTuning.ProbabilisticTunedModel{Grid, MLJDecisionTreeInterface.RandomForestClassifier}, true}, Nothing, Symbol, Int64, ProgressMeter.Progress}) (rng::Random.MersenneTwister) @ MLJTuning ~/.julia/packages/MLJTuning/efiDR/src/learning_curves.jl:231 [33] mapreduce_first @ ./reduce.jl:392 [inlined] [34] _mapreduce(f::MLJTuning.var"#61#62"{Machine{MLJTuning.ProbabilisticTunedModel{Grid, MLJDecisionTreeInterface.RandomForestClassifier}, true}, Nothing, Symbol, Int64, ProgressMeter.Progress}, op::typeof(MLJTuning._collate), #unused#::IndexLinear, A::Vector{Random.MersenneTwister}) @ Base ./reduce.jl:403 [35] _mapreduce_dim @ ./reducedim.jl:318 [inlined] [36] #mapreduce#672 @ ./reducedim.jl:310 [inlined] [37] mapreduce @ ./reducedim.jl:310 [inlined] [38] _tuning_results(rngs::Vector{Random.MersenneTwister}, acceleration::CPU1{Nothing}, tuned::Machine{MLJTuning.ProbabilisticTunedModel{Grid, MLJDecisionTreeInterface.RandomForestClassifier}, true}, rows::Nothing, rng_name::Symbol, verbosity::Int64) @ MLJTuning ~/.julia/packages/MLJTuning/efiDR/src/learning_curves.jl:229 [39] learning_curve(::MLJDecisionTreeInterface.RandomForestClassifier, ::MLJBase.Source, :: Vararg{MLJBase.Source, N} where N; resolution::Int64, resampling::Holdout, weights::Nothing, measures::Nothing, measure::LogLoss{Float64}, rows::Nothing, operation::Nothing, ranges::Nothing, range::MLJBase.NumericRange{Int64, MLJBase.Bounded, Symbol}, repeats::Int64, acceleration::CPU1{Nothing}, acceleration_grid::CPU1{Nothing}, verbosity::Int64, rngs::Int64, rng_name::Symbol, check_measure::Bool) @ MLJTuning ~/.julia/packages/MLJTuning/efiDR/src/learning_curves.jl:173 [40] #learning_curve#58 @ ~/.julia/packages/MLJTuning/efiDR/src/learning_curves.jl:92 [inlined] [41] top-level scope @ REPL[44]:1 nested task error: AssertionError: length(ints) == 501 Stacktrace: [1] mt_setfull!(r::Random.MersenneTwister, #unused#::Type{UInt64}) @ Random /Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.6/Random/src/RNGs.jl:260 [2] reserve1 @ /Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.6/Random/src/RNGs.jl:291 [inlined] [3] mt_pop! @ /Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.6/Random/src/RNGs.jl:296 [inlined] [4] rand @ /Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.6/Random/src/RNGs.jl:464 [inlined] [5] rand @ /Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.6/Random/src/Random.jl:256 [inlined] [6] rand(rng::Random.MersenneTwister, sp::Random.SamplerRangeNDL{UInt64, Int64}) @ Random /Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.6/Random/src/generation.jl:332 [7] rand! @ /Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.6/Random/src/Random.jl:271 [inlined] [8] rand!(rng::Random.MersenneTwister, A::Vector{Int64}, X::UnitRange{Int64}) @ Random /Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.6/Random/src/Random.jl:266 [9] rand @ /Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.6/Random/src/Random.jl:279 [inlined] [10] rand @ /Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.6/Random/src/Random.jl:282 [inlined] [11] macro expansion @ ~/.julia/packages/DecisionTree/iWCbW/src/classification/main.jl:224 [inlined] [12] (::DecisionTree.var"#62#threadsfor_fun#22"{Random.MersenneTwister, Vector{UInt32}, Matrix{Float64}, Int64, Int64, Int64, Float64, DecisionTree.var"#20#21"{Vector{Float64}}, Vector{Union{DecisionTree.Leaf{UInt32}, DecisionTree.Node{Float64, UInt32}}}, Int64, Int64, UnitRange{Int64}})(onethread::Bool) @ DecisionTree ./threadingconstructs.jl:81 [13] (::DecisionTree.var"#62#threadsfor_fun#22"{Random.MersenneTwister, Vector{UInt32}, Matrix{Float64}, Int64, Int64, Int64, Float64, DecisionTree.var"#20#21"{Vector{Float64}}, Vector{Union{DecisionTree.Leaf{UInt32}, DecisionTree.Node{Float64, UInt32}}}, Int64, Int64, UnitRange{Int64}})() @ DecisionTree ./threadingconstructs.jl:48
(MachineLearningInJulia2020) pkg> status Status `~/Google Drive/Julia/MLJ/MachineLearningInJulia2020/Project.toml` [336ed68f] CSV v0.9.6 [324d7699] CategoricalArrays v0.10.1 [ed09eef8] ComputationalResources v0.3.2 [a93c6f00] DataFrames v1.2.2 [7806a523] DecisionTree v0.10.11 [31c24e10] Distributions v0.25.18 [f6006082] EvoTrees v0.8.4 [98b081ad] Literate v2.9.3 [add582a8] MLJ v0.16.9 [a7f614a8] MLJBase v0.18.23 [d354fa79] MLJClusteringInterface v0.1.4 [094fc8d1] MLJFlux v0.2.5 [6ee0df7b] MLJLinearModels v0.5.6 [d491faf4] MLJModels v0.14.12 [1b6a4a23] MLJMultivariateStatsInterface v0.2.2 [5ae90465] MLJScikitLearnInterface v0.1.10 [b8a86587] NearestNeighbors v0.4.9 [a03496cd] PlotlyBase v0.8.18 [91a5bcdd] Plots v1.22.4 [321657f4] ScientificTypes v2.3.0 [2913bbd2] StatsBase v0.33.10 [bd369af6] Tables v1.6.0 [b8865327] UnicodePlots v2.4.6 [9a3f8284] Random
Julia 1.6.3
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Julia 1.6.3
The text was updated successfully, but these errors were encountered: