diff --git a/Applications/ML Algorithms/KNN.ipynb b/Applications/ML Algorithms/KNN.ipynb
deleted file mode 100644
index abbfd45..0000000
--- a/Applications/ML Algorithms/KNN.ipynb
+++ /dev/null
@@ -1 +0,0 @@
-{"cells":[{"cell_type":"markdown","metadata":{"id":"RHxCzcMw6yo1"},"source":["## What is K Nearest Neighbour ?"]},{"cell_type":"markdown","metadata":{"id":"itveBW6M69YO"},"source":["K-Nearest Neighbors (K-NN) is a supervised machine learning algorithm used for classification and regression tasks. It's a simple and intuitive algorithm that can be used for both classification and regression tasks."]},{"cell_type":"markdown","metadata":{"id":"NkX1uGxl7Q9N"},"source":["### Choosing K:\n","\n","One crucial hyperparameter in K-NN is the value of K. The choice of K can significantly impact the algorithm's performance. A smaller K value makes the algorithm more sensitive to noise in the data, potentially leading to overfitting, while a larger K value can make the decision boundary smoother but may result in underfitting."]},{"cell_type":"markdown","metadata":{"id":"d5jQMxtl86-A"},"source":["## When to use KNN ?"]},{"cell_type":"markdown","metadata":{"id":"Y8TXq9fS9DB4"},"source":["K-Nearest Neighbors (K-NN) is a versatile algorithm that can be useful in certain situations. Here are some scenarios in which you might consider using K-NN:\n","\n","* Multi-Class Classification: K-NN can also be applied to multi-class classification problems, where you need to classify data points into more than two classes. However, the choice of K and distance metric becomes more critical in these cases.\n","\n","* Regression: K-NN can be used for regression tasks when you need to predict a continuous target variable. It calculates the average (or weighted average) of the target values of the K nearest neighbors to make predictions.\n","\n","* Feature Engineering: K-NN can help identify important features in your dataset. By examining which features are most influential in determining the nearest neighbors, you can gain insights into the importance of various features."]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":463},"id":"6QjqxoV0-K3Y","outputId":"8d55e697-19f2-4643-cf31-ed37c7e10b8f"},"outputs":[{"data":{"text/html":[""],"text/plain":[""]},"execution_count":3,"metadata":{},"output_type":"execute_result"}],"source":["from IPython.display import Image\n","Image(url='https://miro.medium.com/v2/resize:fit:828/1*n9v1xsBi0bek98rqBnWGEg.gif')"]},{"cell_type":"markdown","metadata":{},"source":["## Real-life application of KNN:\n","\n","KNN can be used to predict customer churn in a business setting. For example, a company could use KNN to identify customers who are likely to cancel their subscription or stop using their product. The company could then target these customers with special offers or promotions in an attempt to retain them."]},{"cell_type":"code","execution_count":1,"metadata":{},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAjIAAAGwCAYAAACzXI8XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAxLElEQVR4nO3df3RU9Z3/8dckIT9JhkAIJpCQH7CAgAMIyg8VoxRqldXu2q4tXal2da24StJjBVtxqWLEs7KsoFi0i9IFq7vrL6y6XyVVRIkgkhyiEpCgpCESgpAQJr8mc79/wIwJSSAhM3Pnzjwf58wpuXMH3hArLz+ve+/HZhiGIQAAAAuKMHsAAACA80WQAQAAlkWQAQAAlkWQAQAAlkWQAQAAlkWQAQAAlkWQAQAAlhVl9gD+5na7dejQISUmJspms5k9DgAA6AHDMHTixAmlp6crIqL7dZeQDzKHDh1SRkaG2WMAAIDzUFlZqWHDhnX7fsgHmcTEREnSiv9br7iEeJOnAQAAPdF40qmCOTd7/x7vTsgHGU+dFJcQr7j+BBkAAKzkXJeFcLEvAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAAAhzNXWpqMn6lTfeNLsUfwiyuwBAACA7zW3tmjTpx+o6LNP5GxpkiQNT0nT3158uS7OHmPydL5j6orMli1bNHfuXKWnp8tms+nVV1/t8L5hGFqyZInS0tIUFxenWbNmad++feYMCwCARTS3tmr5pvX6c8mH3hAjSQePfqNV//eS3tn9sYnT+ZapQebkyZNyOBx68sknu3z/scce0xNPPKGnn35aH3/8sRISEjRnzhw1NTV1eT4AAJDe2V2sA0cOyTCMDsc9X2/86P/0bUO9GaP5nKnV0jXXXKNrrrmmy/cMw9DKlSv129/+Vtdff70kaf369RoyZIheffVV3XTTTYEcFQAASzAMQ5s/29EpxJxpy55PdcPkKwMzlB8F7cW+Bw4c0DfffKNZs2Z5j9ntdl166aXatm1bt59rbm5WfX19hxcAAOGita1Nx06eOOd5h47VBmAa/wvaIPPNN99IkoYMGdLh+JAhQ7zvdaWwsFB2u937ysjI8OucAAAEk6iICEXYzv7Xu002xfaLDtBE/hW0QeZ8LV68WHV1dd5XZWWl2SMBABAwERERujh79FnDjNtwa3LOhQGcyn+CNshccMEFkqTDhw93OH748GHve12JiYlRUlJShxcAAOHk2omXyWaTbF28F2GzKWtwmsZl5AZ8Ln8I2iCTnZ2tCy64QJs3b/Yeq6+v18cff6xp06aZOBkAAMEta3Ca7vn+TYrtFyNJimxXN+UOGaaCH8xThK2rmGM9pt611NDQoC+//NL79YEDB1RSUqKBAwcqMzNTCxcu1MMPP6yRI0cqOztbDzzwgNLT03XDDTeYNzQAABZwUeZIrbz5V9q+v0wHjx5Wv8goTcwapRFDhskWIiFGMjnIfPLJJ8rLy/N+XVBQIEmaP3++nnvuOf3617/WyZMndfvtt+v48eO67LLL9Pbbbys2NtaskQEAsIyYfv10+eiJZo/hVzbjXDeaW1x9fb3sdrvWbP0fxfWPN3scAADQA40NTv3yshtVV1d31utdg/YaGQAAgHMhyAAAAMsiyAAAAMsiyAAAAMsiyAAAAMsiyAAAAMsiyAAAAMsiyAAAAMsiyAAAAMsiyAAAAMsiyAAAAMsiyAAAAMsiyAAAAMsiyAAAAMsiyAAAAMsiyAAAAMsiyAAAAMsiyAAAAMsiyAAAAMsiyAAAAMsiyAAAAMsiyAAAAMsiyAAAAMsiyAAAAMsiyAAAAMsiyAAAAMsiyAAAAMsiyAAAAMsiyAAAAMsiyAAAAMsiyAAAAMsKmyDz+bfbzR4BAAD4WNgEmZlZaSo7uk37j+8zexQAAOAjYRNkxtmkqzLsamyrJswAABAiwibIJO6oVt7xeBU4HGpsq1bZ0W1mjwQAAPooyuwBAqXRPVrO4kolS8rPzVJpS4OKKrcpLjJFuQNGmj0eAAA4D2GzIiNJrpRRchYfUVJxlRzR/amaAACwuLAKMtLpMOMeq6TiKqomAAAsLmyqpTM53WMVVVxO1QQAgIWF3YpMe+2rptmRmVRNAABYTFgHGem7qqlxx26qJgAALCZsq6UzUTUBAGA9Yb8i0x5VEwAA1kKQOcOZVVN+bpa3aiLQAAAQXAgy3XC6x8pZfEQDa9zKz806vTpTS5gBACCIEGTOgqoJAIDgRpA5B6omAACCF0Gmh6iaAAAIPgSZXqBqAgAguBBkeomqCQCA4EGQOU+eqimpuIqqCQAAkxBk+sCVMkotNVFUTQAAmIQg00dUTQAAmIcg4yNUTQAABB5BxofaV015x+O9VRM7aQMA4B8EGR/zVE2uimpv1SS1UjUBAOAHBBk/oWoCAMD/CDJ+RNUEAIB/RZk9QKhzpYySyy3FV3ymvJw0OXKzVGpIRRXbFBeZotwBI80eEQAAy2JFJkDaV00Om6iaAADwAYJMAFE1AQDgW1RLAeapmqKKy5U3dTBVEwAAfUCQMcmpnbTLlZTqkmPqUCnDrqLKau0/LsIMAMtqcblU8nW5ak8cV0JMnC7OHqP+sXFmj4UQRpAxkStllFRTfqpqykmTMlJUVFmtsqO1GjdomtnjAUCvfPxlmZ7f8mc5W5oUYbPJbRj64wdv6gcTZ+iGyVcqwmYze0SEoKC+RqatrU0PPPCAsrOzFRcXp9zcXD300EMyDMPs0XzG8wA9Z/ER7wP0rsoZygP0AFhKydd7tebd/5WzpUmS5D7972mXu02v79yiVz95z8TpEMqCOsgsX75ca9as0erVq/XFF19o+fLleuyxx7Rq1SqzR/O5U1XTmXc1sZM2gOBnGIZeKn5XZ1tveXPXh2poagzYTAgfQR1kPvroI11//fW69tprlZWVpRtvvFGzZ8/W9u3bu/1Mc3Oz6uvrO7ysovNdTSnc1QQg6B06dkSHjh3R2dbKXe42ffrVnoDNhPAR1EFm+vTp2rx5s/bu3StJKi0t1datW3XNNdd0+5nCwkLZ7XbvKyMjI1Dj+gRVEwCraWg+90pLhM2mhiZnAKZBuAnqILNo0SLddNNNGj16tPr166eJEydq4cKFmjdvXrefWbx4serq6ryvysrKAE7sO1RNAKwipf+Ac57jNgwNTkz2/zAIO0EdZF566SVt2LBBGzdu1Keffqrnn39e//Zv/6bnn3++28/ExMQoKSmpw8uqPKsznqqpwOGgagIQdAYl2nXh0Oyz3pWUEBOrCVl/E8CpEC6COsjce++93lWZ8ePH6x//8R+Vn5+vwsJCs0cLKE/VlFxxjKoJQFD66Yzvq19Uv05hxvPVzZdfq36RPPEDvhfUQcbpdCoiouOIkZGRcrvdJk1kHqomAMFs2MBUPfDDX2jM0OwOx9MHpmrhNT/RpSPGmTQZQl1Qx+O5c+dq2bJlyszM1NixY7Vr1y6tWLFCt956q9mjmcKzvUFS8amdtCc4HFpRWsoD9AAEhWEDU3Xvdf+ooyfqVNtwXP1j4pWenCIbD8KDHwV1kFm1apUeeOAB3XnnnaqpqVF6err++Z//WUuWLDF7NFM53WMVVVyuZEn5uVkqbWlQUSV7NQEIDoMS7RqUaDd7DIQJmxFKj8ntQn19vex2u7589j+VGB9v9jg+FVVbruhUl+qnDj0dZmoVF5lGmAEAWF5jg1O/vOxG1dXVnfXGnaC+RgZnx11NAIBwF9TVEnqGqgkAEK5YkQkR7e9qmh2ZyV1NAICwQJAJIZ6qqXHHbqomAEBYoFoKQVRNAIBwwYpMiKJqAgCEA4JMCDuzasrPzfJWTQQaAEAoIMiEAc9eTQNr3Kf2asqwq7GtljADALA8gkyYoGoCAIQigkwYoWoCAIQagkwYomoCAIQKgkyYomoCAIQCgkwYo2oCAFgdQQbeqimpuIqqCQBgKQQZSDq1OtNSE0XVBACwFIIMvKiaAABWQ5BBJ1RNAACrIMigS+2rprzj8d6qiZ20AQDBhCCDbnmqJldFtbdqklqpmgAAQYMgg3OiagIABCuCDHqEqgkAEIyizB4A1uFKGSWXW4qv+Ex5OWly5Gap1JCKKrYpLjJFuQNGmj0iACDMsCKDXmtfNTlsomoCAJiGIIPzQtUEAAgGVEs4b56qKaq4XHlTB1M1AQACjhUZ9Fn7nbS/q5rY3gAA4H8EGfhE56ophaoJAOB3VEvwGaomAECgsSIDn6NqAgAECkEGfkHVBAAIBKol+A1VEwDA31iRgd9RNQEA/IUgg4Dw7KTtqZoKHA6qJgBAn1EtIaCc7rGKKi5XsqR8qiYAQB+xIoOAo2oCAPgKQQamoGoCAPgC1RJM1alqamlQUSVVEwCgZ1iRgek6VE3R/amaAAA9RpBBUKBqAgCcj14FmcbGRm3dulWff/55p/eampq0fv16nw2G8OR0j5Wz+IiSK44pPzdLV2XYVXZ0G6szAIAu9TjI7N27V2PGjNEVV1yh8ePHa+bMmaqurva+X1dXp1tuucUvQyK8UDUBAHqqx0Hmvvvu07hx41RTU6Py8nIlJiZqxowZOnjwoD/nQ5iiagIA9ESPg8xHH32kwsJCpaSkaMSIEdq0aZPmzJmjyy+/XBUVFf6cEWGMqgkAcDY9DjKNjY2Kivrubm2bzaY1a9Zo7ty5mjlzpvbu3euXAYH2VdPsyEyqJgCAV4+fIzN69Gh98sknGjNmTIfjq1evliT97d/+rW8nA9rx7KStHbuVl5OmCQ6HVpSWquxoLc+cAYAw1uMVmR/+8Id64YUXunxv9erV+slPfiLDMHw2GNCVrqqmxrZaVmcAIEzZjBBPH/X19bLb7fry2f9UYny82ePAR6JqyxWd6lLclPH6f20HVVRZq7jINFZmACBENDY49cvLblRdXZ2SkpK6PY8H4sGSPHc1Ne7Yrbzj8crPzfLe1cTqDACED4IMLM1TNQ2scVM1AUAYIsjA8rirCQDCF0EGIYGqCQDCE0EGIcVTNSUVV1E1AUAYOK8g88c//lEzZsxQenq6vv76a0nSypUr9dprr/l0OOB8uFJGqaUmiqoJAMJAr4PMmjVrVFBQoB/84Ac6fvy42traJEkDBgzQypUrfT0fcF6omgAgPPQ6yKxatUrPPPOMfvOb3ygyMtJ7fPLkydq9e7dPhwP6iqoJAEJbr4PMgQMHNHHixE7HY2JidPLkSZ8MBfhS+6op73i8t2piJ20AsL5eB5ns7GyVlJR0Ov7222932ocJCBaeqslVUe2tmqRWqiYAsLgebxrpUVBQoAULFqipqUmGYWj79u164YUXVFhYqGeffdYfMwI+43SPVVRxuZJSXcqfmqXSlgYVVdZq/3GxvQEAWFCvg8w//dM/KS4uTr/97W/ldDr105/+VOnp6fqP//gP3XTTTf6YEfApV8ooqab8VNWUkyZlSEWV1So7Wqtxg6aZPR4AoBd6FWRcLpc2btyoOXPmaN68eXI6nWpoaFBqaqq/5gP8wpUySi63FF/xmfJy0uTIzdK/7/9KZUe3KS4yhdUZALCIXl0jExUVpTvuuENNTU2SpPj4eEIMLI27mgDA2np9se8ll1yiXbt2+WMWwBTc1QQA1tXra2TuvPNO/epXv9Jf//pXXXzxxUpISOjw/kUXXeSz4YBA8VRNUcXlyps6WI7cLJUaUlEFVVMwa21zacf+z/Xh3lLVN55UalKyZo6ZpHEZIxRhs5k9HoAAsBmGYfTmAxERnRdxbDabDMOQzWbzPunXV6qqqnTffffprbfektPp1IgRI7Ru3TpNnjy5R5+vr6+X3W7Xl8/+pxLj4306G0JTVG25olNdqp861HtXU1xkGmEmyJxodGr5puf1129rvP8OirDZ5DYMTcoarTu/d6Oi2j20E4C1NDY49cvLblRdXZ2SkpK6Pa/XKzIHDhzo02C9cezYMc2YMUN5eXl66623NHjwYO3bt0/JyckBmwHhp/NdTSnc1RSEfr/5ZR06dkSS5PnvMffp/9311R69+sl7uvHSq02bD0Bg9DrIDB8+3B9zdGn58uXKyMjQunXrvMeys7MD9usjfFE1BbdDx2pV9tf93b5vSHq3bLvmTrpCMf36BW4wAAHX6yCzfv36s75/8803n/cwZ3r99dc1Z84c/ehHP9L777+voUOH6s4779Rtt93W7Weam5vV3Nzs/bq+vt5n8yD8uFJGyXn6AXqOqUOlDLuKKqt5gJ7JPq+qkE2nAkt3mlpbdLC2WiPTMgM1FgAT9DrI3HPPPR2+bm1tldPpVHR0tOLj430aZCoqKry7bd9///3asWOH7r77bkVHR2v+/PldfqawsFBLly712QwAVVPw6emlfe7eXQIIwIJ6ffv1sWPHOrwaGhpUXl6uyy67TC+88IJPh3O73Zo0aZIeeeQRTZw4Ubfffrtuu+02Pf30091+ZvHixaqrq/O+KisrfToTwpNnryZn8RHvXk1X5QxlryaTjLwg46yrMZLULzJSGYOGBGQeAObpdZDpysiRI/Xoo492Wq3pq7S0NF144YUdjo0ZM0YHDx7s9jMxMTFKSkrq8AJ85VTVdOoBeg6bvM+cIcwEVtbgdOWkDlWEret/hdlsNl0+aqLiY2IDPBmAQPNJkJFOPfX30KFDvvrpJEkzZsxQeXl5h2N79+4N6AXHwJnOfIBegcPBA/RM8MtZN8oe31+2ds+L8fwoJ3Wofjzte+YMBiCgen2NzOuvv97ha8MwVF1drdWrV2vGjBk+G0yS8vPzNX36dD3yyCP68Y9/rO3bt2vt2rVau3atT38doLfa39WULCmfu5oCbnDSAD30ozv03hc7tbW8RA1NjUpJHKArx0zSjFEO9Yvs9b/eAFhQnx+IZ7PZNHjwYF111VV6/PHHlZaW5tMB33jjDS1evFj79u1Tdna2CgoKznrX0pl4IB78jQfoAYDv9fSBeL0OMlZDkEGgxEd8pqicNB3LSdaK0lJJ/birCQDOU0+DTK+vkfnd734np9PZ+RdsbNTvfve73v50QMjw3NWUXHHMu5M2dzUBgH/1OsgsXbpUDQ0NnY47nU6e34Kw1+Gupuj+3NUEAH7W6yDj2RzyTKWlpRo4cKBPhgKszPPMGe5qAgD/6/Fl/cnJybLZbLLZbPqbv/mbDmGmra1NDQ0NuuOOO/wyJGBFTvfYjnc1tTSoqJK7mgDAl3ocZFauXCnDMHTrrbdq6dKlstvt3veio6OVlZWladO4sBFor/NeTWKvJgDwoR4HGc/eRtnZ2Zo+fbr6saMs0COeZ84kFX+mvJw0TXA4tKK0lL2aAMAHev3EqJkzZ3p/3NTUpJaWlg7vsyUA0DWqJgDwvV5f7Ot0OnXXXXcpNTVVCQkJSk5O7vAC0L32dzXNjszkriYA6KNeB5l7771XRUVFWrNmjWJiYvTss89q6dKlSk9P1/r16/0xIxBSPHc1Ne7YzV1NANBHva6WNm3apPXr1+vKK6/ULbfcossvv1wjRozQ8OHDtWHDBs2bN88fcwIhh6oJAPqu1ysy3377rXJyciSduh7m22+/lSRddtll2rJli2+nA0IcVRMA9E2vg0xOTo4OHDggSRo9erReeuklSadWagYMGODT4YBwcGbVlJ+b5a2aCDQAcHa9DjK33HKLSktLJUmLFi3Sk08+qdjYWOXn5+vee+/1+YBAuPDs1TSwxu3dq6mxrZYwAwBn0etrZPLz870/njVrlvbs2aOdO3dqxIgRuuiii3w6HBBu2j9Ab/aU8VLGQR6gBwBn0esg015TU5OGDx+u4cOH+2oeIOx5HqCnHbuVl5MmR26W/n3/Vyo7WsuFwABwhl5XS21tbXrooYc0dOhQ9e/fXxUVFZKkBx54QH/4wx98PiAQrjxVU1JxFVUTAHSj10Fm2bJleu655/TYY48pOjrae3zcuHF69tlnfTocEO5cKaPUUhPFXU0A0I1eB5n169dr7dq1mjdvniIjI73HHQ6H9uzZ49PhAHBXEwCcTa+DTFVVlUaMGNHpuNvtVmtrq0+GAtAZVRMAdNbrIHPhhRfqgw8+6HT8f/7nfzRx4kSfDAWga+2rprzj8d6qie0NAISrXt+1tGTJEs2fP19VVVVyu916+eWXVV5ervXr1+uNN97wx4wA2vHc1RRf8dkZdzWxvQGA8NPrFZnrr79emzZt0rvvvquEhAQtWbJEX3zxhTZt2qTvfe97/pgRQBeomgCgFysyFRUVys7Ols1m0+WXX6533nnHn3MB6AFXyiippvxU1ZSTJmVIRZXVKjtaq3GDppk9HgD4XY9XZEaOHKkjR454v/6Hf/gHHT582C9DAeg5z11Nropq711NUit3NQEICz0OMoZhdPj6zTff1MmTJ30+EIDzQ9UEIBz1+hoZAMGLu5oAhJseXyNjs9lks9k6HQMQXDx3NUUVlytv6mA5crNUakhFFdzVBCD09DjIGIahn//854qJiZF0asPIO+64QwkJCR3Oe/nll307IYDz0n4nbcfUoVKGXUWVteykDSCk9DjIzJ8/v8PXP/vZz3w+DADf4q4mAKGux0Fm3bp1/pwDgJ9QNQEIZVzsC4SJU1XTqbuaHDaxkzaAkECQAcJI57uaUrirCYCl9XqvJQDWRtUEIJSwIgOEKaomAKGAIAOEsTOrpgKHg6oJgKVQLQFhrn3VlCwpn6oJgIWwIgNAElUTAGsiyADw8uykTdUEwCqolgB04nSP7Vg1tTSoqJKqCUDwYUUGQJc6VE3R/amaAAQlggyAblE1AQh2VEsAzomqCUCwYkUGQI9QNQEIRgQZAD1G1QQg2FAtAeg1qiYAwYIVGQDnpX3VNDsyk6oJgCkIMgDOm6dqatyxm6oJgCmolgD0GVUTALOwIgPAJ6iaAJiBIAPAZ86smvJzs7xVE4EGgD8QZAD4nNM9Vs7iIxpY41Z+btbp1ZlawgwAnyPIAPALqiYAgUCQAeA3VE0A/I0gA8DvqJoA+AtBBkBAUDUB8AeCDICAoWoC4GsEGQAB56makoqrqJoA9AlBBoApXCmj1FIT1alqYnsDAL1BkAFgmq6qJqmVqglAjxFkAJiOqgnA+SLIAAgK7aumvOPxVE0AeoQgAyBoeKomV0U1VROAHiHIAOehpa5BjUeOy+1ymT1KSKJqAtBTUWYPAFjJkZ17VPHKezpRcUiSFBUfq6FXT1b2D2cqKjbG5OlCiytllFRTfqpqykmTMqSiymqVHa3VuEHTzB4PQJCw1IrMo48+KpvNpoULF5o9CsJQ5TvbVfr4Rp04UO095nI26es/f6idD61TW1OLidOFJk/V5Cw+4q2arsoZStUEwMsyQWbHjh36/e9/r4suusjsURCGmo/Vq/z5P5/6wjA6vuk2dOKran395keBHyxMtN/ewGETVRMAL0sEmYaGBs2bN0/PPPOMkpOTzR4HYejQ+7sk4ywnGIb++s7HMs4MOfAZ7moC0BVLBJkFCxbo2muv1axZs855bnNzs+rr6zu8gL46eahWsp39nJa6k9RLfkbVBOBMQR9k/vSnP+nTTz9VYWFhj84vLCyU3W73vjIyMvw8IcJBZEy0bLZzJBmbTRH9uH4+ELqumthJGwhHQR1kKisrdc8992jDhg2KjY3t0WcWL16suro676uystLPUyIcpF5yoYw2d/cnRERo8MWjFREVGbihwlznqimFqgkIQ0H9n487d+5UTU2NJk2a5D3W1tamLVu2aPXq1WpublZkZMe/OGJiYhQTw22w8K2BY7OVNGKY6iuqJHfn62BsNinr+itMmCy8uVJGyeWWoorLlTd1sBy5WSo1pKKKbYqLTFHugJFmjwjAz4J6Rebqq6/W7t27VVJS4n1NnjxZ8+bNU0lJSacQA/iLLSJCE+79mQaMzPR+bYs89X+fyNhoXZT/E9lzh5o5YlijagLCV1CvyCQmJmrcuHEdjiUkJGjQoEGdjgP+Fp0Yr4uX3Kr6L/+qIzv3qK2lVf0zL9AFU8cpMjba7PHCXucH6KXwAD0gDAR1kAGCjc1mk31khuwjuYg8GFE1AeHHckHmvffeM3sEAEHuVNVUrqRUlxxTh0oZdhVVVmv/cRFmgBAT1NfIAMD58jxzxnNXU4HDwV1NQAiy3IoMAPSG0z1WUcXlSpaUn5ul0pYGFVVSNQGhghUZACGvw11N0f25qwkIIQQZAGGBqgkITVRLAMIKVRMQWliRARB2qJqA0EGQARCWqJqA0EC1BCCsUTUB1saKDICw175qmh2ZSdUEWAhBBgD0XdXUuGM3VRNgIVRLANAOVRNgLazIAMAZqJoA6yDIAEAXzqya8nOzvFUTgQYIHgQZADgLp3usnMVHNLDGrfzcrNOrM7WEGSBIEGQA4ByomoDgRZABgB6gagKCE0EGAHqBqgkILgQZAOglqiYgeBBkAOA8UDUBwYEgAwB94KmakoqrqJoAExBkAKCPXCmj1FIT1alqYnsDwP8IMgDgA11VTVIrVRPgZwQZAPAhqiYgsAgyAOBj7aumvOPxVE2AHxFkAMAPPFWTq6KaqgnwI4IMAPgRVRPgXwQZAPAzqibAf6LMHgAAwoErZZRcbimquFx5UwfLkZulUkMqqtimuMgU5Q4YafaIgCWxIgMAAdR+ewOHTVRNQB8RZAAgwKiaAN+hWgIAE1A1Ab7BigwAmKjrqomdtIGeIsgAgMk6V00pVE1AD1EtAUAQoGoCzg8rMgAQRKiagN4hyABAkKFqAnqOagkAghBVE9AzrMgAQBCjagLOjiADAEHOs5O2p2oqcDiomoDTqJYAwCKc7rGKKi5XsqR8qiZAEisyAGApVE1ARwQZALAYqibgO1RLAGBRnaqmlgYVVVI1IbywIgMAFtahaoruT9WEsEOQAQCLo2pCOKNaAoAQQdWEcMSKDACEkPZV0+zITKomhDyCDACEGE/V1LhjN1UTQh7VEgCEKKomhAOCDACEsFNVU7mSUl2aPWW8lHFQRZXVKjta2+lcAg6siCADACHOs5O2duxWXk6aHLlZsvW3dzpvRWmpyo7WEmhgKQQZAAgTnqopKdUlqarDe1E5ae3qp1rtPy7CDCyBIAMAYcS7OnOGqPb1U863KqqoIszAErhrCQAgV8ootdSc+m/bCam5uipnhMkTAT1DkAEAAJZFkAEAAJZFkAEAeLUerZVxZL+kRjW21fJEYAQ9ggwAQNIZO2nbdHp7A8IMghtBBgDg5bnol72aYBUEGQBAB2fu1ZSfm+Xdq4lAg2BDkAEAdMnpHuutmvJzs6iaEJQIMgCAbrWvmvKOx3urJnbSRrAgyFhA/YFDOvjWR/r6zY9Uf+CQ2eMACDOeqslVUe2tmqRWqiYEBbYoCGJN39Zr93+8qLp9lZLNduqgYcg+cpjG3/0Pih3UedM3APCX9ns15U9lXyYEh6BekSksLNSUKVOUmJio1NRU3XDDDSovLzd7rIBwNTZr5+/+oPr9pzd2M4xTL0n1+w/pk9/9p1zOJhMnBBCOzlY1dfUC/C2oV2Tef/99LViwQFOmTJHL5dL999+v2bNn6/PPP1dCQoLZ4/lV9ZYSNdYc6/I9w+1WU+0xHfqgRJlzpgZ4MgDhzrPxZHzFZ8rLSZMjN0u2/p1XiEtO1KmoYpviIlNYsYHfBHWQefvttzt8/dxzzyk1NVU7d+7UFVdc0eVnmpub1dzc7P26vr7erzP6S/UHJWc/wTh1DkEGgFnaV01SVaf3HVOHShl26if4VVBXS2eqq6uTJA0cOLDbcwoLC2W3272vjIyMQI3nU60nnOc+p/7c5wCAP3kuBD7z1eGhejlDuW0bfmOZION2u7Vw4ULNmDFD48aN6/a8xYsXq66uzvuqrKwM4JS+EzckWYqwdX9ChE1xQ7oPdABgJs+1NJI0ITVXV+WMMHkihKqgrpbaW7BggcrKyrR169aznhcTE6OYmJgATeU/Q6+eom/LKro/wW1o2NWTAzcQAABByBIrMnfddZfeeOMN/eUvf9GwYcPMHicgUqeM0SDHyO9uu27PZtPAi0Zo8JQxgR8MAIAgEtRBxjAM3XXXXXrllVdUVFSk7Oxss0cKGFtEhBwFP9Hw62YoMjbaezwyNlrDr5uhCb/6qSIiI02cEADOrfVorYwj+yU1cp0M/CKoq6UFCxZo48aNeu2115SYmKhvvvlGkmS32xUXF2fydP4X0S9KI38yWzl/d6UaDh6WJPXPHKLImOhzfBIAzOdKGSXn6buavruDqZo7mOBTQb0is2bNGtXV1enKK69UWlqa9/Xiiy+aPVpARcZEyz4yQ/aRGYQYAJbS+QF6KezVBJ8K6hUZ4/STbAEA1uV5gF5Ucbnypg6WIzdLpYZ4WB58IqhXZAAAoeNU1XREScVVctjk3d6A62bQFwQZAEDAeB6g56maChwOqib0SVBXSwCA0OTZ3iBZUj5VE/qAFRkAgCmomuALBBkAgGmomtBXVEsAANN1qppaGlRUSdWEc2NFBgAQFDpUTdH9qZrQI6zIAACChueZM0nFnykvJ00THA6tKC1V2dFaxUWmdDqf1RoQZAAAQaerqkn9Yjqdx51OIMgAAIJS+72aZk8ZL7m7OCmjgf2bwhxBBgAQtDxVU8ufv+j0XnSqq1P9NG7QNBOmhJkIMgCAoOdKGdX52On9m1IHpahg6tUqqTmkbV/vY2UmzHDXEgAAsCyCDAAAsCyCDADA+hprzZ4AJuEaGQCApTXu2K3UKeOltiNqbKtV2dHOoYZbtEMXQQYAYFmeu5q0Y7fyctLkyM2Srb+903ntH6pHoAktBBkAgOV5HqCXlOqSVNXhvaictHb7N9XyzJkQQ5ABAIQE7+rMGaLaP1Qv51sVVVQRZkIIF/sCAEKaK2WUWmpO/Xf7hNRcXZUzwuSJ4EsEGQAAYFkEGQAAYFkEGQBAWGg9WivjyH5JjWpsq9X+4/vMHgk+QJABAIS8UztpH1FScZUcNumqDDthJkQQZAAAYcFz0W9ScZXyjsefDjPVKju6zezR0AcEGQBA2HCljJLTPVauimrlHY9Xfm6WpFaVHd3G6oxF8RwZAEDYaf8Avfyp3z0sj+0NrIcgAwAIS66UUVJN+amqKSdNExxDpbiUDueU1OxXUcVXKjtaq3GDppk0Kc6GIAMACFuepwHHV3ymZEn9BkV2eH+2BsqRK5UaUlHFNlZnglDIBxnDMCRJJxobTZ4EABCsTihbkX/ZJ6my03vRg9uUMyVNzsED9f5XVfr8ZJOy7bmBHzLMNJ50Svru7/Hu2IxznWFxFRUVys3lHzgAAKyosrJSw4YN6/b9kF+RGThwoCTp4MGDsts7b+2OwKqvr1dGRoYqKyuVlJRk9jhhj+9H8OF7Elz4fpjHMAydOHFC6enpZz0v5INMRMSpO8ztdjv/EAaRpKQkvh9BhO9H8OF7Elz4fpijJwsQPEcGAABYFkEGAABYVsgHmZiYGD344IOKiYkxexSI70ew4fsRfPieBBe+H8Ev5O9aAgAAoSvkV2QAAEDoIsgAAADLIsgAAADLIsgAAADLCukg8+STTyorK0uxsbG69NJLtX37drNHCluFhYWaMmWKEhMTlZqaqhtuuEHl5eVmj4XTHn30UdlsNi1cuNDsUcJWVVWVfvazn2nQoEGKi4vT+PHj9cknn5g9Vlhqa2vTAw88oOzsbMXFxSk3N1cPPfTQOff8gTlCNsi8+OKLKigo0IMPPqhPP/1UDodDc+bMUU1NjdmjhaX3339fCxYsUHFxsd555x21trZq9uzZOnnypNmjhb0dO3bo97//vS666CKzRwlbx44d04wZM9SvXz+99dZb+vzzz/X4448rOTnZ7NHC0vLly7VmzRqtXr1aX3zxhZYvX67HHntMq1atMns0dCFkb7++9NJLNWXKFK1evVqS5Ha7lZGRoX/5l3/RokWLTJ4OR44cUWpqqt5//31dccUVZo8TthoaGjRp0iQ99dRTevjhhzVhwgStXLnS7LHCzqJFi/Thhx/qgw8+MHsUSLruuus0ZMgQ/eEPf/Ae+/u//3vFxcXpv/7rv0ycDF0JyRWZlpYW7dy5U7NmzfIei4iI0KxZs7Rt2zYTJ4NHXV2dpO829YQ5FixYoGuvvbbD/1cQeK+//romT56sH/3oR0pNTdXEiRP1zDPPmD1W2Jo+fbo2b96svXv3SpJKS0u1detWXXPNNSZPhq6E5KaRtbW1amtr05AhQzocHzJkiPbs2WPSVPBwu91auHChZsyYoXHjxpk9Ttj605/+pE8//VQ7duwwe5SwV1FRoTVr1qigoED333+/duzYobvvvlvR0dGaP3++2eOFnUWLFqm+vl6jR49WZGSk2tratGzZMs2bN8/s0dCFkAwyCG4LFixQWVmZtm7davYoYauyslL33HOP3nnnHcXGxpo9Tthzu92aPHmyHnnkEUnSxIkTVVZWpqeffpogY4KXXnpJGzZs0MaNGzV27FiVlJRo4cKFSk9P5/sRhEIyyKSkpCgyMlKHDx/ucPzw4cO64IILTJoKknTXXXfpjTfe0JYtWzRs2DCzxwlbO3fuVE1NjSZNmuQ91tbWpi1btmj16tVqbm5WZGSkiROGl7S0NF144YUdjo0ZM0b/+7//a9JE4e3ee+/VokWLdNNNN0mSxo8fr6+//lqFhYUEmSAUktfIREdH6+KLL9bmzZu9x9xutzZv3qxp06aZOFn4MgxDd911l1555RUVFRUpOzvb7JHC2tVXX63du3erpKTE+5o8ebLmzZunkpISQkyAzZgxo9PjCPbu3avhw4ebNFF4czqdiojo+NdjZGSk3G63SRPhbEJyRUaSCgoKNH/+fE2ePFmXXHKJVq5cqZMnT+qWW24xe7SwtGDBAm3cuFGvvfaaEhMT9c0330iS7Ha74uLiTJ4u/CQmJna6PikhIUGDBg3iuiUT5Ofna/r06XrkkUf04x//WNu3b9fatWu1du1as0cLS3PnztWyZcuUmZmpsWPHateuXVqxYoVuvfVWs0dDV4wQtmrVKiMzM9OIjo42LrnkEqO4uNjskcKWpC5f69atM3s0nDZz5kzjnnvuMXuMsLVp0yZj3LhxRkxMjDF69Ghj7dq1Zo8Uturr64177rnHyMzMNGJjY42cnBzjN7/5jdHc3Gz2aOhCyD5HBgAAhL6QvEYGAACEB4IMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMgD75+c9/LpvN1un15Zdf+uTnf+655zRgwACf/Fzna8uWLZo7d67S09Nls9n06quvmjoPgO8QZAD02fe//31VV1d3eAXjDuetra3n9bmTJ0/K4XDoySef9PFEAPqKIAOgz2JiYnTBBRd0eEVGRkqSXnvtNU2aNEmxsbHKycnR0qVL5XK5vJ9dsWKFxo8fr4SEBGVkZOjOO+9UQ0ODJOm9997TLbfcorq6Ou9Kz7/+679KUpcrIwMGDNBzzz0nSfrqq69ks9n04osvaubMmYqNjdWGDRskSc8++6zGjBmj2NhYjR49Wk899dRZf3/XXHONHn74Yf3whz/0wZ8WAF+KMnsAAKHrgw8+0M0336wnnnhCl19+ufbv36/bb79dkvTggw9KkiIiIvTEE08oOztbFRUVuvPOO/XrX/9aTz31lKZPn66VK1dqyZIlKi8vlyT179+/VzMsWrRIjz/+uCZOnOgNM0uWLNHq1as1ceJE7dq1S7fddpsSEhI0f/583/4BAPA/s7ffBmBt8+fPNyIjI42EhATv68YbbzQMwzCuvvpq45FHHulw/h//+EcjLS2t25/vv//7v41BgwZ5v163bp1ht9s7nSfJeOWVVzocs9vtxrp16wzDMIwDBw4YkoyVK1d2OCc3N9fYuHFjh2MPPfSQMW3atHP9Vrv9dQGYhxUZAH2Wl5enNWvWeL9OSEiQJJWWlurDDz/UsmXLvO+1tbWpqalJTqdT8fHxevfdd1VYWKg9e/aovr5eLperw/t9NXnyZO+PT548qf379+sXv/iFbrvtNu9xl8slu93e518LQOARZAD0WUJCgkaMGNHpeENDg5YuXaq/+7u/6/RebGysvvrqK1133XX65S9/qWXLlmngwIHaunWrfvGLX6ilpeWsQcZms8kwjA7HurqY1xOqPPNI0jPPPKNLL720w3mea3oAWAtBBoDfTJo0SeXl5V2GHEnauXOn3G63Hn/8cUVEnLr34KWXXupwTnR0tNra2jp9dvDgwaqurvZ+vW/fPjmdzrPOM2TIEKWnp6uiokLz5s3r7W8HQBAiyADwmyVLlui6665TZmambrzxRkVERKi0tFRlZWV6+OGHNWLECLW2tmrVqlWaO3euPvzwQz399NMdfo6srCw1NDRo8+bNcjgcio+PV3x8vK666iqtXr1a06ZNU1tbm+677z7169fvnDMtXbpUd999t+x2u77//e+rublZn3zyiY4dO6aCgoIuP9PQ0NDhuTgHDhxQSUmJBg4cqMzMzL79IQHoG7Mv0gFgbfPnzzeuv/76bt9/++23jenTpxtxcXFGUlKScckllxhr1671vr9ixQojLS3NiIuLM+bMmWOsX7/ekGQcO3bMe84dd9xhDBo0yJBkPPjgg4ZhGEZVVZUxe/ZsIyEhwRg5cqTx5ptvdnmx765duzrNtGHDBmPChAlGdHS0kZycbFxxxRXGyy+/3O3v4S9/+YshqdNr/vz5vfiTAuAPNsM4o2QGAACwCB6IBwAALIsgAwAALIsgAwAALIsgAwAALIsgAwAALIsgAwAALIsgAwAALIsgAwAALIsgAwAALIsgAwAALIsgAwAALOv/A2F5CmUvjwCNAAAAAElFTkSuQmCC","text/plain":["