forked from chrismattmann/tika-similarity
-
Notifications
You must be signed in to change notification settings - Fork 0
/
circle-packing.py
executable file
·103 lines (90 loc) · 3.59 KB
/
circle-packing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
#!/usr/bin/env python2.7
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
#
import json
import sys
import ast
def main(argv = None):
threshold = 0.01
with open("similarity-scores.txt") as f:
prior = None
clusters = []
clusterCount = 0
cluster = {"name":"cluster"+str(clusterCount)}
clusterData = []
for line in f:
if "Resemblance" in line:
continue
featureDataList = line.split("{", 1)
metadata = '{' + featureDataList[1]
featureDataList = featureDataList[0].rsplit(",", 3)
featureDataList.remove('')
featureDataList[2] = metadata
if len(featureDataList) != 3:
continue
if prior != None:
diff = prior-float(featureDataList[1])
else:
diff = -1.0
# cleanse the \n
featureDataList[1] = featureDataList[1].strip()
#featureData = {"name":featureDataList[0], "score":float(featureDataList[1]), "metadata" : featureDataList[2]}
if diff > threshold:
cluster["children"] = circle(clusterData)
clusters.append(cluster)
clusterCount = clusterCount + 1
cluster = {"name":"cluster"+str(clusterCount)}
clusterData = []
clusterData.append(featureDataList[2])
prior = float(featureDataList[1])
else:
clusterData.append(featureDataList[2])
prior = float(featureDataList[1])
#add the last cluster into clusters
cluster["children"] = circle(clusterData)
clusters.append(cluster)
clusterCount = clusterCount + 1
cluster = {"name":"cluster"+str(clusterCount)}
clusterStruct = {"name":"clusters", "children":clusters}
with open("circle.json", "w") as f:
f.write(json.dumps(clusterStruct, sort_keys=True, indent=4, separators=(',', ': ')))
def circle( metadataLists) :
metadataList = []
circles = set()
for line in metadataLists:
metadata = ast.literal_eval(line)
for item in metadata.keys():
if item not in circles :
circles.add(item)
circle = {}
circle["name"] = item
circle["size"] = 1
metadataList.append(circle)
else :
for value in metadataList:
if item == value["name"]:
count = value["size"]
index = metadataList.index(value)
metadataList.remove(value)
circle = {}
circle["name"] = item
circle["size"] = count +1
metadataList.insert(index, circle)
return metadataList
if __name__ == "__main__":
sys.exit(main())