-
Notifications
You must be signed in to change notification settings - Fork 16
/
smpl2bvh.py
174 lines (145 loc) · 5.46 KB
/
smpl2bvh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import torch
import numpy as np
import argparse
import pickle
import smplx
from utils import bvh, quat
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default="data/smpl/")
parser.add_argument("--model_type", type=str, default="smpl", choices=["smpl", "smplx"])
parser.add_argument("--gender", type=str, default="MALE", choices=["MALE", "FEMALE", "NEUTRAL"])
parser.add_argument("--num_betas", type=int, default=10, choices=[10, 300])
parser.add_argument("--poses", type=str, default="data/gWA_sFM_cAll_d27_mWA5_ch20.pkl")
parser.add_argument("--fps", type=int, default=60)
parser.add_argument("--output", type=str, default="data/gWA_sFM_cAll_d27_mWA5_ch20.bvh")
parser.add_argument("--mirror", action="store_true")
return parser.parse_args()
def mirror_rot_trans(lrot, trans, names, parents):
joints_mirror = np.array([(
names.index("Left"+n[5:]) if n.startswith("Right") else (
names.index("Right"+n[4:]) if n.startswith("Left") else
names.index(n))) for n in names])
mirror_pos = np.array([-1, 1, 1])
mirror_rot = np.array([1, 1, -1, -1])
grot = quat.fk_rot(lrot, parents)
trans_mirror = mirror_pos * trans
grot_mirror = mirror_rot * grot[:,joints_mirror]
return quat.ik_rot(grot_mirror, parents), trans_mirror
def smpl2bvh(model_path:str, poses:str, output:str, mirror:bool,
model_type="smpl", gender="MALE",
num_betas=10, fps=60) -> None:
"""Save bvh file created by smpl parameters.
Args:
model_path (str): Path to smpl models.
poses (str): Path to npz or pkl file.
output (str): Where to save bvh.
mirror (bool): Whether save mirror motion or not.
model_type (str, optional): I prepared "smpl" only. Defaults to "smpl".
gender (str, optional): Gender Information. Defaults to "MALE".
num_betas (int, optional): How many pca parameters to use in SMPL. Defaults to 10.
fps (int, optional): Frame per second. Defaults to 30.
"""
names = [
"Pelvis",
"Left_hip",
"Right_hip",
"Spine1",
"Left_knee",
"Right_knee",
"Spine2",
"Left_ankle",
"Right_ankle",
"Spine3",
"Left_foot",
"Right_foot",
"Neck",
"Left_collar",
"Right_collar",
"Head",
"Left_shoulder",
"Right_shoulder",
"Left_elbow",
"Right_elbow",
"Left_wrist",
"Right_wrist",
"Left_palm",
"Right_palm",
]
# I prepared smpl models only,
# but I will release for smplx models recently.
model = smplx.create(model_path=model_path,
model_type=model_type,
gender=gender,
batch_size=1)
parents = model.parents.detach().cpu().numpy()
# You can define betas like this.(default betas are 0 at all.)
rest = model(
# betas = torch.randn([1, num_betas], dtype=torch.float32)
)
rest_pose = rest.joints.detach().cpu().numpy().squeeze()[:24,:]
root_offset = rest_pose[0]
offsets = rest_pose - rest_pose[parents]
offsets[0] = root_offset
offsets *= 100
scaling = None
# Pose setting.
if poses.endswith(".npz"):
poses = np.load(poses)
rots = np.squeeze(poses["poses"], axis=0) # (N, 24, 3)
trans = np.squeeze(poses["trans"], axis=0) # (N, 3)
elif poses.endswith(".pkl"):
with open(poses, "rb") as f:
poses = pickle.load(f)
rots = poses["smpl_poses"] # (N, 72)
rots = rots.reshape(rots.shape[0], -1, 3) # (N, 24, 3)
scaling = poses["smpl_scaling"] # (1,)
trans = poses["smpl_trans"] # (N, 3)
else:
raise Exception("This file type is not supported!")
if scaling is not None:
trans /= scaling
# to quaternion
rots = quat.from_axis_angle(rots)
order = "zyx"
pos = offsets[None].repeat(len(rots), axis=0)
positions = pos.copy()
positions[:,0] += trans * 100
rotations = np.degrees(quat.to_euler(rots, order=order))
bvh_data ={
"rotations": rotations,
"positions": positions,
"offsets": offsets,
"parents": parents,
"names": names,
"order": order,
"frametime": 1 / fps,
}
if not output.endswith(".bvh"):
output = output + ".bvh"
bvh.save(output, bvh_data)
if mirror:
rots_mirror, trans_mirror = mirror_rot_trans(
rots, trans, names, parents)
positions_mirror = pos.copy()
positions_mirror[:,0] += trans_mirror
rotations_mirror = np.degrees(
quat.to_euler(rots_mirror, order=order))
bvh_data ={
"rotations": rotations_mirror,
"positions": positions_mirror,
"offsets": offsets,
"parents": parents,
"names": names,
"order": order,
"frametime": 1 / fps,
}
output_mirror = output.split(".")[0] + "_mirror.bvh"
bvh.save(output_mirror, bvh_data)
if __name__ == "__main__":
args = parse_args()
smpl2bvh(model_path=args.model_path, model_type=args.model_type,
mirror = args.mirror, gender=args.gender,
poses=args.poses, num_betas=args.num_betas,
fps=args.fps, output=args.output)
print("finished!")