forked from pdasigi/neural-event-model
-
Notifications
You must be signed in to change notification settings - Fork 0
/
metrics.py
38 lines (31 loc) · 1.21 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
'''
We define some custom Keras metrics here that are specific to binary classification.
'''
from keras import backend as K
def precision(y_true, y_pred):
'''
Custom Keras metric that measures the precision of a binary classifier.
'''
# Assuming index 1 is positive.
pred_indices = K.argmax(y_pred, axis=-1)
true_indices = K.argmax(y_true, axis=-1)
num_true_positives = K.sum(pred_indices * true_indices)
num_positive_predictions = K.sum(pred_indices)
return K.cast(num_true_positives / num_positive_predictions, K.floatx())
def recall(y_true, y_pred):
'''
Custom Keras metric that measures the recall of a binary classifier.
'''
# Assuming index 1 is positive.
pred_indices = K.argmax(y_pred, axis=-1)
true_indices = K.argmax(y_true, axis=-1)
num_true_positives = K.sum(pred_indices * true_indices)
num_positive_truths = K.sum(true_indices)
return K.cast(num_true_positives / num_positive_truths, K.floatx())
def f1_score(y_true, y_pred):
'''
Custom Keras metric that measures F1 score of a binary classifier.
'''
prec = precision(y_true, y_pred)
rec = recall(y_true, y_pred)
return K.cast(2 * prec * rec / (prec + rec), K.floatx())