For end-to-end models, run the following commands for corresponding models:
- CogVLM
python run_eval_cogvlm.py --from_pretrained cogvlm-chat --version chat --english --bf16 \
--query PATH/TO/C-VQA-Real_questions.csv \
--type cogvlm-chat
- LAVIS
python run_eval_lavis.py \
--model-name blip2_t5 \
--model-type pretrain_flant5xxl \
--query PATH/TO/C-VQA-Real_questions.csv \
--type blip2
You can also use -model-name blip2_vicuna_instruct --model-type vicuna7b
, -model-name blip2_vicuna_instruct --model-type vicuna13b
, -model-name blip2_t5_instruct --model-type flant5xxl
for other models.
- LLaVA
python run_eval_llava.py \
--query PATH/TO/C-VQA-Real_questions.csv \
--model-path liuhaotian/llava-v1.5-7b \
--type llava_v15_7b
You can also use --model-path liuhaotian/llava-v1.5-13b
, --model-path PATH/TO/LLaVA-7B-v0
, --model-path PATH/TO/LLaVA-7B-v1-1
for other models.
- MiniGPT-v2
python run_eval_minigpt4.py \
--query PATH/TO/C-VQA-Real_questions.csv \
--cfg_path eval_configs/minigptv2_eval.yaml \
--type minigptv2
- Qwen-VL
python run_eval_qwen.py \
--query PATH/TO/C-VQA-Real_questions.csv \
--type qwen