forked from magnific0/nrlmsise-00
-
Notifications
You must be signed in to change notification settings - Fork 0
/
nrlmsise-00.c
1459 lines (1264 loc) · 43.1 KB
/
nrlmsise-00.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* -------------------------------------------------------------------- */
/* --------- N R L M S I S E - 0 0 M O D E L 2 0 0 1 ---------- */
/* -------------------------------------------------------------------- */
/* This file is part of the NRLMSISE-00 C source code package - release
* 20041227
*
* The NRLMSISE-00 model was developed by Mike Picone, Alan Hedin, and
* Doug Drob. They also wrote a NRLMSISE-00 distribution package in
* FORTRAN which is available at
* http://uap-www.nrl.navy.mil/models_web/msis/msis_home.htm
*
* Dominik Brodowski implemented and maintains this C version. You can
* reach him at [email protected]. See the file "DOCUMENTATION" for details,
* and check http://www.brodo.de/english/pub/nrlmsise/index.html for
* updated releases of this package.
*/
/* ------------------------------------------------------------------- */
/* ------------------------------ INCLUDES --------------------------- */
/* ------------------------------------------------------------------- */
#include "nrlmsise-00.h" /* header for nrlmsise-00.h */
#include <math.h> /* maths functions */
#include <stdio.h> /* for error messages. TBD: remove this */
#include <stdlib.h> /* for malloc/free */
/* ------------------------------------------------------------------- */
/* ------------------------- SHARED VARIABLES ------------------------ */
/* ------------------------------------------------------------------- */
/* PARMB */
static double gsurf;
static double re;
/* GTS3C */
static double dd;
/* DMIX */
static double dm04, dm16, dm28, dm32, dm40, dm01, dm14;
/* MESO7 */
static double meso_tn1[5];
static double meso_tn2[4];
static double meso_tn3[5];
static double meso_tgn1[2];
static double meso_tgn2[2];
static double meso_tgn3[2];
/* POWER7 */
extern double pt[150];
extern double pd[9][150];
extern double ps[150];
extern double pdl[2][25];
extern double ptl[4][100];
extern double pma[10][100];
extern double sam[100];
/* LOWER7 */
extern double ptm[10];
extern double pdm[8][10];
extern double pavgm[10];
/* LPOLY */
static double dfa;
static double plg[4][9];
static double ctloc, stloc;
static double c2tloc, s2tloc;
static double s3tloc, c3tloc;
static double apdf, apt[4];
/* ------------------------------------------------------------------- */
/* ------------------------------ TSELEC ----------------------------- */
/* ------------------------------------------------------------------- */
void tselec(struct nrlmsise_flags *flags) {
int i;
for (i=0;i<24;i++) {
if (i!=9) {
if (flags->switches[i]==1)
flags->sw[i]=1;
else
flags->sw[i]=0;
if (flags->switches[i]>0)
flags->swc[i]=1;
else
flags->swc[i]=0;
} else {
flags->sw[i]=flags->switches[i];
flags->swc[i]=flags->switches[i];
}
}
}
/* ------------------------------------------------------------------- */
/* ------------------------------ GLATF ------------------------------ */
/* ------------------------------------------------------------------- */
void glatf(double lat, double *gv, double *reff) {
double dgtr = 1.74533E-2;
double c2;
c2 = cos(2.0*dgtr*lat);
*gv = 980.616 * (1.0 - 0.0026373 * c2);
*reff = 2.0 * (*gv) / (3.085462E-6 + 2.27E-9 * c2) * 1.0E-5;
}
/* ------------------------------------------------------------------- */
/* ------------------------------ CCOR ------------------------------- */
/* ------------------------------------------------------------------- */
double ccor(double alt, double r, double h1, double zh) {
/* CHEMISTRY/DISSOCIATION CORRECTION FOR MSIS MODELS
* ALT - altitude
* R - target ratio
* H1 - transition scale length
* ZH - altitude of 1/2 R
*/
double e;
double ex;
e = (alt - zh) / h1;
if (e>70)
return exp(0);
if (e<-70)
return exp(r);
ex = exp(e);
e = r / (1.0 + ex);
return exp(e);
}
/* ------------------------------------------------------------------- */
/* ------------------------------ CCOR ------------------------------- */
/* ------------------------------------------------------------------- */
double ccor2(double alt, double r, double h1, double zh, double h2) {
/* CHEMISTRY/DISSOCIATION CORRECTION FOR MSIS MODELS
* ALT - altitude
* R - target ratio
* H1 - transition scale length
* ZH - altitude of 1/2 R
* H2 - transition scale length #2 ?
*/
double e1, e2;
double ex1, ex2;
double ccor2v;
e1 = (alt - zh) / h1;
e2 = (alt - zh) / h2;
if ((e1 > 70) || (e2 > 70))
return exp(0);
if ((e1 < -70) && (e2 < -70))
return exp(r);
ex1 = exp(e1);
ex2 = exp(e2);
ccor2v = r / (1.0 + 0.5 * (ex1 + ex2));
return exp(ccor2v);
}
/* ------------------------------------------------------------------- */
/* ------------------------------- SCALH ----------------------------- */
/* ------------------------------------------------------------------- */
double scalh(double alt, double xm, double temp) {
double g;
double rgas=831.4;
g = gsurf / (pow((1.0 + alt/re),2.0));
g = rgas * temp / (g * xm);
return g;
}
/* ------------------------------------------------------------------- */
/* -------------------------------- DNET ----------------------------- */
/* ------------------------------------------------------------------- */
double dnet (double dd, double dm, double zhm, double xmm, double xm) {
/* TURBOPAUSE CORRECTION FOR MSIS MODELS
* Root mean density
* DD - diffusive density
* DM - full mixed density
* ZHM - transition scale length
* XMM - full mixed molecular weight
* XM - species molecular weight
* DNET - combined density
*/
double a;
double ylog;
a = zhm / (xmm-xm);
if (!((dm>0) && (dd>0))) {
printf("dnet log error %e %e %e\n",dm,dd,xm);
if ((dd==0) && (dm==0))
dd=1;
if (dm==0)
return dd;
if (dd==0)
return dm;
}
ylog = a * log(dm/dd);
if (ylog<-10)
return dd;
if (ylog>10)
return dm;
a = dd*pow((1.0 + exp(ylog)),(1.0/a));
return a;
}
/* ------------------------------------------------------------------- */
/* ------------------------------- SPLINI ---------------------------- */
/* ------------------------------------------------------------------- */
void splini (double *xa, double *ya, double *y2a, int n, double x, double *y) {
/* INTEGRATE CUBIC SPLINE FUNCTION FROM XA(1) TO X
* XA,YA: ARRAYS OF TABULATED FUNCTION IN ASCENDING ORDER BY X
* Y2A: ARRAY OF SECOND DERIVATIVES
* N: SIZE OF ARRAYS XA,YA,Y2A
* X: ABSCISSA ENDPOINT FOR INTEGRATION
* Y: OUTPUT VALUE
*/
double yi=0;
int klo=0;
int khi=1;
double xx, h, a, b, a2, b2;
while ((x>xa[klo]) && (khi<n)) {
xx=x;
if (khi<(n-1)) {
if (x<xa[khi])
xx=x;
else
xx=xa[khi];
}
h = xa[khi] - xa[klo];
a = (xa[khi] - xx)/h;
b = (xx - xa[klo])/h;
a2 = a*a;
b2 = b*b;
yi += ((1.0 - a2) * ya[klo] / 2.0 + b2 * ya[khi] / 2.0 + ((-(1.0+a2*a2)/4.0 + a2/2.0) * y2a[klo] + (b2*b2/4.0 - b2/2.0) * y2a[khi]) * h * h / 6.0) * h;
klo++;
khi++;
}
*y = yi;
}
/* ------------------------------------------------------------------- */
/* ------------------------------- SPLINT ---------------------------- */
/* ------------------------------------------------------------------- */
void splint (double *xa, double *ya, double *y2a, int n, double x, double *y) {
/* CALCULATE CUBIC SPLINE INTERP VALUE
* ADAPTED FROM NUMERICAL RECIPES BY PRESS ET AL.
* XA,YA: ARRAYS OF TABULATED FUNCTION IN ASCENDING ORDER BY X
* Y2A: ARRAY OF SECOND DERIVATIVES
* N: SIZE OF ARRAYS XA,YA,Y2A
* X: ABSCISSA FOR INTERPOLATION
* Y: OUTPUT VALUE
*/
int klo=0;
int khi=n-1;
int k;
double h;
double a, b, yi;
while ((khi-klo)>1) {
k=(khi+klo)/2;
if (xa[k]>x)
khi=k;
else
klo=k;
}
h = xa[khi] - xa[klo];
if (h==0.0)
printf("bad XA input to splint");
a = (xa[khi] - x)/h;
b = (x - xa[klo])/h;
yi = a * ya[klo] + b * ya[khi] + ((a*a*a - a) * y2a[klo] + (b*b*b - b) * y2a[khi]) * h * h/6.0;
*y = yi;
}
/* ------------------------------------------------------------------- */
/* ------------------------------- SPLINE ---------------------------- */
/* ------------------------------------------------------------------- */
void spline (double *x, double *y, int n, double yp1, double ypn, double *y2) {
/* CALCULATE 2ND DERIVATIVES OF CUBIC SPLINE INTERP FUNCTION
* ADAPTED FROM NUMERICAL RECIPES BY PRESS ET AL
* X,Y: ARRAYS OF TABULATED FUNCTION IN ASCENDING ORDER BY X
* N: SIZE OF ARRAYS X,Y
* YP1,YPN: SPECIFIED DERIVATIVES AT X[0] AND X[N-1]; VALUES
* >= 1E30 SIGNAL SIGNAL SECOND DERIVATIVE ZERO
* Y2: OUTPUT ARRAY OF SECOND DERIVATIVES
*/
double *u;
double sig, p, qn, un;
int i, k;
u=malloc(sizeof(double)*(unsigned int)n);
if (u==NULL) {
printf("Out Of Memory in spline - ERROR");
return;
}
if (yp1>0.99E30) {
y2[0]=0;
u[0]=0;
} else {
y2[0]=-0.5;
u[0]=(3.0/(x[1]-x[0]))*((y[1]-y[0])/(x[1]-x[0])-yp1);
}
for (i=1;i<(n-1);i++) {
sig = (x[i]-x[i-1])/(x[i+1] - x[i-1]);
p = sig * y2[i-1] + 2.0;
y2[i] = (sig - 1.0) / p;
u[i] = (6.0 * ((y[i+1] - y[i])/(x[i+1] - x[i]) -(y[i] - y[i-1]) / (x[i] - x[i-1]))/(x[i+1] - x[i-1]) - sig * u[i-1])/p;
}
if (ypn>0.99E30) {
qn = 0;
un = 0;
} else {
qn = 0.5;
un = (3.0 / (x[n-1] - x[n-2])) * (ypn - (y[n-1] - y[n-2])/(x[n-1] - x[n-2]));
}
y2[n-1] = (un - qn * u[n-2]) / (qn * y2[n-2] + 1.0);
for (k=n-2;k>=0;k--)
y2[k] = y2[k] * y2[k+1] + u[k];
free(u);
}
/* ------------------------------------------------------------------- */
/* ------------------------------- DENSM ----------------------------- */
/* ------------------------------------------------------------------- */
__inline_double zeta(double zz, double zl) {
return ((zz-zl)*(re+zl)/(re+zz));
}
double densm (double alt, double d0, double xm, double *tz, int mn3, double *zn3, double *tn3, double *tgn3, int mn2, double *zn2, double *tn2, double *tgn2) {
/* Calculate Temperature and Density Profiles for lower atmos. */
double xs[10], ys[10], y2out[10];
double rgas = 831.4;
double z, z1, z2, t1, t2, zg, zgdif;
double yd1, yd2;
double x, y, yi;
double expl, gamm, glb;
double densm_tmp;
int mn;
int k;
densm_tmp=d0;
if (alt>zn2[0]) {
if (xm==0.0)
return *tz;
else
return d0;
}
/* STRATOSPHERE/MESOSPHERE TEMPERATURE */
if (alt>zn2[mn2-1])
z=alt;
else
z=zn2[mn2-1];
mn=mn2;
z1=zn2[0];
z2=zn2[mn-1];
t1=tn2[0];
t2=tn2[mn-1];
zg = zeta(z, z1);
zgdif = zeta(z2, z1);
/* set up spline nodes */
for (k=0;k<mn;k++) {
xs[k]=zeta(zn2[k],z1)/zgdif;
ys[k]=1.0 / tn2[k];
}
yd1=-tgn2[0] / (t1*t1) * zgdif;
yd2=-tgn2[1] / (t2*t2) * zgdif * (pow(((re+z2)/(re+z1)),2.0));
/* calculate spline coefficients */
spline (xs, ys, mn, yd1, yd2, y2out);
x = zg/zgdif;
splint (xs, ys, y2out, mn, x, &y);
/* temperature at altitude */
*tz = 1.0 / y;
if (xm!=0.0) {
/* calaculate stratosphere / mesospehere density */
glb = gsurf / (pow((1.0 + z1/re),2.0));
gamm = xm * glb * zgdif / rgas;
/* Integrate temperature profile */
splini(xs, ys, y2out, mn, x, &yi);
expl=gamm*yi;
if (expl>50.0)
expl=50.0;
/* Density at altitude */
densm_tmp = densm_tmp * (t1 / *tz) * exp(-expl);
}
if (alt>zn3[0]) {
if (xm==0.0)
return *tz;
else
return densm_tmp;
}
/* troposhere / stratosphere temperature */
z = alt;
mn = mn3;
z1=zn3[0];
z2=zn3[mn-1];
t1=tn3[0];
t2=tn3[mn-1];
zg=zeta(z,z1);
zgdif=zeta(z2,z1);
/* set up spline nodes */
for (k=0;k<mn;k++) {
xs[k] = zeta(zn3[k],z1) / zgdif;
ys[k] = 1.0 / tn3[k];
}
yd1=-tgn3[0] / (t1*t1) * zgdif;
yd2=-tgn3[1] / (t2*t2) * zgdif * (pow(((re+z2)/(re+z1)),2.0));
/* calculate spline coefficients */
spline (xs, ys, mn, yd1, yd2, y2out);
x = zg/zgdif;
splint (xs, ys, y2out, mn, x, &y);
/* temperature at altitude */
*tz = 1.0 / y;
if (xm!=0.0) {
/* calaculate tropospheric / stratosphere density */
glb = gsurf / (pow((1.0 + z1/re),2.0));
gamm = xm * glb * zgdif / rgas;
/* Integrate temperature profile */
splini(xs, ys, y2out, mn, x, &yi);
expl=gamm*yi;
if (expl>50.0)
expl=50.0;
/* Density at altitude */
densm_tmp = densm_tmp * (t1 / *tz) * exp(-expl);
}
if (xm==0.0)
return *tz;
else
return densm_tmp;
}
/* ------------------------------------------------------------------- */
/* ------------------------------- DENSU ----------------------------- */
/* ------------------------------------------------------------------- */
double densu (double alt, double dlb, double tinf, double tlb, double xm, double alpha, double *tz, double zlb, double s2, int mn1, double *zn1, double *tn1, double *tgn1) {
/* Calculate Temperature and Density Profiles for MSIS models
* New lower thermo polynomial
*/
double yd2, yd1, x, y;
double rgas=831.4;
double densu_temp=1.0;
double za, z, zg2, tt, ta;
double dta, z1, z2, t1, t2, zg, zgdif;
int mn;
int k;
double glb;
double expl;
double yi;
double densa;
double gamma, gamm;
double xs[5], ys[5], y2out[5];
/* joining altitudes of Bates and spline */
za=zn1[0];
if (alt>za)
z=alt;
else
z=za;
/* geopotential altitude difference from ZLB */
zg2 = zeta(z, zlb);
/* Bates temperature */
tt = tinf - (tinf - tlb) * exp(-s2*zg2);
ta = tt;
*tz = tt;
densu_temp = *tz;
if (alt<za) {
/* calculate temperature below ZA
* temperature gradient at ZA from Bates profile */
dta = (tinf - ta) * s2 * pow(((re+zlb)/(re+za)),2.0);
tgn1[0]=dta;
tn1[0]=ta;
if (alt>zn1[mn1-1])
z=alt;
else
z=zn1[mn1-1];
mn=mn1;
z1=zn1[0];
z2=zn1[mn-1];
t1=tn1[0];
t2=tn1[mn-1];
/* geopotental difference from z1 */
zg = zeta (z, z1);
zgdif = zeta(z2, z1);
/* set up spline nodes */
for (k=0;k<mn;k++) {
xs[k] = zeta(zn1[k], z1) / zgdif;
ys[k] = 1.0 / tn1[k];
}
/* end node derivatives */
yd1 = -tgn1[0] / (t1*t1) * zgdif;
yd2 = -tgn1[1] / (t2*t2) * zgdif * pow(((re+z2)/(re+z1)),2.0);
/* calculate spline coefficients */
spline (xs, ys, mn, yd1, yd2, y2out);
x = zg / zgdif;
splint (xs, ys, y2out, mn, x, &y);
/* temperature at altitude */
*tz = 1.0 / y;
densu_temp = *tz;
}
if (xm==0)
return densu_temp;
/* calculate density above za */
glb = gsurf / pow((1.0 + zlb/re),2.0);
gamma = xm * glb / (s2 * rgas * tinf);
expl = exp(-s2 * gamma * zg2);
if (expl>50.0)
expl=50.0;
if (tt<=0)
expl=50.0;
/* density at altitude */
densa = dlb * pow((tlb/tt),((1.0+alpha+gamma))) * expl;
densu_temp=densa;
if (alt>=za)
return densu_temp;
/* calculate density below za */
glb = gsurf / pow((1.0 + z1/re),2.0);
gamm = xm * glb * zgdif / rgas;
/* integrate spline temperatures */
splini (xs, ys, y2out, mn, x, &yi);
expl = gamm * yi;
if (expl>50.0)
expl=50.0;
if (*tz<=0)
expl=50.0;
/* density at altitude */
densu_temp = densu_temp * pow ((t1 / *tz),(1.0 + alpha)) * exp(-expl);
return densu_temp;
}
/* ------------------------------------------------------------------- */
/* ------------------------------- GLOBE7 ---------------------------- */
/* ------------------------------------------------------------------- */
/* 3hr Magnetic activity functions */
/* Eq. A24d */
__inline_double g0(double a, double *p) {
return (a - 4.0 + (p[25] - 1.0) * (a - 4.0 + (exp(-sqrt(p[24]*p[24]) * (a - 4.0)) - 1.0) / sqrt(p[24]*p[24])));
}
/* Eq. A24c */
__inline_double sumex(double ex) {
return (1.0 + (1.0 - pow(ex,19.0)) / (1.0 - ex) * pow(ex,0.5));
}
/* Eq. A24a */
__inline_double sg0(double ex, double *p, double *ap) {
return (g0(ap[1],p) + (g0(ap[2],p)*ex + g0(ap[3],p)*ex*ex + \
g0(ap[4],p)*pow(ex,3.0) + (g0(ap[5],p)*pow(ex,4.0) + \
g0(ap[6],p)*pow(ex,12.0))*(1.0-pow(ex,8.0))/(1.0-ex)))/sumex(ex);
}
double globe7(double *p, struct nrlmsise_input *input, struct nrlmsise_flags *flags) {
/* CALCULATE G(L) FUNCTION
* Upper Thermosphere Parameters */
double t[15];
int i,j;
double apd;
double tloc;
double c, s, c2, c4, s2;
double sr = 7.2722E-5;
double dgtr = 1.74533E-2;
double dr = 1.72142E-2;
double hr = 0.2618;
double cd32, cd18, cd14, cd39;
double df;
double f1, f2;
double tinf;
struct ap_array *ap;
tloc=input->lst;
for (j=0;j<14;j++)
t[j]=0;
/* calculate legendre polynomials */
c = sin(input->g_lat * dgtr);
s = cos(input->g_lat * dgtr);
c2 = c*c;
c4 = c2*c2;
s2 = s*s;
plg[0][1] = c;
plg[0][2] = 0.5*(3.0*c2 -1.0);
plg[0][3] = 0.5*(5.0*c*c2-3.0*c);
plg[0][4] = (35.0*c4 - 30.0*c2 + 3.0)/8.0;
plg[0][5] = (63.0*c2*c2*c - 70.0*c2*c + 15.0*c)/8.0;
plg[0][6] = (11.0*c*plg[0][5] - 5.0*plg[0][4])/6.0;
/* plg[0][7] = (13.0*c*plg[0][6] - 6.0*plg[0][5])/7.0; */
plg[1][1] = s;
plg[1][2] = 3.0*c*s;
plg[1][3] = 1.5*(5.0*c2-1.0)*s;
plg[1][4] = 2.5*(7.0*c2*c-3.0*c)*s;
plg[1][5] = 1.875*(21.0*c4 - 14.0*c2 +1.0)*s;
plg[1][6] = (11.0*c*plg[1][5]-6.0*plg[1][4])/5.0;
/* plg[1][7] = (13.0*c*plg[1][6]-7.0*plg[1][5])/6.0; */
/* plg[1][8] = (15.0*c*plg[1][7]-8.0*plg[1][6])/7.0; */
plg[2][2] = 3.0*s2;
plg[2][3] = 15.0*s2*c;
plg[2][4] = 7.5*(7.0*c2 -1.0)*s2;
plg[2][5] = 3.0*c*plg[2][4]-2.0*plg[2][3];
plg[2][6] =(11.0*c*plg[2][5]-7.0*plg[2][4])/4.0;
plg[2][7] =(13.0*c*plg[2][6]-8.0*plg[2][5])/5.0;
plg[3][3] = 15.0*s2*s;
plg[3][4] = 105.0*s2*s*c;
plg[3][5] =(9.0*c*plg[3][4]-7.*plg[3][3])/2.0;
plg[3][6] =(11.0*c*plg[3][5]-8.*plg[3][4])/3.0;
if (!(((flags->sw[7]==0)&&(flags->sw[8]==0))&&(flags->sw[14]==0))) {
stloc = sin(hr*tloc);
ctloc = cos(hr*tloc);
s2tloc = sin(2.0*hr*tloc);
c2tloc = cos(2.0*hr*tloc);
s3tloc = sin(3.0*hr*tloc);
c3tloc = cos(3.0*hr*tloc);
}
cd32 = cos(dr*(input->doy-p[31]));
cd18 = cos(2.0*dr*(input->doy-p[17]));
cd14 = cos(dr*(input->doy-p[13]));
cd39 = cos(2.0*dr*(input->doy-p[38]));
/* F10.7 EFFECT */
df = input->f107 - input->f107A;
dfa = input->f107A - 150.0;
t[0] = p[19]*df*(1.0+p[59]*dfa) + p[20]*df*df + p[21]*dfa + p[29]*pow(dfa,2.0);
f1 = 1.0 + (p[47]*dfa +p[19]*df+p[20]*df*df)*flags->swc[1];
f2 = 1.0 + (p[49]*dfa+p[19]*df+p[20]*df*df)*flags->swc[1];
/* TIME INDEPENDENT */
t[1] = (p[1]*plg[0][2]+ p[2]*plg[0][4]+p[22]*plg[0][6]) + \
(p[14]*plg[0][2])*dfa*flags->swc[1] +p[26]*plg[0][1];
/* SYMMETRICAL ANNUAL */
t[2] = p[18]*cd32;
/* SYMMETRICAL SEMIANNUAL */
t[3] = (p[15]+p[16]*plg[0][2])*cd18;
/* ASYMMETRICAL ANNUAL */
t[4] = f1*(p[9]*plg[0][1]+p[10]*plg[0][3])*cd14;
/* ASYMMETRICAL SEMIANNUAL */
t[5] = p[37]*plg[0][1]*cd39;
/* DIURNAL */
if (flags->sw[7]) {
double t71, t72;
t71 = (p[11]*plg[1][2])*cd14*flags->swc[5];
t72 = (p[12]*plg[1][2])*cd14*flags->swc[5];
t[6] = f2*((p[3]*plg[1][1] + p[4]*plg[1][3] + p[27]*plg[1][5] + t71) * \
ctloc + (p[6]*plg[1][1] + p[7]*plg[1][3] + p[28]*plg[1][5] \
+ t72)*stloc);
}
/* SEMIDIURNAL */
if (flags->sw[8]) {
double t81, t82;
t81 = (p[23]*plg[2][3]+p[35]*plg[2][5])*cd14*flags->swc[5];
t82 = (p[33]*plg[2][3]+p[36]*plg[2][5])*cd14*flags->swc[5];
t[7] = f2*((p[5]*plg[2][2]+ p[41]*plg[2][4] + t81)*c2tloc +(p[8]*plg[2][2] + p[42]*plg[2][4] + t82)*s2tloc);
}
/* TERDIURNAL */
if (flags->sw[14]) {
t[13] = f2 * ((p[39]*plg[3][3]+(p[93]*plg[3][4]+p[46]*plg[3][6])*cd14*flags->swc[5])* s3tloc +(p[40]*plg[3][3]+(p[94]*plg[3][4]+p[48]*plg[3][6])*cd14*flags->swc[5])* c3tloc);
}
/* magnetic activity based on daily ap */
if (flags->sw[9]==-1) {
ap = input->ap_a;
if (p[51]!=0) {
double exp1;
exp1 = exp(-10800.0*sqrt(p[51]*p[51])/(1.0+p[138]*(45.0-sqrt(input->g_lat*input->g_lat))));
if (exp1>0.99999)
exp1=0.99999;
if (p[24]<1.0E-4)
p[24]=1.0E-4;
apt[0]=sg0(exp1,p,ap->a);
/* apt[1]=sg2(exp1,p,ap->a);
apt[2]=sg0(exp2,p,ap->a);
apt[3]=sg2(exp2,p,ap->a);
*/
if (flags->sw[9]) {
t[8] = apt[0]*(p[50]+p[96]*plg[0][2]+p[54]*plg[0][4]+ \
(p[125]*plg[0][1]+p[126]*plg[0][3]+p[127]*plg[0][5])*cd14*flags->swc[5]+ \
(p[128]*plg[1][1]+p[129]*plg[1][3]+p[130]*plg[1][5])*flags->swc[7]* \
cos(hr*(tloc-p[131])));
}
}
} else {
double p44, p45;
apd=input->ap-4.0;
p44=p[43];
p45=p[44];
if (p44<0)
p44 = 1.0E-5;
apdf = apd + (p45-1.0)*(apd + (exp(-p44 * apd) - 1.0)/p44);
if (flags->sw[9]) {
t[8]=apdf*(p[32]+p[45]*plg[0][2]+p[34]*plg[0][4]+ \
(p[100]*plg[0][1]+p[101]*plg[0][3]+p[102]*plg[0][5])*cd14*flags->swc[5]+
(p[121]*plg[1][1]+p[122]*plg[1][3]+p[123]*plg[1][5])*flags->swc[7]*
cos(hr*(tloc-p[124])));
}
}
if ((flags->sw[10])&&(input->g_long>-1000.0)) {
/* longitudinal */
if (flags->sw[11]) {
t[10] = (1.0 + p[80]*dfa*flags->swc[1])* \
((p[64]*plg[1][2]+p[65]*plg[1][4]+p[66]*plg[1][6]\
+p[103]*plg[1][1]+p[104]*plg[1][3]+p[105]*plg[1][5]\
+flags->swc[5]*(p[109]*plg[1][1]+p[110]*plg[1][3]+p[111]*plg[1][5])*cd14)* \
cos(dgtr*input->g_long) \
+(p[90]*plg[1][2]+p[91]*plg[1][4]+p[92]*plg[1][6]\
+p[106]*plg[1][1]+p[107]*plg[1][3]+p[108]*plg[1][5]\
+flags->swc[5]*(p[112]*plg[1][1]+p[113]*plg[1][3]+p[114]*plg[1][5])*cd14)* \
sin(dgtr*input->g_long));
}
/* ut and mixed ut, longitude */
if (flags->sw[12]){
t[11]=(1.0+p[95]*plg[0][1])*(1.0+p[81]*dfa*flags->swc[1])*\
(1.0+p[119]*plg[0][1]*flags->swc[5]*cd14)*\
((p[68]*plg[0][1]+p[69]*plg[0][3]+p[70]*plg[0][5])*\
cos(sr*(input->sec-p[71])));
t[11]+=flags->swc[11]*\
(p[76]*plg[2][3]+p[77]*plg[2][5]+p[78]*plg[2][7])*\
cos(sr*(input->sec-p[79])+2.0*dgtr*input->g_long)*(1.0+p[137]*dfa*flags->swc[1]);
}
/* ut, longitude magnetic activity */
if (flags->sw[13]) {
if (flags->sw[9]==-1) {
if (p[51]) {
t[12]=apt[0]*flags->swc[11]*(1.+p[132]*plg[0][1])*\
((p[52]*plg[1][2]+p[98]*plg[1][4]+p[67]*plg[1][6])*\
cos(dgtr*(input->g_long-p[97])))\
+apt[0]*flags->swc[11]*flags->swc[5]*\
(p[133]*plg[1][1]+p[134]*plg[1][3]+p[135]*plg[1][5])*\
cd14*cos(dgtr*(input->g_long-p[136])) \
+apt[0]*flags->swc[12]* \
(p[55]*plg[0][1]+p[56]*plg[0][3]+p[57]*plg[0][5])*\
cos(sr*(input->sec-p[58]));
}
} else {
t[12] = apdf*flags->swc[11]*(1.0+p[120]*plg[0][1])*\
((p[60]*plg[1][2]+p[61]*plg[1][4]+p[62]*plg[1][6])*\
cos(dgtr*(input->g_long-p[63])))\
+apdf*flags->swc[11]*flags->swc[5]* \
(p[115]*plg[1][1]+p[116]*plg[1][3]+p[117]*plg[1][5])* \
cd14*cos(dgtr*(input->g_long-p[118])) \
+ apdf*flags->swc[12]* \
(p[83]*plg[0][1]+p[84]*plg[0][3]+p[85]*plg[0][5])* \
cos(sr*(input->sec-p[75]));
}
}
}
/* parms not used: 82, 89, 99, 139-149 */
tinf = p[30];
for (i=0;i<14;i++)
tinf = tinf + fabs(flags->sw[i+1])*t[i];
return tinf;
}
/* ------------------------------------------------------------------- */
/* ------------------------------- GLOB7S ---------------------------- */
/* ------------------------------------------------------------------- */
double glob7s(double *p, struct nrlmsise_input *input, struct nrlmsise_flags *flags) {
/* VERSION OF GLOBE FOR LOWER ATMOSPHERE 10/26/99
*/
double pset=2.0;
double t[14];
double tt;
double cd32, cd18, cd14, cd39;
int i,j;
double dr=1.72142E-2;
double dgtr=1.74533E-2;
/* confirm parameter set */
if (p[99]==0)
p[99]=pset;
if (p[99]!=pset) {
printf("Wrong parameter set for glob7s\n");
return -1;
}
for (j=0;j<14;j++)
t[j]=0.0;
cd32 = cos(dr*(input->doy-p[31]));
cd18 = cos(2.0*dr*(input->doy-p[17]));
cd14 = cos(dr*(input->doy-p[13]));
cd39 = cos(2.0*dr*(input->doy-p[38]));
/* F10.7 */
t[0] = p[21]*dfa;
/* time independent */
t[1]=p[1]*plg[0][2] + p[2]*plg[0][4] + p[22]*plg[0][6] + p[26]*plg[0][1] + p[14]*plg[0][3] + p[59]*plg[0][5];
/* SYMMETRICAL ANNUAL */
t[2]=(p[18]+p[47]*plg[0][2]+p[29]*plg[0][4])*cd32;
/* SYMMETRICAL SEMIANNUAL */
t[3]=(p[15]+p[16]*plg[0][2]+p[30]*plg[0][4])*cd18;
/* ASYMMETRICAL ANNUAL */
t[4]=(p[9]*plg[0][1]+p[10]*plg[0][3]+p[20]*plg[0][5])*cd14;
/* ASYMMETRICAL SEMIANNUAL */
t[5]=(p[37]*plg[0][1])*cd39;
/* DIURNAL */
if (flags->sw[7]) {
double t71, t72;
t71 = p[11]*plg[1][2]*cd14*flags->swc[5];
t72 = p[12]*plg[1][2]*cd14*flags->swc[5];
t[6] = ((p[3]*plg[1][1] + p[4]*plg[1][3] + t71) * ctloc + (p[6]*plg[1][1] + p[7]*plg[1][3] + t72) * stloc) ;
}
/* SEMIDIURNAL */
if (flags->sw[8]) {
double t81, t82;
t81 = (p[23]*plg[2][3]+p[35]*plg[2][5])*cd14*flags->swc[5];
t82 = (p[33]*plg[2][3]+p[36]*plg[2][5])*cd14*flags->swc[5];
t[7] = ((p[5]*plg[2][2] + p[41]*plg[2][4] + t81) * c2tloc + (p[8]*plg[2][2] + p[42]*plg[2][4] + t82) * s2tloc);
}
/* TERDIURNAL */
if (flags->sw[14]) {
t[13] = p[39] * plg[3][3] * s3tloc + p[40] * plg[3][3] * c3tloc;
}
/* MAGNETIC ACTIVITY */
if (flags->sw[9]) {
if (flags->sw[9]==1)
t[8] = apdf * (p[32] + p[45] * plg[0][2] * flags->swc[2]);
if (flags->sw[9]==-1)
t[8]=(p[50]*apt[0] + p[96]*plg[0][2] * apt[0]*flags->swc[2]);
}
/* LONGITUDINAL */
if (!((flags->sw[10]==0) || (flags->sw[11]==0) || (input->g_long<=-1000.0))) {
t[10] = (1.0 + plg[0][1]*(p[80]*flags->swc[5]*cos(dr*(input->doy-p[81]))\
+p[85]*flags->swc[6]*cos(2.0*dr*(input->doy-p[86])))\
+p[83]*flags->swc[3]*cos(dr*(input->doy-p[84]))\
+p[87]*flags->swc[4]*cos(2.0*dr*(input->doy-p[88])))\
*((p[64]*plg[1][2]+p[65]*plg[1][4]+p[66]*plg[1][6]\
+p[74]*plg[1][1]+p[75]*plg[1][3]+p[76]*plg[1][5]\
)*cos(dgtr*input->g_long)\
+(p[90]*plg[1][2]+p[91]*plg[1][4]+p[92]*plg[1][6]\
+p[77]*plg[1][1]+p[78]*plg[1][3]+p[79]*plg[1][5]\
)*sin(dgtr*input->g_long));
}
tt=0;
for (i=0;i<14;i++)
tt+=fabs(flags->sw[i+1])*t[i];
return tt;
}
/* ------------------------------------------------------------------- */
/* ------------------------------- GTD7 ------------------------------ */
/* ------------------------------------------------------------------- */
void gtd7(struct nrlmsise_input *input, struct nrlmsise_flags *flags, struct nrlmsise_output *output) {
double xlat;
double xmm;
int mn3 = 5;
double zn3[5]={32.5,20.0,15.0,10.0,0.0};
int mn2 = 4;
double zn2[4]={72.5,55.0,45.0,32.5};
double altt;
double zmix=62.5;
double tmp;
double dm28m;
double tz;
double dmc;
double dmr;
double dz28;
struct nrlmsise_output soutput;
int i;
tselec(flags);
/* Latitude variation of gravity (none for sw[2]=0) */
xlat=input->g_lat;
if (flags->sw[2]==0)
xlat=45.0;
glatf(xlat, &gsurf, &re);
xmm = pdm[2][4];
/* THERMOSPHERE / MESOSPHERE (above zn2[0]) */
if (input->alt>zn2[0])
altt=input->alt;
else
altt=zn2[0];
tmp=input->alt;
input->alt=altt;
gts7(input, flags, &soutput);
altt=input->alt;
input->alt=tmp;
if (flags->sw[0]) /* metric adjustment */
dm28m=dm28*1.0E6;
else
dm28m=dm28;
output->t[0]=soutput.t[0];
output->t[1]=soutput.t[1];
if (input->alt>=zn2[0]) {
for (i=0;i<9;i++)
output->d[i]=soutput.d[i];
return;
}
/* LOWER MESOSPHERE/UPPER STRATOSPHERE (between zn3[0] and zn2[0])
* Temperature at nodes and gradients at end nodes
* Inverse temperature a linear function of spherical harmonics
*/
meso_tgn2[0]=meso_tgn1[1];
meso_tn2[0]=meso_tn1[4];
meso_tn2[1]=pma[0][0]*pavgm[0]/(1.0-flags->sw[20]*glob7s(pma[0], input, flags));
meso_tn2[2]=pma[1][0]*pavgm[1]/(1.0-flags->sw[20]*glob7s(pma[1], input, flags));
meso_tn2[3]=pma[2][0]*pavgm[2]/(1.0-flags->sw[20]*flags->sw[22]*glob7s(pma[2], input, flags));
meso_tgn2[1]=pavgm[8]*pma[9][0]*(1.0+flags->sw[20]*flags->sw[22]*glob7s(pma[9], input, flags))*meso_tn2[3]*meso_tn2[3]/(pow((pma[2][0]*pavgm[2]),2.0));
meso_tn3[0]=meso_tn2[3];
if (input->alt<zn3[0]) {
/* LOWER STRATOSPHERE AND TROPOSPHERE (below zn3[0])
* Temperature at nodes and gradients at end nodes
* Inverse temperature a linear function of spherical harmonics
*/
meso_tgn3[0]=meso_tgn2[1];
meso_tn3[1]=pma[3][0]*pavgm[3]/(1.0-flags->sw[22]*glob7s(pma[3], input, flags));
meso_tn3[2]=pma[4][0]*pavgm[4]/(1.0-flags->sw[22]*glob7s(pma[4], input, flags));
meso_tn3[3]=pma[5][0]*pavgm[5]/(1.0-flags->sw[22]*glob7s(pma[5], input, flags));
meso_tn3[4]=pma[6][0]*pavgm[6]/(1.0-flags->sw[22]*glob7s(pma[6], input, flags));
meso_tgn3[1]=pma[7][0]*pavgm[7]*(1.0+flags->sw[22]*glob7s(pma[7], input, flags)) *meso_tn3[4]*meso_tn3[4]/(pow((pma[6][0]*pavgm[6]),2.0));
}
/* LINEAR TRANSITION TO FULL MIXING BELOW zn2[0] */
dmc=0;
if (input->alt>zmix)
dmc = 1.0 - (zn2[0]-input->alt)/(zn2[0] - zmix);
dz28=soutput.d[2];
/**** N2 density ****/
dmr=soutput.d[2] / dm28m - 1.0;