We provide detailed instructions for evaluation. To execute our evaluation script, please ensure that the structure of your model outputs is the same as ours.
We provide two options:
- Evaluation only: you can parse the response on your own and simply provide one file with all the final predictions.
- Parse and evaluation: you can leave all the responses to us with the output formats shown below.
If you want to use your own parsing logic and only provide the final answer, you can use main_eval_only.py
.
You can provide all the outputs in one file in the following format:
{
"validation_Accounting_1": "D", # strictly "A", "B", "C", "D" for multi-choice question
"validation_Architecture_and_Engineering_14": "0.0", # any string response for open question.
...
}
Then run eval_only with:
python main_eval_only.py --output_path ./example_outputs/llava1.5_13b/total_val_output.json
Please refer to example output for a detailed prediction file form.
You can also provide response and run the main_parse_and_eval.py
to use our answer parsing processing and evaluation pipeline as follows:
└── model_name
├── category_name (e.g., Accounting)
│ ├── output.json
└── category_name (e.g., Electronics)
├── output.json
...
Each `output.json`` has a list of dict containing instances for evaluation ().
[
{
"id": "validation_Electronics_28",
"question_type": "multiple-choice",
"answer": "A", # given answer
"all_choices": [ # create using `get_multi_choice_info` in
"A",
"B",
"C",
"D"
],
"index2ans": { # create using `get_multi_choice_info` in
"A": "75 + 13.3 cos(250t - 57.7°)V",
"B": "75 + 23.3 cos(250t - 57.7°)V",
"C": "45 + 3.3 cos(250t - 57.7°)V",
"D": "95 + 13.3 cos(250t - 57.7°)V"
},
"response": "B" # model response
},
{
"id": "validation_Electronics_29",
"question_type": "short-answer",
"answer": "30", # given answer
"response": "36 watts" # model response
},
...
]
python main_parse_and_eval.py --path ./example_outputs/llava1.5_13b --subject ALL # all subject
# OR you can specify one subject for the evaluation
python main_parse_and_eval.py --path ./example_outputs/llava1.5_13b --subject elec # short name for Electronics. use --help for all short names
main_parse_and_eval.py
will generate parsed_output.json
and result.json
in the subfolder under the same category with output.json, respectively.
├── Accounting
│ ├── output.json
│ ├── parsed_output.json
│ └── result.json
└── Electronics
├── output.json
├── parsed_output.json
└── result.json
...
You can print results locally if you want. (use pip install tabulate
if you haven't)
python print_results.py --path ./example_outputs/llava1.5_13b
# Results may be slightly different due to the ramdon selection for fail response
In case if you want to reproduce the results of some models, please go check run_llava.py
as an example.
By setting up the env for llava via following steps:
Step 1:
git clone https://github.com/haotian-liu/LLaVA.git
cd LLaVA
In Step 2:
conda create -n llava python=3.10 -y
conda activate llava
pip install --upgrade pip # enable PEP 660 support
git fetch --tags
git checkout tags/v1.1.3 # back to the version when running MMMU
pip install -e .
The above will install llava (1.5 only) and corresponding correct transformers version when running MMMU.
Then by installing datasets
packages from huggingface (i.e., pip install datasets
), you can run llava with the following command:
CUDA_VISIBLE_DEVICES=0 nohup python run_llava.py \
--output_path example_outputs/llava1.5_13b_val.json \
--model_path liuhaotian/llava-v1.5-13b \
--config_path configs/llava1.5.yaml
Then you can evaluate the results via the very first pipeline.