-
Notifications
You must be signed in to change notification settings - Fork 0
/
MyAlgorithm_soft.m
186 lines (120 loc) · 3.39 KB
/
MyAlgorithm_soft.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
%function [L_b,R_b]=MyAlgorithm()
function [error]=MyAlgorithm_soft()%% reduces the # possibilities by a factor of alpha
m=100;
n=100;
r=5;
p_obs=.3;
iterations=50;
error_threshold=10^-6; % for BP convergence
L_i=randi(2,m,r)-1;
R_i=randi(2,r,n)-1;
A=mod(L_i*R_i,2);
obs_pattern=rand(m,n);
obs_pattern=(obs_pattern<p_obs);
C0=zeros(2^r,2^r);
for i=1:1:2^r
for j=1:1:2^r
if (mod(de2bi(i-1,r)*de2bi(j-1,r)',2)==0)
C0(i,j)=1;
end
end
end
C1=1-C0;
L_b_initial=ones(2^r,m)/2^r;
R_b_initial=ones(2^r,n)/2^r;
% L_b=ones(2^r,m)/2^r;
%
% R_b=ones(2^r,n)/2^r;
% L_b_initial=rand(2^r,m);
% L_b_initial=L_b_initial./sum(L_b_initial);
%
% R_b_initial=rand(2^r,n);
% R_b_initial=R_b_initial./sum(R_b_initial);
L_b_fixed_vals=[];
convergence_status=[];
for i=1:1:40
i
% L_b_initial=rand(2^r,m);
% L_b_initial=L_b_initial./sum(L_b_initial)
%
% R_b_initial=rand(2^r,n);
% R_b_initial=R_b_initial./sum(R_b_initial);
[converged,L_b,R_b]= Recovery_soft(m,n,r,p_obs,iterations,error_threshold,A, obs_pattern,C0,C1,L_b_initial,R_b_initial,L_b_fixed_vals);
convergence_status=[convergence_status,converged]
%fixed_value=discretesample(L_b(:,i), 1);
%L_b_fixed_vals=[L_b_fixed_vals,double(1:2^r == fixed_value)'];
L_b_fixed_vals=[L_b_fixed_vals,soft_decision(L_b(:,i))]
L_b_fixed_vals;
nnz(L_b)
nnz(R_b)
if nnz(L_b)<=m && nnz(R_b)<=n
sum(L_b)
sum(R_b)
break
end
end
L=zeros(m,r);
for i=1:1:m
loc=find(L_b(:,i));
L(i,:)=de2bi(loc(1)-1,r);
end
R=zeros(r,n);
for i=1:1:n
loc=find(R_b(:,i));
R(:,i)=de2bi(loc(1)-1,r)';
end
convergence_status
error=norm(A-mod(L*R,2));
end
function[vector]=soft_decision(vector)
fraction=.1;
num_nnz=nnz(vector);
keep=ceil(fraction*num_nnz);
[~,ids]=sort(vector,'descend');
vector(ids(keep+1:end))=0;
vector=vector/sum(vector)
end
function[converged,L_b,R_b]= Recovery_soft(m,n,r,p_obs,iterations,error_threshold,A, obs_pattern,C0,C1,L_b,R_b,L_b_fixed_vals)
[~,num_of_fixed]=size(L_b_fixed_vals);
L_b(:,1:num_of_fixed)=L_b_fixed_vals;
converged=false;
for iter=1:1:iterations
L_b_new=ones(2^r,m);
R_b_new=ones(2^r,n);
for i=1:1:m
for j=1:1:n
if (obs_pattern(i,j)==1)
if(A(i,j)==1)
constraint=C1;
else
constraint=C0;
end
%update L
temp=constraint*R_b(:,j);
%tempp=prod(temp','native');
L_b_new(:,i)=temp.*L_b_new(:,i);
L_b_new(:,i)=L_b_new(:,i)/sum(L_b_new(:,i));
%update R
temp=constraint*L_b(:,i);
%tempp=prod(temp','native');
R_b_new(:,j)=temp/sum(temp).*R_b_new(:,j);
R_b_new(:,j)=R_b_new(:,j)/sum(R_b_new(:,j));
end
end
end
L_b1=L_b_new./sum(L_b_new);
R_b1=R_b_new./sum(R_b_new);
if norm(L_b-L_b1)+norm(R_b-R_b1)<error_threshold
converged=true;
break
end
L_b=L_b_new./sum(L_b_new);
L_b(isnan(L_b))=0;
%L_b(:,1:num_of_fixed)=L_b_fixed_vals;
R_b=R_b_new./sum(R_b_new);
R_b(isnan(R_b))=0;
end
L_b;
iter;
R_b;
end