forked from gabrielStanovsky/oie-benchmark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pr_plot.py
53 lines (44 loc) · 1.53 KB
/
pr_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
""" Usage:
pr_plot --in=DIR_NAME --out=OUTPUT_FILENAME
Options:
--in=DIR_NAME Folder in which to search for *.dat files, all of which should be in a P/R column format (outputs from benchmark.py)
--out=OUTPUT_FILENAME Output filename, filetype will determine the format. Possible formats: pdf, pgf, png
"""
import os
import ntpath
import numpy as np
from glob import glob
from docopt import docopt
import matplotlib.pyplot as plt
import logging
logging.basicConfig(level = logging.INFO)
def trend_name(path):
''' return a system trend name from dat file path '''
head, tail = ntpath.split(path)
ret = tail or ntpath.basename(head)
return ret.split('.')[0]
def get_pr(path):
''' get PR curve from file '''
with open(path) as fin:
# remove header line
fin.readline()
[p, r] = zip(*[map(lambda x: float(x), line.strip().split('\t')) for line in fin])
return p, r
if __name__ == '__main__':
args = docopt(__doc__)
input_folder = args['--in']
output_file = args['--out']
# plot graphs for all *.dat files in input path
files = glob(os.path.join(input_folder, '*.dat'))
for _file in files:
p, r = get_pr(_file)
name = trend_name(_file)
plt.plot(r, p, label = name)
# Set figure properties and save
logging.info("Plotting P/R graph to {}".format(output_file))
plt.ylim([0.0, 1.05])
plt.xlim([0.0, 1.0])
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.legend(loc="lower right")
plt.savefig(output_file)