-
Notifications
You must be signed in to change notification settings - Fork 1
/
IL_gutnick.mod
134 lines (97 loc) · 3.02 KB
/
IL_gutnick.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
TITLE High threshold calcium current
COMMENT
-----------------------------------------------------------------------------
High threshold calcium current
------------------------------
- Ca++ current, L type channels
- Differential equations
- Model from:
Reuveni I; Friedman A; Amitai Y; Gutnick MJ.
Stepwise repolarization from Ca2+ plateaus in neocortical pyramidal cells:
evidence for nonhomogeneous distribution of HVA Ca2+ channels in
dendrites.
Journal of Neuroscience, 1993 Nov, 13(11):4609-21.
- Experimental data for voltage-dependent activation:
Sayer RJ; Schwindt PC; Crill WE.
High- and low-threshold calcium currents in neurons acutely isolated from
rat sensorimotor cortex.
Neuroscience Letters, 1990 Dec 11, 120(2):175-8.
- Experimental data for voltage-dependent inactivation:
Dichter MA; Zona C.
Calcium currents in cultured rat cortical neurons.
Brain Research, 1989 Jul 17, 492(1-2):219-29.
- Calcium-dependent inactivation was not modeled; if interested, see:
Kay AR.
Inactivation kinetics of calcium current of acutely dissociated CA1
pyramidal cells of the mature guinea-pig hippocampus.
Journal of Physiology, 1991 Jun, 437:27-48.
- m2h kinetics from:
Kay AR; Wong RK.
Calcium current activation kinetics in isolated pyramidal neurones of the
Ca1 region of the mature guinea-pig hippocampus.
Journal of Physiology, 1987 Nov, 392:603-16.
- Reversal potential described by Nernst equation
- no temperature dependence included (rates correspond to 36 degC)
Alain Destexhe, Laval University, 1996
-----------------------------------------------------------------------------
ENDCOMMENT
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
SUFFIX ical
USEION ca READ eca WRITE ica
RANGE gcabar, alpha_m, beta_m, alpha_h, beta_h, m, h, carev
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(molar) = (1/liter)
(mM) = (millimolar)
FARADAY = (faraday) (coulomb)
R = (k-mole) (joule/degC)
}
PARAMETER {
v (mV)
celsius = 36 (degC)
eca (mV)
cai = .00024 (mM) : initial [Ca]i = 200 nM
cao = 2 (mM) : [Ca]o = 2 mM
gcabar = 1e-4 (mho/cm2) : Max conductance
}
STATE {
m
h
}
ASSIGNED {
ica (mA/cm2) : current
carev (mV) : rev potential
alpha_m (/ms) : rate cst
beta_m (/ms)
alpha_h (/ms)
beta_h (/ms)
tadj
}
BREAKPOINT {
SOLVE states METHOD cnexp : see http://www.neuron.yale.edu/phpBB/viewtopic.php?f=28&t=592
carev = (1e3) * (R*(celsius+273.15))/(2*FARADAY) * log (cao/cai)
ica = gcabar * m * m * h * (v-carev)
}
DERIVATIVE states {
evaluate_fct(v)
m' = alpha_m * (1-m) - beta_m * m
h' = alpha_h * (1-h) - beta_h * h
}
UNITSOFF
INITIAL {
evaluate_fct(v)
: m = alpha_m / (alpha_m + beta_m)
: h = alpha_h / (alpha_h + beta_h)
: tadj = 3 ^ ((celsius-36)/10)
}
PROCEDURE evaluate_fct(v(mV)) {
: rates at 36 degC
alpha_m = 0.055 * (-27-v) / (exp((-27-v)/3.8) - 1)
beta_m = 0.94 * exp((-75-v)/17)
alpha_h = 0.000457 * exp((-13-v)/50)
beta_h = 0.0065 / (exp((-15-v)/28) + 1)
}
UNITSON