-
Notifications
You must be signed in to change notification settings - Fork 1
/
caL3d.mod
141 lines (100 loc) · 2.57 KB
/
caL3d.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
COMMENT
High threshold Ca2+ channel
2-state kinetics with sigmoidal voltage-dependence
C<->O
Goldman-Hodgkin-Katz equations
# MODEL
| MODEL AUTHOR : D.A. McCormick & J. Huguenard
| MODEL DATE : 1992
| MODEL REF : A model of the electrophysiological properties of
thalamocortical relay neurons. J Neurophysiol, 1992 Oct, 68(4):1384-400.
# EXPERIMENT
| EXP AUTHOR : Kay AR; Wong RK
| EXP DATE : 1987
| EXP REF : Journal of Physiology, 1987 Nov, 392:603-16.
| ANIMAL : guinea-pig
| BRAIN REGION : hippocampus
| CELL TYPE : Ca1 pyramidal
| TECHNIQUE : slices, whole-cell
| RECORDING METHOD : voltage-clamp
| TEMPERATURE : 20-22
Reference:
Destexhe, A., Mainen, Z.F. and Sejnowski, T.J. Synthesis of models for
excitable membranes, synaptic transmission and neuromodulation using a
common kinetic formalism, Journal of Computational Neuroscience 1:
195-230, 1994.
(electronic copy available at http://cns.iaf.cnrs-gif.fr)
ENDCOMMENT
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
SUFFIX caL
USEION ca READ cai, cao WRITE ica
RANGE O, C, I
RANGE a,b
GLOBAL Ra, Rb, q, th, p
GLOBAL q10, temp, tadj
}
UNITS {
F = (faraday) (coulomb)
R = (k-mole) (joule/degC)
(mA) = (milliamp)
(mV) = (millivolt)
(pS) = (picosiemens)
(um) = (micron)
(mM) = (milli/liter)
}
PARAMETER {
p = 0.2e-3 (cm/s) : max permeability
v (mV)
th = 5 (mV) : v 1/2 for on/off
q = 13 (mV) : voltage dependence
: max rates
Ra = 1.6 (/ms) : open (v)
Rb = 0.2 (/ms) : close (v)
celsius (degC)
temp = 22 (degC) : original temp
q10 = 3 : temperature sensitivity
}
ASSIGNED {
ica (mA/cm2)
cao (mM)
cai (mM)
a (/ms) b (/ms)
tadj
}
STATE { C O }
INITIAL {
C = 1
}
BREAKPOINT {
rates(v)
SOLVE kstates METHOD sparse
ica = O * p * ghk(v,cai,cao)
}
KINETIC kstates {
~ C <-> O (a,b)
CONSERVE C+O = 1
}
PROCEDURE rates(v(mV)) {
TABLE a, b
DEPEND Ra, Rb, th, celsius, temp, q10
FROM -100 TO 100 WITH 200
tadj = q10 ^ ((celsius - temp)/10 (degC))
a = Ra / (1 + exp(-(v-th)/q)) * tadj
b = Rb / (1 + exp((v-th)/q)) * tadj
}
: Special gear for calculating the Ca2+ reversal potential
: via Goldman-Hodgkin-Katz eqn.
: [Ca2+]o "cao" and [Ca2+]i "cai" are assumed to be set elsewhere
FUNCTION ghk(v(mV), ci(mM), co(mM)) (0.001 coul/cm3) {
LOCAL z
z = (0.001)*2*F*v/(R*(celsius+273.15))
ghk = (.001)*2*F*(ci*efun(-z) - co*efun(z))
}
FUNCTION efun(z) {
if (fabs(z) < 1e-4) {
efun = 1 - z/2
}else{
efun = z/(exp(z) - 1)
}
}