-
Notifications
You must be signed in to change notification settings - Fork 1
/
nmda5.mod
192 lines (147 loc) · 4.58 KB
/
nmda5.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
TITLE detailed model of glutamate NMDA receptors
COMMENT
-----------------------------------------------------------------------------
Kinetic model of NMDA receptors
===============================
5-state gating model:
Clements & Westbrook 1991. Neuron 7: 605.
Lester & Jahr 1992. J Neurosci 12: 635.
Edmonds & Colquhoun 1992. Proc. R. Soc. Lond. B 250: 279.
Hessler, Shirke & Malinow. 1993. Nature 366: 569.
Clements et al. 1992. Science 258: 1498.
C -- C1 -- C2 -- O
|
D
Voltage dependence of Mg2+ block:
Jahr & Stevens 1990. J Neurosci 10: 1830.
Jahr & Stevens 1990. J Neurosci 10: 3178.
-----------------------------------------------------------------------------
Based on voltage-clamp recordings of NMDA receptor-mediated currents in rat
hippocampal slices (Hessler et al., Nature 366: 569-572, 1993), this model
was fit directly to experimental recordings in order to obtain the optimal
values for the parameters (see Destexhe, Mainen and Sejnowski, 1996).
-----------------------------------------------------------------------------
This mod file does not include mechanisms for the release and time course
of transmitter; it is to be used in conjunction with a sepearate mechanism
to describe the release of transmitter and that provides the concentration
of transmitter in the synaptic cleft (to be connected to pointer C here).
-----------------------------------------------------------------------------
See details in:
Destexhe, A., Mainen, Z.F. and Sejnowski, T.J. Kinetic models of
synaptic transmission. In: Methods in Neuronal Modeling (2nd edition;
edited by Koch, C. and Segev, I.), MIT press, Cambridge, 1998, pp 1-25.
(electronic copy available at http://cns.iaf.cnrs-gif.fr)
Written by Alain Destexhe and Zach Mainen, 1995
-----------------------------------------------------------------------------
ENDCOMMENT
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
POINT_PROCESS NMDA5
POINTER C
RANGE C0, C1, C2, D, O, B
RANGE g, gmax, rb
GLOBAL Erev, mg, Rb, Ru, Rd, Rr, Ro, Rc
GLOBAL vmin, vmax
NONSPECIFIC_CURRENT i
}
UNITS {
(nA) = (nanoamp)
(mV) = (millivolt)
(pS) = (picosiemens)
(umho) = (micromho)
(mM) = (milli/liter)
(uM) = (micro/liter)
}
PARAMETER {
Erev = 0 (mV) : reversal potential
gmax = 500 (pS) : maximal conductance
mg = 0 (mM) : external magnesium concentration
vmin = -120 (mV)
vmax = 100 (mV)
: Rates
: Destexhe, Mainen & Sejnowski, 1996
Rb = 5e-3 (/uM /ms) : binding
Ru = 12.9e-3 (/ms) : unbinding
Rd = 8.4e-3 (/ms) : desensitization
Rr = 6.8e-3 (/ms) : resensitization
Ro = 46.5e-3 (/ms) : opening
Rc = 73.8e-3 (/ms) : closing
}
COMMENT
: Clements et al. 1992
Rb = 5e-3 (/uM /ms) : binding
Ru = 9.5e-3 (/ms) : unbinding
Rd = 16e-3 (/ms) : desensitization
Rr = 13e-3 (/ms) : resensitization
Ro = 25e-3 (/ms) : opening
Rc = 59e-3 (/ms) : closing
: Hessler Shirke & Malinow 1993
Rb = 5e-3 (/uM /ms) : binding
Ru = 9.5e-3 (/ms) : unbinding
Rd = 16e-3 (/ms) : desensitization
Rr = 13e-3 (/ms) : resensitization
Ro = 25e-3 (/ms) : opening
Rc = 59e-3 (/ms) : closing
: Clements & Westbrook 1991
Rb = 5 (uM /s) : binding
Ru = 5 (/s) : unbinding -> gives Kd = Rb/Ru = 1 uM
Rd = 4.0 (/s) : desensitization
Rr = 0.3 (/s) : resensitization
Ro = 10 (/s) : opening
Rc = 322 (/s) : closing
: Edmonds & Colquhoun 1992
Rb = 5 (uM /s) : binding
Ru = 4.7 (/s) : unbinding
Rd = 8.4 (/s) : desensitization
Rr = 1.8 (/s) : resensitization
Ro = 46.5 (/s) : opening
Rc = 91.6 (/s) : closing
: Lester & Jahr 1992
Rb = 5 (uM /s) : binding
Ru = 6.7 (/s) : unbinding
Rd = 15.2 (/s) : desensitization
Rr = 9.4 (/s) : resensitization
Ro = 83.8 (/s) : opening
Rc = 83.8 (/s) : closing
ENDCOMMENT
ASSIGNED {
v (mV) : postsynaptic voltage
i (nA) : current = g*(v - Erev)
g (pS) : conductance
C (mM) : pointer to glutamate concentration
rb (/ms) : binding
}
STATE {
: Channel states (all fractions)
C0 : unbound
C1 : single bound
C2 : double bound
D : desensitized
O : open
B : fraction free of Mg2+ block
}
INITIAL {
rates(v)
C0 = 1
}
BREAKPOINT {
rates(v)
SOLVE kstates METHOD sparse
g = gmax * O * B
i = (1e-6) * g * (v - Erev)
}
KINETIC kstates {
rb = Rb * (1e3) * C
~ C0 <-> C1 (rb,Ru)
~ C1 <-> C2 (rb,Ru)
~ C2 <-> D (Rd,Rr)
~ C2 <-> O (Ro,Rc)
CONSERVE C0+C1+C2+D+O = 1
}
PROCEDURE rates(v(mV)) {
TABLE B
DEPEND mg
FROM vmin TO vmax WITH 200
: from Jahr & Stevens
B = 1 / (1 + exp(0.062 (/mV) * -v) * (mg / 3.57 (mM)))
}