-
Notifications
You must be signed in to change notification settings - Fork 1
/
release.mod
190 lines (147 loc) · 5.14 KB
/
release.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
TITLE transmitter release
COMMENT
-----------------------------------------------------------------------------
Simple (minimal?) model of transmitter release
- single compartment, need calcium influx and efflux
- Ca++ binds to a "fusion factor" protein F leading to an activated form FA.
Assuming a cooperativity factor of 4 (see Augustine & charlton,
J Physiol. 381: 619-640, 1986), one obtains:
F + 4 Cai <-> FA (kb,ku)
- FA binds to presynaptic vesicles and activates them according to:
FA + V <-> VA (k1,k2)
VA represents the "activated vesicle" which is able to bind to the
membrane and release transmitter. Presynaptic vesicles (V) are
considered in excess.
- VA releases nt transmitter molecules in the synaptic cleft
VA -> nt T (k3)
This reaction is the slowest and a constant number of transmitter per
vesicule is considered (nt).
- Finally, T is hydrolyzed according to a first-order reaction
T -> ... (kh)
References:
Destexhe, A., Mainen, Z.F. and Sejnowski, T.J. Synthesis of models for
excitable membranes, synaptic transmission and neuromodulation using a
common kinetic formalism, Journal of Computational Neuroscience 1:
195-230, 1994.
Destexhe, A., Mainen, Z.F. and Sejnowski, T.J. Kinetic models of
synaptic transmission. In: Methods in Neuronal Modeling (2nd edition;
edited by Koch, C. and Segev, I.), MIT press, Cambridge, 1998, pp 1-25.
(electronic copy available at http://cns.iaf.cnrs-gif.fr)
For a more realistic model, see Yamada, WM & Zucker, RS. Time course
of transmitter release calculated from simulations of a calcium
diffusion model. Biophys. J. 61: 671-5682, 1992.
Written by A. Destexhe, Salk Institute, December 1993; modified 1996
-----------------------------------------------------------------------------
ENDCOMMENT
: the following is the comment from the old cad which became incorporated
: into rel ...
: TITLE decay of internal calcium concentration
:
: Internal calcium concentration due to calcium currents and pump.
: Differential equations.
:
: Simple model of ATPase pump with 3 kinetic constants (Destexhe 92)
: Cai + P <-> CaP -> Cao + P (k1,k2,k3)
: A Michaelis-Menten approximation is assumed, which reduces the complexity
: of the system to 2 parameters:
: kt = <tot enzyme concentration> * k3 -> TIME CONSTANT OF THE PUMP
: kd = k2/k1 (dissociation constant) -> EQUILIBRIUM CALCIUM VALUE
: The values of these parameters are chosen assuming a high affinity of
: the pump to calcium and a low transport capacity (cfr. Blaustein,
: TINS, 11: 438, 1988, and references therein).
:
: Units checked using "modlunit" -> factor 10000 needed in ca entry
:
: VERSION OF PUMP + DECAY (decay can be viewed as simplified buffering)
:
: All variables are range variables
:
:
: This mechanism was published in: Destexhe, A. Babloyantz, A. and
: Sejnowski, TJ. Ionic mechanisms for intrinsic slow oscillations in
: thalamic relay neurons. Biophys. J. 65: 1538-1552, 1993)
:
: (electronic copy available at http://cns.iaf.cnrs-gif.fr)
:
: Written by Alain Destexhe, Salk Institute, Nov 12, 1992
:
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
SUFFIX rel
USEION ca READ ica, cai WRITE cai
RANGE T,FA,CA,Fmax,Ves,b,u,k1,k2,k3,nt,kh
: from cad :
RANGE depth,kt,kd,cainf,taur
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(mM) = (milli/liter)
: from cad:
(molar) = (1/liter) : moles do not appear in units
: (mM) = (millimolar)
(um) = (micron)
: (mA) = (milliamp)
(msM) = (ms mM)
}
: from cad:
CONSTANT {
FARADAY = 96489 (coul) : moles do not appear in units
: FARADAY = 96.489 (k-coul) : moles do not appear in units
}
PARAMETER {
Ves = 0.1 (mM) : conc of vesicles
Fmax = 0.001 (mM) : conc of fusion factor F
b = 1e16 (/mM4-ms) : ca binding to F
u = 0.1 (/ms) : ca unbinding
k1 = 1000 (/mM-ms) : F binding to vesicle
k2 = 0.1 (/ms) : F unbinding to vesicle
k3 = 4 (/ms) : exocytosis of T
nt = 10000 : nb of molec of T per vesicle
kh = 10 (/ms) : cst for hydolysis of T
: from cad:
depth = .1 (um) : depth of shell
taur = 700 (ms) : rate of calcium removal
cainf = 1e-8 (mM)
kt = 1 (mM/ms) : estimated from k3=.5, tot=.001
kd = 5e-4 (mM) : estimated from k2=250, k1=5e5
}
ASSIGNED {
ica (mA/cm2)
drive_channel (mM/ms)
drive_pump (mM/ms)
}
STATE {
FA (mM)
VA (mM)
T (mM)
cai (mM)
}
INITIAL {
FA = 0
VA = 0
T = 0
: cai = 1e-8
cai = kd
}
BREAKPOINT {
SOLVE state METHOD derivimplicit
}
LOCAL bfc , kfv
DERIVATIVE state {
bfc = b * (Fmax-FA-VA) * cai^4
kfv = k1 * FA * Ves
: this is the old equation incorporated into the below:
: cai' = - bfc + 4 * u * FA
FA' = bfc - u * FA - kfv + k2 * VA
VA' = kfv - (k2+k3) * VA
T' = nt * k3 * VA - kh * T
: from cad:
drive_channel = - (10000) * ica / (2 * FARADAY * depth)
if (drive_channel <= 0.) { drive_channel = 0. } : cannot pump inward
: drive_pump = -tot * k3 * cai / (cai + ((k2+k3)/k1) ) : quasistat
drive_pump = -kt * cai / (cai + kd ) : Michaelis-Menten
: this is the eq for cai prime from cad incorporated into below:
: cai' = drive_channel + drive_pump + (cainf-cai)/taur
cai'= -bfc+4*u*FA + drive_channel + drive_pump + (cainf-cai)/taur
}