-
Notifications
You must be signed in to change notification settings - Fork 0
/
KIn.mod
107 lines (82 loc) · 2.9 KB
/
KIn.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
TITLE KIn.mod - modified potassium channels
COMMENT
This is a Hodgkin-Huxley model of inactivating K channels
modified from hh.mod
P. Jonas, 12 September 2001
temperature dependence is given up - Q10 scaling is not used any longer
Reference: Hines and Carnevale, Expanding NEURON's repertoire of mechanisms with NMODL, Neural Computation 12, 839-851, 2000
23 October 2001, new version for Faklers Kv1.4 wild type
18 November 2001 - final version, as published in Wissmann et al., JBC 278, 16142-16150
ENDCOMMENT
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
}
? interface
NEURON {
THREADSAFE
SUFFIX KIn : KIn
USEION k READ ek WRITE ik : local K may affect ion flux, and ion fluc may affect local K
RANGE gkbar, gk, scale_a, scale_i : functions of position
GLOBAL ninf, ntau, hinf, htau
}
PARAMETER {
gkbar = .0 (mho/cm2) <0,1e9> : so these parameter are viewed and can be changed in GUI
scale_a = 1.0
scale_i = 1.0
}
STATE {
n h : n for activation, h for inactivation
}
ASSIGNED {
v (mV) : variables given values outside the mod file
celsius (degC)
ek (mV)
gk (mho/cm2) : variables that appear on left hand side of assigment statements within the mod file
ik (milliamp/cm2)
ninf
ntau (ms)
hinf
htau (ms)
}
? currents
BREAKPOINT { : this block is responsible for making all variables consistent at time t
SOLVE states METHOD cnexp
gk = gkbar*n*n*n*n*h
ik = gk*(v - ek)
}
INITIAL {
rates(v)
n = ninf
h = hinf
}
? states
DERIVATIVE states {
rates(v)
n' = (ninf-n)/ntau
h' = (hinf-h)/htau
}
? rates
PROCEDURE rates(v(mV)) { :Computes rate and other constants at current v.
:Call once from HOC to initialize inf at resting v.
LOCAL alpha, beta, sum
UNITSOFF
alpha = scale_a*.01*vtrap(-(v+55),10)
beta = scale_a*.125*exp(-(v+65)/80)
sum = alpha + beta
ntau = 1/sum
ninf = alpha/sum
alpha = scale_i*0.0000256077*exp(-v/45.4217)
beta = scale_i*0.0330402/(exp(-(v+45.6599)/2.30235) + 1) :Recombinant Kv1.4
sum = alpha + beta
htau = 1/sum
hinf = alpha/sum
}
FUNCTION vtrap(x,y) { :Traps for 0 in denominator of rate eqns., based on three terms of infinite series expansion of exp
if (fabs(x/y) < 1e-6) {
vtrap = y*(1 - x/y/2)
} else {
vtrap = x/(exp(x/y) - 1)
}
}
UNITSON