-
Notifications
You must be signed in to change notification settings - Fork 0
/
smallDRG_DIV0.m
387 lines (303 loc) · 10.6 KB
/
smallDRG_DIV0.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
% LAST UPDATED: Aug. 25, 2022
function [spike, V] = smallDRG_DIV0(amp, duration, stim_on, stim_length)
with_noise = 1;
%% Cell Properties
% Cell Morphology:
r = 11.63; % [um] cell radius
CellArea = 4*pi*(r^2); % [um2] cell area (sphere)
SAV = 3/(r*10^-4);% surface area to volume ratio (um to cm)
% Cell Capacitance:
Cr = 17; %[pF]
C = (Cr/CellArea)*100; % [uF/cm^2]
% Cell Resistance:
% Rr = 2.5; % real cell resistance in [GOhms]
% R = (Rr * CellArea)*10; % model cell resistance in [Ohms*cm^2]
% Reversal Potential [mV]:
Ena = 50;
Ek = -90;
ELeak = -62.5; % [mV] mean RMP of DIV0 neurons = -62.5196 after JP correction(+15mV)
%**** BASELINE: rheo = 17pA
gLeak = 0.025; %(1/Rr)/CellArea*(10^2); % [mS/cm2] normalized by cell area
gAHP = 2.5;
gKm = 0.05;
gKdr = 3.5;
beta_z_AHP = 5;% [mV]
gamma_z = 4; % [mV] - same for gAHP and gM
tau_z = 100;
%** Na conductances:
g_nav1p3 = 0;
g_nav1p8 = 30;% native
g_nav1p7 = 3; % native
% g_nav1p9 = 0;
%**** PHARMACOLOGY
% g_nav1p8 = 4; % 90% block - rheo = 17pA
%**** DYNAMIC CLAMP EXPERIMENT
% g_nav1p7 = 40; % rheo = 6 pA
%% Stimulus parameters
dt = 0.01; % time step for forward euler method
loop = duration/dt; % no. of iterations of euler
stim_off = stim_on + stim_length; % [ms]
%% Noise parameters
mu_noise = 0;
tau_noise = 5; % (ms)
sigma_noise = 0.05; %.1; % ~ sigma(noise) ~ 0.5 uA/cm2
%% Initialize empty vectors for storing currents and gating variables
V = zeros(1,loop);
INaV1p3 = zeros(1,loop);
INaV1p7 = zeros(1,loop);
INaV1p8 = zeros(1,loop);
IKdr = zeros(1,loop);
IKm = zeros(1,loop);
ILeak = zeros(1,loop);
IAHP = zeros(1,loop);
Ihold = -3;
Istim = zeros(1,loop)+(Ihold*10^-6)/(CellArea*10^-8); % convert pA to um/cm2
Inoise = zeros(1,loop);
m3 = zeros(1,loop);
m7 = zeros(1,loop);
h7 = zeros(1,loop);
h3 = zeros(1,loop);
m8 = zeros(1,loop);
h8 = zeros(1,loop);
ndr = zeros(1,loop);
ldr = zeros(1,loop);
nm = zeros(1,loop);
z_AHP = zeros(1,loop); % Prescott et al. 2008
spike = zeros(1,loop);
ref = zeros(1,loop);
%% Set initial values:
m3(1) = 0;
m7(1) = 0;
m8(1) = 0;
h3(1) = 0;
h7(1) = 0;
h8(1) = 0.9952;
ndr(1) = 0;
ldr(1) = 0.6487;
nm(1) = 0.0014;
V(1) = -69.5;
%% Run simulation
Istim(stim_on/dt:stim_off/dt) = Istim(stim_on/dt:stim_off/dt)+(amp*10^-6)/(CellArea*10^-8); % convert pA to um/cm2
for step = 1:loop-1 % Euler method
%% Voltage Calculation
dV_dt = (Istim(step) + Inoise(step) - INaV1p3(step) - INaV1p7(step) - INaV1p8(step)-IKdr(step)-IKm(step)-ILeak(step)-IAHP(step))/C;
V(step+1) = V(step) + dV_dt*dt;
%% Current Equations
% Sodium currents
%%%%% NaV1p3 (modified from Nav1.7)
dm3_dt = nav1p3_alpm_1p7(V(step))*(1-m3(step))-nav1p3_betm_1p7(V(step))*m3(step);
m3(step+1) = m3(step) + dm3_dt*dt;
dh3_dt = nav1p3_alph_1p7(V(step))*(1-h3(step))-nav1p3_beth_1p7(V(step))*h3(step);
h3(step+1) = h3(step) + dh3_dt*dt;
INaV1p3(step+1) = g_nav1p3*m3(step)^3*h3(step)*(V(step)-Ena);
%%%%% NaV1p7
dm7_dt = nav1p7_alpm(V(step))*(1-m7(step))-nav1p7_betm(V(step))*m7(step);
m7(step+1) = m7(step) + dm7_dt*dt;
dh7_dt = nav1p7_alph(V(step))*(1-h7(step))-nav1p7_beth(V(step))*h7(step);
h7(step+1) = h7(step) + dh7_dt*dt;
INaV1p7(step+1) = g_nav1p7*m7(step)^3*h7(step)*(V(step)-Ena);
%%%%% NaV1p8
dm8_dt = nav1p8_alpm(V(step))*(1-m8(step))-nav1p8_betm(V(step))*m8(step);
m8(step+1) = m8(step) + dm8_dt*dt;
dh8_dt = nav1p8_alph(V(step))*(1-h8(step))-nav1p8_beth(V(step))*h8(step);
h8(step+1) = h8(step) + dh8_dt*dt;
INaV1p8(step+1) = g_nav1p8*m8(step)^3*h8(step)*(V(step)-Ena);
% Potassium
%%%%% Kdr - activation(n), inactivation(l)
q10=3^((25-30)/10);
ninf = 1/(1+kdr_alpn(V(step)));
taun = kdr_betn(V(step))/(q10*0.03*(1+kdr_alpn(V(step))));
linf = 1/(1+kdr_alpl(V(step)));
taul = kdr_betl(V(step))/(q10*0.001*(1 + kdr_alpl(V(step))));
dndr_dt = (ninf - ndr(step))/taun;
ndr(step+1) = ndr(step) + dndr_dt*dt;
dldr_dt = (linf - ldr(step))/taul;
ldr(step+1) = ldr(step) + dldr_dt*dt;
IKdr(step+1) = gKdr*ndr(step)^3*ldr(step)*(V(step)-Ek);
%%%%% Km
dn_dt = (km_ninf(V(step))-nm(step))/km_ntau(V(step));
nm(step+1) = nm(step) + dn_dt*dt;
IKm(step+1) = gKm*nm(step)*(V(step)-Ek);
%%%%% AHP
dz_AHP_dt = (1/(1+exp((beta_z_AHP-V(step))/gamma_z))-z_AHP(step))/tau_z;
z_AHP(step+1) = z_AHP(step) + dt*dz_AHP_dt; % forward Euler equation
IAHP(step+1) = gAHP*z_AHP(step)^1*(V(step)-Ek); % modified
% Leak current
ILeak(step+1) = gLeak*(V(step)-ELeak);
% Noise (Ornstein-Uhlenbeck process)
di_noise_dt = -1/tau_noise*(Inoise(step)-mu_noise)+ sigma_noise/sqrt(dt)*sqrt(2/tau_noise)*randn;
if with_noise == 1
Inoise(step+1) = Inoise(step)+dt*di_noise_dt;
else
Inoise(step+1) = 0;
end
spike(step) = (V(step) > 0).*(~ref(step));
ref(step+1) = (V(step) > 0);
end
close all;
figure
plot(0:dt:duration-dt,V,'-k')
xlim([0 duration]); ylim([-100 60]);
box off;
set(gca,'TickDir','out','FontSize',15)
% set(gcf,'position',[1053 457 719 212])
set(gcf,'position',[191 650 371 198]) % Nov8-2020
xlabel('Time (ms)'); ylabel('Voltage (mV)')
xlim([400 1700])
figure
plot(V,m7.^3.*h7*100,'g'); hold on
plot(V,m8.^3.*h8*100,'b')
% plot(V(1:553/dt),m7(1:553/dt).^3.*h7(1:553/dt)*100,'g'); hold on
% plot(V(1:553/dt),m8(1:553/dt).^3.*h8(1:553/dt)*100,'b')
ylabel('Availability (%)')
% plot(V,m7.^3.*h7*g_nav1p7,'g'); hold on
% plot(V,m8.^3.*h8*g_nav1p8,'b')
% ylabel('g (nS/cm^{2})')
pbaspect([1 1 1])
xlabel('Voltage');
set(gca,'TickDir','out','FontSize',15); box off;
% Added on May19-2021 to compare INa vs IK
figure
x_range = [450 600];
subplot(2,1,1)
plot(0:dt:duration-dt,V)
ylabel('Voltage (mV)');
set(gca,'TickDir','out','FontSize',15); box off
xlim(x_range); ylim([-100 50])
subplot(2,1,2)
plot(0:dt:duration-dt,INaV1p3+INaV1p7+INaV1p8,'r')
hold on
plot(0:dt:duration-dt,IKdr+IKm+IAHP,'b')
legend Na K
set(gca,'TickDir','out','FontSize',15); box off
ylabel('Current (uA/cm2)'); xlabel('Time (ms)')
xlim(x_range); ylim([-250 250])
set(gcf,'position',[ 680 312 370 666])
figure
% y_range = [450 600]; % default
% y_range = [490 520]; % 1st spike
y_range = [519 625]; % 2nd spike
V_color = jet( numel(y_range(1)/dt:y_range(2)/dt));
x_range = [-100 60];
subplot(3,1,1) % spike
plot(V(y_range(1)/dt:y_range(2)/dt),y_range(1):dt:y_range(2))% flipped
xlim(x_range); ylim(y_range);
set(gca,'TickDir','out','FontSize',15); set(gca,'xticklabel',[])
ylabel('Time (ms)') %xlabel('Voltage (mV)');
pbaspect([1 1 1]); box off;
set(gca, 'YDir', 'reverse')
subplot(3,1,2) % Activation curve
v = -100:1:60;
malpha = zeros(size(v,2),1);
mbeta = zeros(size(v,2),1);
halpha = zeros(size(v,2),1);
hbeta = zeros(size(v,2),1);
for i =1:size(v,2)
malpha(i) = nav1p8_alpm(v(i)); % dynamic clamp config
mbeta(i) = nav1p8_betm(v(i)); % dynamic clamp config
halpha(i) = nav1p8_alph(v(i)); %dynamic clamp config
hbeta(i) = nav1p8_beth(v(i)); % dynamic clamp config
end
m = malpha./(malpha + mbeta);
h = halpha./(halpha + hbeta);
m = m.^3;
plot(v,m,'b')
% hold on
% plot(vh_p,malpha(find(v==vh_p)),'r*') % plotting V1/2
% hold on
% plot(v,h,'b')
% plot(vh_q,halpha(find(v==vh_q)),'b*')
pbaspect([1 1 1]); box off;
ylabel('% Activation') %xlabel('Voltage(mV)');
xlim(x_range); ylim([0 1])
set(gca,'TickDir','out','FontSize',15); set(gca,'xticklabel',[])
hold off
subplot(3,1,3) % phase plot
plot(V(y_range(1)/dt:y_range(2)/dt),m7(y_range(1)/dt:y_range(2)/dt).^3.*h7(y_range(1)/dt:y_range(2)/dt)*100,'g'); hold on
% plot(V(y_range(1)/dt:y_range(2)/dt),m8(y_range(1)/dt:y_range(2)/dt).^3.*h8(y_range(1)/dt:y_range(2)/dt)*100,'b')
% plot(V(1:560/dt),m7(1:560/dt).^3.*h7(1:560/dt)*100,'g'); hold on
% plot(V(1:560/dt),m8(1:560/dt).^3.*h8(1:560/dt)*100,'b')
X = V(y_range(1)/dt:y_range(2)/dt);
Y = m8(y_range(1)/dt:y_range(2)/dt).^3.*h8(y_range(1)/dt:y_range(2)/dt)*100;
for i = 1: length(V_color)-1
line('XData',X(i:i+1), 'YData', Y(i:i+1), 'Color',V_color(i,:));
end
xlabel('Voltage(mV)'); ylabel('Availability (%)')
set(gca,'TickDir','out','FontSize',15);
pbaspect([1 1 1]); box off;
xlim([x_range])
set(gcf,'position',[680 85 372 893])
end
% Nav1.3 (modified from nav1.7)
function [alpm] = nav1p3_alpm_1p7(v)
jp = 4.2;% voltage shift for inactivation
alpm = 10.22/(1+exp((v-(-7.19-jp-12))/-15.43)); % Vclamp data
end
function [betm] = nav1p3_betm_1p7(v)
jp = 4.2;% voltage shift for inactivation
betm = 23.76/(1+exp((v-(-70.37-jp-12))/14.53)); % Vclamp data
end
function [alph] = nav1p3_alph_1p7(v)
jp = 4.2;% voltage shift for inactivation
alph = 0.0744/(1+exp((v-(-99.76-jp))/11.07)); % <<<<<<<
end
function [beth] = nav1p3_beth_1p7(v)
jp = 4.2;% voltage shift for inactivation
beth = 2.54/(1+exp((v-(-7.8-jp))/-10.68));
end
%% NaV1.7 from Vasylyev et al. 2014
function [alpm] = nav1p7_alpm(v)
alpm = 10.22/(1+exp((v-(-7.19-4.2))/-15.43)); % junction potential = 4.3
end
function [betm] = nav1p7_betm(v)
betm = 23.76/(1+exp((v-(-70.37-4.2))/14.53)); % junction potential = 4.3
end
function [alph] = nav1p7_alph(v)
alph = 0.0744/(1+exp((v-(-99.76-4.2))/11.07)); % junction potential = 4.3 mV
end
function [beth] = nav1p7_beth(v)
beth = 2.54/(1+exp((v-(-7.8-4.2))/-10.68)); % junction potential = 4.3 mV
end
%% NaV1.8 from Han et al., 2015. J Neurophysiol 113: 3172�3185.
% doi:10.1152/jn.00113.2015.
function [alpm] = nav1p8_alpm(v)
% alpm = 7.21/(1+exp((v-0.063)/-7.86)); % original
alpm = 7.21/(1+exp((v-(0.063-5.3))/-7.86)); % after JP correction (+5.3mV)
end
function [betm] = nav1p8_betm(v)
% betm = 7.4/(1+exp((v+53.06)/19.34)); % original
betm = 7.4/(1+exp((v-(-53.06-5.3))/19.34)); % after JP correction (+5.3mV)
end
function [alph] = nav1p8_alph(v)
% alph = 1.63/(1+exp((v+68.5)/10.01)); % original
alph = 1.63/(1+exp((v-(-68.5-5.3))/10.01)); % after JP correction (+5.3mV)
end
function [beth] = nav1p8_beth(v)
% beth = 0.81/(1+exp((v-11.44)/-13.12)); % original
beth = 0.81/(1+exp((v-(11.44-5.3))/-13.12)); % after JP correction (+5.3mV)
end
%% Delayed rectifier (Kdr) from Borg-Graham 1987 (ref. in Sundt et al. 2015)
function [alpn] = kdr_alpn(v)
alpn = exp(1.e-3*-5*(v+32)*9.648e4/(8.315*(273.16+25))); % original
end
function [betn] = kdr_betn(v)
gmn= 0.4 ;
betn = exp(1.e-3*-5*gmn*(v+32)*9.648e4/(8.315*(273.16+25))); % original
end
function [alpl] = kdr_alpl(v)
alpl = exp(1.e-3*2*(v-(-61))*9.648e4/(8.315*(273.16+25)));
end
function [betl] = kdr_betl(v)
gml=1.0;
betl = exp(1.e-3*2*gml*(v-(-61))*9.648e4/(8.315*(273.16+25)));
end
%% M-type (Km) from
function [ntau] = km_ntau(v)
celsius = 25;
tadj = 3^((celsius-23.5)/10);
% ntau = 1000.0/(3.3*(exp((v-(-35))/20)+exp(-(v+35)/20))) / tadj;%original
ntau = 1000.0/(3.3*(exp((v-(-35))/10)+exp(-(v+35)/10))) / tadj;
end
function [ninf] = km_ninf(v)
ninf = 1.0 / (1+exp(-(v-(-35))/5));
end