-
Notifications
You must be signed in to change notification settings - Fork 0
/
cat.mod
129 lines (103 loc) · 2 KB
/
cat.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
TITLE T-calcium channel
: T-type calcium channel
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(molar) = (1/liter)
(mM) = (millimolar)
FARADAY = 96520 (coul)
R = 8.3134 (joule/degC)
KTOMV = .0853 (mV/degC)
}
PARAMETER {
v (mV)
celsius = 25 (degC)
gcatbar=.003 (mho/cm2)
cai = 50.e-6 (mM)
cao = 2 (mM)
q10 = 5
mmin=0.2
hmin=10
a0h =0.015
zetah = 3.5
vhalfh = -75
gmh=0.6
a0m =0.04
zetam = 2
vhalfm = -28
gmm=0.1
}
NEURON {
SUFFIX cat
USEION ca READ cai,cao WRITE ica
RANGE gcatbar, ica, gcat
GLOBAL hinf,minf,mtau,htau
}
STATE {
m h
}
ASSIGNED {
ica (mA/cm2)
gcat (mho/cm2)
hinf
htau
minf
mtau
}
INITIAL {
rates(v)
m = minf
h = hinf
}
BREAKPOINT {
SOLVE states METHOD cnexp
gcat = gcatbar*m*m*h
ica = gcat*ghk(v,cai,cao)
}
DERIVATIVE states { : exact when v held constant
rates(v)
m' = (minf - m)/mtau
h' = (hinf - h)/htau
}
FUNCTION ghk(v(mV), ci(mM), co(mM)) (mV) {
LOCAL nu,f
f = KTF(celsius)/2
nu = v/f
ghk=-f*(1. - (ci/co)*exp(nu))*efun(nu)
}
FUNCTION KTF(celsius (DegC)) (mV) {
KTF = ((25./293.15)*(celsius + 273.15))
}
FUNCTION efun(z) {
if (fabs(z) < 1e-4) {
efun = 1 - z/2
}else{
efun = z/(exp(z) - 1)
}
}
FUNCTION alph(v(mV)) {
alph = exp(0.0378*zetah*(v-vhalfh))
}
FUNCTION beth(v(mV)) {
beth = exp(0.0378*zetah*gmh*(v-vhalfh))
}
FUNCTION alpmt(v(mV)) {
alpmt = exp(0.0378*zetam*(v-vhalfm))
}
FUNCTION betmt(v(mV)) {
betmt = exp(0.0378*zetam*gmm*(v-vhalfm))
}
PROCEDURE rates(v (mV)) { :callable from hoc
LOCAL a,b, qt
qt=q10^((celsius-25)/10)
a = 0.2*(-1.0*v+19.26)/(exp((-1.0*v+19.26)/10.0)-1.0)
b = 0.009*exp(-v/22.03)
minf = a/(a+b)
mtau = betmt(v)/(qt*a0m*(1+alpmt(v)))
if (mtau<mmin) {mtau=mmin}
a = 1.e-6*exp(-v/16.26)
b = 1/(exp((-v+29.79)/10.)+1.)
hinf = a/(a+b)
htau = beth(v)/(a0h*(1+alph(v)))
if (htau<hmin) {htau=hmin}
}