Skip to content

Latest commit

 

History

History
63 lines (45 loc) · 2.02 KB

README.md

File metadata and controls

63 lines (45 loc) · 2.02 KB

Elo rating system for Machine Learning models

CRAN_Status_Badge Build Status Coverage Status

Overview

The EloML package provides Elo rating system for machine learning models. Elo Predictive Power (EPP) score helps to assess model performance based Elo ranking system.

Find more in the EPP: interpretable score of model predictive power arxiv paper.

Installation

Installation time should not exceed 1 minute.

# Install the the development version from GitHub:
# install.packages("devtools")
devtools::install_github("ModelOriented/EloML")

Usage

The following example takes less than 20 seconds to complete.

Load EloML library and benchmark data. In the example we use the data frame auc_data from the EloML package. The data used for EPP calculations should be a data frame, where first 3 columns correspond to: Player (model), Round (split), Score (auc).

library(EloML)
data(auc_scores)

head(auc_scores)

#        model split       auc
# 1 catboost_1     1 0.9824724
# 2 catboost_1     2 0.9820267
# 3 catboost_1     3 0.9801000
# 4 catboost_1     4 0.9848932
# 5 catboost_1     5 0.9845456
# 6 catboost_1     6 0.9858062

To calculate EPP use calculate_epp function. For more options see help of the function ?calculate_epp.

calculate_epp(auc_scores)

# Head of Players EPP: 
#       player        epp
# 1 catboost_1  -0.793627
# 2 catboost_2   2.915507
# 3 catboost_3  -1.990134
# 4      gbm_1 -20.381584
# 5     gbm_10   1.664303
# 6     gbm_11   2.714073
# Type of estimation:  glmnet