You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hi there, I think I found a minor bug in plot_acf() in section creating a dataframe for ggplot.
When providing 3 objects to plot the error occurs:
Error in `f()`:
! Insufficient values in manual scale. 3 needed but only 2 provided.
I think this is connected with the fact that labels column is character not factor and later colours <- rev(theme_drwhy_colors(nlevels(df$label))) returns only 2 colors and the scale is manual and there are three labels. nlevels() returns zero.
Here's my reprex:
library(recipes)
library(workflows)
library(parsnip)
library(DALEX)
library(DALEXtra)
data<-DALEX::titanic_imputeddata$survived<- as.factor(data$survived)
rec<- recipe(survived~., data=data) %>%
step_normalize(fare)
model_rpart<- decision_tree(tree_depth=25) %>%
set_engine("rpart") %>%
set_mode("classification")
model_lr<- logistic_reg() %>%
set_engine("glm") |>
set_mode("classification")
model_svm_ker<- svm_linear() |>
set_engine("kernlab") |>
set_mode("classification")
my_models<-list(
rpart=model_rpart, linear=model_lr, svm=model_svm_ker
)
wflows<-my_models|>purrr::map(~ workflow() %>%
add_recipe(rec) %>%
add_model(.x))
models_fitted<-wflows|>purrr::map(~ fit(.x, data=data))
#> Setting default kernel parameterslabels=list(rpart="rpart", linear="glm", svm="svm linear")
explainers<-models_fitted|>purrr::map2(
labels,
~DALEXtra::explain_tidymodels(
.x,
data=titanic_imputed,
y=titanic_imputed$survived,
label=.y
))
#> Preparation of a new explainer is initiated#> -> model label : rpart #> -> data : 2207 rows 8 cols #> -> target variable : 2207 values #> -> predict function : yhat.workflow will be used ( default )#> -> predicted values : No value for predict function target column. ( default )#> -> model_info : package tidymodels , ver. 0.1.4 , task classification ( default ) #> -> predicted values : numerical, min = 0.05555556 , mean = 0.3221568 , max = 0.9267399 #> -> residual function : difference between y and yhat ( default )#> -> residuals : numerical, min = -0.9267399 , mean = 1.858834e-17 , max = 0.9444444 #> A new explainer has been created! #> Preparation of a new explainer is initiated#> -> model label : glm #> -> data : 2207 rows 8 cols #> -> target variable : 2207 values #> -> predict function : yhat.workflow will be used ( default )#> -> predicted values : No value for predict function target column. ( default )#> -> model_info : package tidymodels , ver. 0.1.4 , task classification ( default ) #> -> predicted values : numerical, min = 0.008128381 , mean = 0.3221568 , max = 0.9731431 #> -> residual function : difference between y and yhat ( default )#> -> residuals : numerical, min = -0.9628583 , mean = -2.569726e-10 , max = 0.9663346 #> A new explainer has been created! #> Preparation of a new explainer is initiated#> -> model label : svm linear #> -> data : 2207 rows 8 cols #> -> target variable : 2207 values #> -> predict function : yhat.workflow will be used ( default )#> -> predicted values : No value for predict function target column. ( default )#> -> model_info : package tidymodels , ver. 0.1.4 , task classification ( default ) #> -> predicted values : numerical, min = 0.1870084 , mean = 0.3221698 , max = 0.7237496 #> -> residual function : difference between y and yhat ( default )#> -> residuals : numerical, min = -0.7236129 , mean = -1.301819e-05 , max = 0.8128629 #> A new explainer has been created!# debuging auditormrs<-purrr::map(explainers, ~auditor::model_residual(.x))
do.call(auditor::plot_acf, args= unname(mrs))
#> Error in `f()`:#> ! Insufficient values in manual scale. 3 needed but only 2 provided.
The text was updated successfully, but these errors were encountered:
Hi there, I think I found a minor bug in
plot_acf()
in section creating a dataframe for ggplot.When providing 3 objects to plot the error occurs:
I think this is connected with the fact that
labels
column is character not factor and latercolours <- rev(theme_drwhy_colors(nlevels(df$label)))
returns only 2 colors and the scale is manual and there are three labels.nlevels()
returns zero.Here's my reprex:
The text was updated successfully, but these errors were encountered: