Skip to content

Latest commit

 

History

History
84 lines (59 loc) · 3.58 KB

README.md

File metadata and controls

84 lines (59 loc) · 3.58 KB

快速排序

快速排序也采用了分治的思想:把原始的数组筛选成较小和较大的两个子数组,然后递归地排序两个子数组。

代码示例

Java

import java.util.Arrays;

public class QuickSort {

    private static void quickSort(int[] nums) {
        quickSort(nums, 0, nums.length - 1);
    }

    private static void quickSort(int[] nums, int low, int high) {
        if (low >= high) {
            return;
        }
        int[] p = partition(nums, low, high);
        quickSort(nums, low, p[0] - 1);
        quickSort(nums, p[0] + 1, high);
    }

    private static int[] partition(int[] nums, int low, int high) {
        int less = low - 1, more = high;
        while (low < more) {
            if (nums[low] < nums[high]) {
                swap(nums, ++less, low++);
            } else if (nums[low] > nums[high]) {
                swap(nums, --more, low);
            } else {
                ++low;
            }
        }
        swap(nums, more, high);
        return new int[] {less + 1, more};
    }

    private static void swap(int[] nums, int i, int j) {
        int t = nums[i];
        nums[i] = nums[j];
        nums[j] = t;
    }

    public static void main(String[] args) {
        int[] nums = {1, 2, 7, 4, 5, 3};
        quickSort(nums);
        System.out.println(Arrays.toString(nums));
    }
}

算法分析

空间复杂度 O(logn),时间复杂度 O(nlogn)。

对于规模为 n 的问题,一共要进行 log(n) 次的切分,和基准值进行 n-1 次比较,n-1 次比较的时间复杂度是 O(n),所以快速排序的时间复杂度为 O(nlogn)。

但是,如果每次在选择基准值的时候,都不幸地选择了子数组里的最大或最小值。即每次把把数组分成了两个更小长度的数组,其中一个长度为 1,另一个的长度是子数组的长度减 1。这样的算法复杂度变成 O(n²)。

和归并排序不同,快速排序在每次递归的过程中,只需要开辟 O(1) 的存储空间来完成操作来实现对数组的修改;而递归次数为 logn,所以它的整体空间复杂度完全取决于压堆栈的次数。

如何优化快速排序?

前面讲到,最坏情况下快速排序的时间复杂度是 O(n²),实际上,这种 O(n²) 时间复杂度出现的主要原因还是因为我们基准值选得不够合理。最理想的基准点是:被基准点分开的两个子数组中,数据的数量差不多

如果很粗暴地直接选择第一个或者最后一个数据作为基准值,不考虑数据的特点,肯定会出现之前讲的那样,在某些情况下,排序的最坏情况时间复杂度是 O(n²)。

有两个比较常用的分区算法。

1. 三数取中法

我们从区间的首、尾、中间,分别取出一个数,然后对比大小,取这 3 个数的中间值作为分区点。这样每间隔某个固定的长度,取数据出来比较,将中间值作为分区点的分区算法,肯定要比单纯取某一个数据更好。但是,如果要排序的数组比较大,那“三数取中”可能就不够了,可能要“五数取中”或者“十数取中”。

2. 随机法

随机法就是每次从要排序的区间中,随机选择一个元素作为分区点。这种方法并不能保证每次分区点都选的比较好,但是从概率的角度来看,也不大可能会出现每次分区点都选的很差的情况,所以平均情况下,这样选的分区点是比较好的。时间复杂度退化为最糟糕的 O(n²) 的情况,出现的可能性不大。