Skip to content

Latest commit

 

History

History
64 lines (41 loc) · 2.1 KB

File metadata and controls

64 lines (41 loc) · 2.1 KB

English Version

题目描述

两个(具有不同单词的)文档的交集(intersection)中元素的个数除以并集(union)中元素的个数,就是这两个文档的相似度。例如,{1, 5, 3} 和 {1, 7, 2, 3} 的相似度是 0.4,其中,交集的元素有 2 个,并集的元素有 5 个。给定一系列的长篇文档,每个文档元素各不相同,并与一个 ID 相关联。它们的相似度非常“稀疏”,也就是说任选 2 个文档,相似度都很接近 0。请设计一个算法返回每对文档的 ID 及其相似度。只需输出相似度大于 0 的组合。请忽略空文档。为简单起见,可以假定每个文档由一个含有不同整数的数组表示。

输入为一个二维数组 docsdocs[i] 表示 id 为 i 的文档。返回一个数组,其中每个元素是一个字符串,代表每对相似度大于 0 的文档,其格式为 {id1},{id2}: {similarity},其中 id1 为两个文档中较小的 id,similarity 为相似度,精确到小数点后 4 位。以任意顺序返回数组均可。

示例:

输入: 
[
  [14, 15, 100, 9, 3],
  [32, 1, 9, 3, 5],
  [15, 29, 2, 6, 8, 7],
  [7, 10]
]
输出:
[
  "0,1: 0.2500",
  "0,2: 0.1000",
  "2,3: 0.1429"
]

提示:

  • docs.length <= 500
  • docs[i].length <= 500
  • 相似度大于 0 的文档对数不会超过 1000

解法

Python3

Java

...