Skip to content

Latest commit

 

History

History
128 lines (95 loc) · 2.45 KB

File metadata and controls

128 lines (95 loc) · 2.45 KB

题目描述

数字以 0123456789101112131415…的格式序列化到一个字符序列中。在这个序列中,第 5 位(从下标 0 开始计数)是 5,第 13 位是 1,第 19 位是 4,等等。

请写一个函数,求任意第 n 位对应的数字。

示例 1:

输入:n = 3
输出:3

示例 2:

输入:n = 11
输出:0

限制:

  • 0 <= n < 2^31

注意:本题与主站 400 题相同:https://leetcode-cn.com/problems/nth-digit/

解法

  • pow = 0:0~9 有 10 位
  • pow = 1: 10~99 有 90*2=180
  • pow = 2: 100~999 有 900*3=2700 位。

先求出第 n 位所在的 pow 和真实数字,进而求出真实数字的第 n % (pow + 1) 位即可。

Python3

class Solution:
    def findNthDigit(self, n: int) -> int:
        def get_bit_num():
            return 10 if p == 0 else 9 * pow(10, p) * (p + 1)

        if n < 10:
            return n
        p = count = 0
        while 1:
            count = get_bit_num()
            if n < count: break
            n -= count
            p += 1
        num = n // (p + 1) + pow(10, p)
        return int(str(num)[n % (p + 1)])

Java

class Solution {
    public int findNthDigit(int n) {
        if (n < 10) return n;
        int pow = 0, count;
        while (true) {
            count = getBitNum(pow);
            if (n < count) break;
            n -= count;
            ++pow;
        }
        int num = n / (pow + 1) + (int) Math.pow(10, pow);
        return String.valueOf(num).charAt(n % (pow + 1)) - '0';
    }

    private int getBitNum(int pow) {
        if (pow == 0) {
            return 10;
        }
        return (int) (9 * Math.pow(10, pow) * (pow + 1));
    }
}

JavaScript

/**
 * @param {number} n
 * @return {number}
 */
var findNthDigit = function (n) {
  let i = 9;
  let a = 1;
  let remain = n;
  while (i * a < remain) {
    remain -= i * a;
    i *= 10;
    a++;
  }
  let b = remain % a;
  let res = 10 ** (a - 1) + ~~(remain / a);
  if (b === 0) {
    b = a;
    res--;
  }
  return res.toString()[b - 1];
};

...