Given a m * n
matrix of distinct numbers, return all lucky numbers in the matrix in any order.
A lucky number is an element of the matrix such that it is the minimum element in its row and maximum in its column.
Example 1:
Input: matrix = [[3,7,8],[9,11,13],[15,16,17]] Output: [15] Explanation: 15 is the only lucky number since it is the minimum in its row and the maximum in its column
Example 2:
Input: matrix = [[1,10,4,2],[9,3,8,7],[15,16,17,12]] Output: [12] Explanation: 12 is the only lucky number since it is the minimum in its row and the maximum in its column.
Example 3:
Input: matrix = [[7,8],[1,2]] Output: [7]
Constraints:
m == mat.length
n == mat[i].length
1 <= n, m <= 50
1 <= matrix[i][j] <= 10^5
.- All elements in the matrix are distinct.
class Solution:
def luckyNumbers (self, matrix: List[List[int]]) -> List[int]:
row_min = {min(rows) for rows in matrix}
col_max = {max(cols) for cols in zip(*matrix)}
return [e for e in row_min if e in col_max]
class Solution {
public List<Integer> luckyNumbers (int[][] matrix) {
int m = matrix.length, n = matrix[0].length;
Set<Integer> rowMin = new HashSet<>();
List<Integer> res = new ArrayList<>();
for (int i = 0; i < m; ++i) {
int min = Integer.MAX_VALUE;
for (int j = 0; j < n; ++j) {
min = Math.min(min, matrix[i][j]);
}
rowMin.add(min);
}
for (int j = 0; j < n; ++j) {
int max = Integer.MIN_VALUE;
for (int i = 0; i < m; ++i) {
max = Math.max(max, matrix[i][j]);
}
if (rowMin.contains(max)) {
res.add(max);
}
}
return res;
}
}