你的国家有无数个湖泊,所有湖泊一开始都是空的。当第 n
个湖泊下雨的时候,如果第 n
个湖泊是空的,那么它就会装满水,否则这个湖泊会发生洪水。你的目标是避免任意一个湖泊发生洪水。
给你一个整数数组 rains
,其中:
rains[i] > 0
表示第i
天时,第rains[i]
个湖泊会下雨。rains[i] == 0
表示第i
天没有湖泊会下雨,你可以选择 一个 湖泊并 抽干 这个湖泊的水。
请返回一个数组 ans
,满足:
ans.length == rains.length
- 如果
rains[i] > 0
,那么ans[i] == -1
。 - 如果
rains[i] == 0
,ans[i]
是你第i
天选择抽干的湖泊。
如果有多种可行解,请返回它们中的 任意一个 。如果没办法阻止洪水,请返回一个 空的数组 。
请注意,如果你选择抽干一个装满水的湖泊,它会变成一个空的湖泊。但如果你选择抽干一个空的湖泊,那么将无事发生(详情请看示例 4)。
示例 1:
输入:rains = [1,2,3,4] 输出:[-1,-1,-1,-1] 解释:第一天后,装满水的湖泊包括 [1] 第二天后,装满水的湖泊包括 [1,2] 第三天后,装满水的湖泊包括 [1,2,3] 第四天后,装满水的湖泊包括 [1,2,3,4] 没有哪一天你可以抽干任何湖泊的水,也没有湖泊会发生洪水。
示例 2:
输入:rains = [1,2,0,0,2,1] 输出:[-1,-1,2,1,-1,-1] 解释:第一天后,装满水的湖泊包括 [1] 第二天后,装满水的湖泊包括 [1,2] 第三天后,我们抽干湖泊 2 。所以剩下装满水的湖泊包括 [1] 第四天后,我们抽干湖泊 1 。所以暂时没有装满水的湖泊了。 第五天后,装满水的湖泊包括 [2]。 第六天后,装满水的湖泊包括 [1,2]。 可以看出,这个方案下不会有洪水发生。同时, [-1,-1,1,2,-1,-1] 也是另一个可行的没有洪水的方案。
示例 3:
输入:rains = [1,2,0,1,2] 输出:[] 解释:第二天后,装满水的湖泊包括 [1,2]。我们可以在第三天抽干一个湖泊的水。 但第三天后,湖泊 1 和 2 都会再次下雨,所以不管我们第三天抽干哪个湖泊的水,另一个湖泊都会发生洪水。
示例 4:
输入:rains = [69,0,0,0,69] 输出:[-1,69,1,1,-1] 解释:任何形如 [-1,69,x,y,-1], [-1,x,69,y,-1] 或者 [-1,x,y,69,-1] 都是可行的解,其中 1 <= x,y <= 10^9
示例 5:
输入:rains = [10,20,20] 输出:[] 解释:由于湖泊 20 会连续下 2 天的雨,所以没有没有办法阻止洪水。
提示:
1 <= rains.length <= 10^5
0 <= rains[i] <= 10^9