forked from utiasSTARS/bingham-rotation-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
losses.py
54 lines (47 loc) · 1.73 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import torch
from quaternions import *
from utils import *
## Quaternions
#Computes q^T A q
def quat_self_supervised_primal_loss(q, A, reduce=True):
losses = torch.einsum('bn,bnm,bm->b', q, A, q)
loss = losses.mean() if reduce else losses
return loss
def quat_consistency_loss(qs, q_target, reduce=True):
q = qs[0]
q_inv = qs[1]
assert(q.shape == q_inv.shape == q_target.shape)
d1 = quat_loss(q, q_target, reduce=False)
d2 = quat_loss(q_inv, quat_inv(q_target), reduce=False)
d3 = quat_loss(q, quat_inv(q_inv), reduce=False)
losses = d1*d1 + d2*d2 + d3*d3
loss = losses.mean() if reduce else losses
return loss
def quat_chordal_squared_loss(q, q_target, reduce=True):
assert(q.shape == q_target.shape)
d = quat_norm_diff(q, q_target)
losses = 2*d*d*(4. - d*d)
loss = losses.mean() if reduce else losses
return loss
def quat_squared_loss(q, q_target, reduce=True):
assert(q.shape == q_target.shape)
d = quat_norm_diff(q, q_target)
losses = 0.5*d*d
loss = losses.mean() if reduce else losses
return loss
def quat_loss(q, q_target, reduce=True):
assert(q.shape == q_target.shape)
d = quat_norm_diff(q, q_target)
losses = d
loss = losses.mean() if reduce else losses
return loss
## Rotation matrices
def rotmat_frob_squared_norm_loss(C, C_target, reduce=True):
"""Return the Frobenius norm of the difference betwen two batchs of N rotation matrices."""
assert(C.shape == C_target.shape)
if C.dim() < 3:
C = C.unsqueeze(dim=0)
C_target = C_target.unsqueeze(dim=0)
losses = (C - C_target).norm(dim=[1,2])**2 #6. - 2.*trace(C.bmm(C_target.transpose(1,2)))
loss = losses.mean() if reduce else losses
return loss