forked from utiasSTARS/bingham-rotation-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
quaternions.py
234 lines (188 loc) · 6.31 KB
/
quaternions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import torch
import numpy as np
import utils
import math
#NUMPY
##########
def Omega_l(q):
Om = np.zeros((4,4)) * np.nan
np.fill_diagonal(Om, q[3])
Om[0,1] = -q[2]
Om[0,2] = q[1]
Om[0,3] = q[0]
Om[1,0] = q[2]
Om[1,2] = -q[0]
Om[1,3] = q[1]
Om[2,0] = -q[1]
Om[2,1] = q[0]
Om[2,3] = q[2]
Om[3,0] = -q[0]
Om[3,1] = -q[1]
Om[3,2] = -q[2]
return Om
def Omega_r(q):
Om = np.zeros((4,4)) * np.nan
np.fill_diagonal(Om, q[3])
Om[0,1] = q[2]
Om[0,2] = -q[1]
Om[0,3] = q[0]
Om[1,0] = -q[2]
Om[1,2] = q[0]
Om[1,3] = q[1]
Om[2,0] = q[1]
Om[2,1] = -q[0]
Om[2,3] = q[2]
Om[3,0] = -q[0]
Om[3,1] = -q[1]
Om[3,2] = -q[2]
return Om
def pure_quat(v):
q = np.zeros(4)
q[:3] = v
return q
#PYTORCH
##########
#ASSUMES XYZW
def quat_inv(q):
#Note, 'empty_like' is necessary to prevent in-place modification (which is not auto-diff'able)
if q.dim() < 2:
q = q.unsqueeze()
q_inv = torch.empty_like(q)
q_inv[:, :3] = -1*q[:, :3]
q_inv[:, 3] = q[:, 3]
return q_inv.squeeze()
#Quaternion difference of two unit quaternions
def quat_norm_diff(q_a, q_b):
assert(q_a.shape == q_b.shape)
assert(q_a.shape[-1] == 4)
if q_a.dim() < 2:
q_a = q_a.unsqueeze(0)
q_b = q_b.unsqueeze(0)
return torch.min((q_a-q_b).norm(dim=1), (q_a+q_b).norm(dim=1)).squeeze()
def quat_angle_diff(q_a, q_b, units='deg', reduce=True):
assert(q_a.shape == q_b.shape)
assert(q_a.shape[-1] == 4)
diffs = quat_norm_to_angle(quat_norm_diff(q_a, q_b), units=units)
return diffs.mean() if reduce else diffs
#See Rotation Averaging by Hartley et al. (2013)
def quat_norm_to_angle(q_norms, units='deg'):
angle = 4.*torch.asin(0.5*q_norms)
if units == 'deg':
angle = (180./np.pi)*angle
elif units == 'rad':
pass
else:
raise RuntimeError('Unknown units in metric conversion.')
return angle
def quat_to_rotmat(quat, ordering='xyzw'):
"""Form a rotation matrix from a unit length quaternion.
Valid orderings are 'xyzw' and 'wxyz'.
"""
if quat.dim() < 2:
quat = quat.unsqueeze(dim=0)
if not utils.allclose(quat.norm(p=2, dim=1), 1.):
print("Warning: Some quaternions not unit length ... normalizing.")
quat = quat/quat.norm(p=2, dim=1, keepdim=True)
if ordering is 'xyzw':
qx = quat[:, 0]
qy = quat[:, 1]
qz = quat[:, 2]
qw = quat[:, 3]
elif ordering is 'wxyz':
qw = quat[:, 0]
qx = quat[:, 1]
qy = quat[:, 2]
qz = quat[:, 3]
else:
raise ValueError(
"Valid orderings are 'xyzw' and 'wxyz'. Got '{}'.".format(ordering))
# Form the matrix
mat = quat.new_empty(quat.shape[0], 3, 3)
qx2 = qx * qx
qy2 = qy * qy
qz2 = qz * qz
mat[:, 0, 0] = 1. - 2. * (qy2 + qz2)
mat[:, 0, 1] = 2. * (qx * qy - qw * qz)
mat[:, 0, 2] = 2. * (qw * qy + qx * qz)
mat[:, 1, 0] = 2. * (qw * qz + qx * qy)
mat[:, 1, 1] = 1. - 2. * (qx2 + qz2)
mat[:, 1, 2] = 2. * (qy * qz - qw * qx)
mat[:, 2, 0] = 2. * (qx * qz - qw * qy)
mat[:, 2, 1] = 2. * (qw * qx + qy * qz)
mat[:, 2, 2] = 1. - 2. * (qx2 + qy2)
return mat.squeeze_()
#Based on https://d3cw3dd2w32x2b.cloudfront.net/wp-content/uploads/2015/01/matrix-to-quat.pdf
def rotmat_to_quat(mat, ordering='xyzw'):
"""Convert a rotation matrix to a unit length quaternion.
Valid orderings are 'xyzw' and 'wxyz'.
"""
if mat.dim() < 3:
R = mat.unsqueeze(dim=0)
else:
R = mat
assert(R.shape[1] == R.shape[2])
assert(R.shape[1] == 3)
#Row first operation
R = R.transpose(1,2)
q = R.new_empty((R.shape[0], 4))
cond1_mask = R[:, 2, 2] < 0.
cond1a_mask = R[:, 0, 0] > R[:, 1, 1]
cond1b_mask = R[:, 0, 0] < -R[:, 1, 1]
if ordering=='xyzw':
v_ind = torch.arange(0,3)
w_ind = 3
else:
v_ind = torch.arange(1,4)
w_ind = 0
mask = cond1_mask & cond1a_mask
if mask.any():
t = 1 + R[mask, 0, 0] - R[mask, 1, 1] - R[mask, 2, 2]
q[mask, w_ind] = R[mask, 1, 2]- R[mask, 2, 1]
q[mask, v_ind[0]] = t
q[mask, v_ind[1]] = R[mask, 0, 1] + R[mask, 1, 0]
q[mask, v_ind[2]] = R[mask, 2, 0] + R[mask, 0, 2]
q[mask, :] *= 0.5 / torch.sqrt(t.unsqueeze(dim=1))
mask = cond1_mask & cond1a_mask.logical_not()
if mask.any():
t = 1 - R[mask,0, 0] + R[mask,1, 1] - R[mask,2, 2]
q[mask, w_ind] = R[mask,2, 0]-R[mask,0, 2]
q[mask, v_ind[0]] = R[mask,0, 1]+R[mask,1, 0]
q[mask, v_ind[1]] = t
q[mask, v_ind[2]] = R[mask,1, 2]+R[mask,2, 1]
q[mask, :] *= 0.5 / torch.sqrt(t.unsqueeze(dim=1))
mask = cond1_mask.logical_not() & cond1b_mask
if mask.any():
t = 1 - R[mask,0, 0] - R[mask,1, 1] + R[mask,2, 2]
q[mask, w_ind] = R[mask,0, 1]-R[mask,1, 0]
q[mask, v_ind[0]] = R[mask,2, 0]+R[mask,0, 2]
q[mask, v_ind[1]] = R[mask,1, 2]+R[mask,2, 1]
q[mask, v_ind[2]] = t
q[mask, :] *= 0.5 / torch.sqrt(t.unsqueeze(dim=1))
mask = cond1_mask.logical_not() & cond1b_mask.logical_not()
if mask.any():
t = 1 + R[mask, 0, 0] + R[mask,1, 1] + R[mask,2, 2]
q[mask, w_ind] = t
q[mask, v_ind[0]] = R[mask,1, 2]-R[mask,2, 1]
q[mask, v_ind[1]] = R[mask,2, 0]-R[mask,0, 2]
q[mask, v_ind[2]] = R[mask,0, 1]-R[mask,1, 0]
q[mask, :] *= 0.5 / torch.sqrt(t.unsqueeze(dim=1))
return q.squeeze()
def rotmat_angle_diff(C, C_target, units='deg', reduce=True):
assert(C.shape == C_target.shape)
if C.dim() < 3:
C = C.unsqueeze(dim=0)
C_target = C_target.unsqueeze(dim=0)
rotmat_frob_norms = (C - C_target).norm(dim=[1,2]) #torch.sqrt(6. - 2.*trace(C.bmm(C_target.transpose(1,2))))
diffs = rotmat_frob_norm_to_angle(rotmat_frob_norms, units=units)
return diffs.mean() if reduce else diffs
#See Rotation Averaging by Hartley et al. (2013)
def rotmat_frob_norm_to_angle(frob_norms, units='deg'):
sin = torch.clamp(0.25*math.sqrt(2)*frob_norms, min=-1., max=1.)
angle = 2.*torch.asin(sin)
if units == 'deg':
angle = (180./np.pi)*angle
elif units == 'rad':
pass
else:
raise RuntimeError('Unknown units in metric conversion.')
return angle