-
Notifications
You must be signed in to change notification settings - Fork 25
/
train_edm2.py
205 lines (172 loc) · 10.7 KB
/
train_edm2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# Copyright (c) 2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# This work is licensed under a Creative Commons
# Attribution-NonCommercial-ShareAlike 4.0 International License.
# You should have received a copy of the license along with this
# work. If not, see http://creativecommons.org/licenses/by-nc-sa/4.0/
"""Train diffusion models according to the EDM2 recipe from the paper
"Analyzing and Improving the Training Dynamics of Diffusion Models"."""
import os
import json
import warnings
import click
import torch
import dnnlib
from torch_utils import distributed as dist
import training.training_loop
warnings.filterwarnings('ignore', 'You are using `torch.load` with `weights_only=False`')
#----------------------------------------------------------------------------
# Configuration presets.
config_presets = {
'edm2-img512-xxs': dnnlib.EasyDict(duration=2048<<20, batch=2048, channels=64, lr=0.0170, decay=70000, dropout=0.00, P_mean=-0.4, P_std=1.0),
'edm2-img512-xs': dnnlib.EasyDict(duration=2048<<20, batch=2048, channels=128, lr=0.0120, decay=70000, dropout=0.00, P_mean=-0.4, P_std=1.0),
'edm2-img512-s': dnnlib.EasyDict(duration=2048<<20, batch=2048, channels=192, lr=0.0100, decay=70000, dropout=0.00, P_mean=-0.4, P_std=1.0),
'edm2-img512-m': dnnlib.EasyDict(duration=2048<<20, batch=2048, channels=256, lr=0.0090, decay=70000, dropout=0.10, P_mean=-0.4, P_std=1.0),
'edm2-img512-l': dnnlib.EasyDict(duration=1792<<20, batch=2048, channels=320, lr=0.0080, decay=70000, dropout=0.10, P_mean=-0.4, P_std=1.0),
'edm2-img512-xl': dnnlib.EasyDict(duration=1280<<20, batch=2048, channels=384, lr=0.0070, decay=70000, dropout=0.10, P_mean=-0.4, P_std=1.0),
'edm2-img512-xxl': dnnlib.EasyDict(duration=896<<20, batch=2048, channels=448, lr=0.0065, decay=70000, dropout=0.10, P_mean=-0.4, P_std=1.0),
'edm2-img64-xs': dnnlib.EasyDict(duration=1024<<20, batch=2048, channels=128, lr=0.0120, decay=35000, dropout=0.00, P_mean=-0.8, P_std=1.6),
'edm2-img64-s': dnnlib.EasyDict(duration=1024<<20, batch=2048, channels=192, lr=0.0100, decay=35000, dropout=0.00, P_mean=-0.8, P_std=1.6),
'edm2-img64-m': dnnlib.EasyDict(duration=2048<<20, batch=2048, channels=256, lr=0.0090, decay=35000, dropout=0.10, P_mean=-0.8, P_std=1.6),
'edm2-img64-l': dnnlib.EasyDict(duration=1024<<20, batch=2048, channels=320, lr=0.0080, decay=35000, dropout=0.10, P_mean=-0.8, P_std=1.6),
'edm2-img64-xl': dnnlib.EasyDict(duration=640<<20, batch=2048, channels=384, lr=0.0070, decay=35000, dropout=0.10, P_mean=-0.8, P_std=1.6),
}
#----------------------------------------------------------------------------
# Setup arguments for training.training_loop.training_loop().
def setup_training_config(preset='edm2-img512-s', **opts):
opts = dnnlib.EasyDict(opts)
c = dnnlib.EasyDict()
# Preset.
if preset not in config_presets:
raise click.ClickException(f'Invalid configuration preset "{preset}"')
for key, value in config_presets[preset].items():
if opts.get(key, None) is None:
opts[key] = value
# Dataset.
c.dataset_kwargs = dnnlib.EasyDict(class_name='training.dataset.ImageFolderDataset', path=opts.data, use_labels=opts.get('cond', True))
try:
dataset_obj = dnnlib.util.construct_class_by_name(**c.dataset_kwargs)
dataset_channels = dataset_obj.num_channels
if c.dataset_kwargs.use_labels and not dataset_obj.has_labels:
raise click.ClickException('--cond=True, but no labels found in the dataset')
del dataset_obj # conserve memory
except IOError as err:
raise click.ClickException(f'--data: {err}')
# Encoder.
if dataset_channels == 3:
c.encoder_kwargs = dnnlib.EasyDict(class_name='training.encoders.StandardRGBEncoder')
elif dataset_channels == 8:
c.encoder_kwargs = dnnlib.EasyDict(class_name='training.encoders.StabilityVAEEncoder')
else:
raise click.ClickException(f'--data: Unsupported channel count {dataset_channels}')
# Hyperparameters.
c.update(total_nimg=opts.duration, batch_size=opts.batch)
c.network_kwargs = dnnlib.EasyDict(class_name='training.networks_edm2.Precond', model_channels=opts.channels, dropout=opts.dropout)
c.loss_kwargs = dnnlib.EasyDict(class_name='training.training_loop.EDM2Loss', P_mean=opts.P_mean, P_std=opts.P_std)
c.lr_kwargs = dnnlib.EasyDict(func_name='training.training_loop.learning_rate_schedule', ref_lr=opts.lr, ref_batches=opts.decay)
# Performance-related options.
c.batch_gpu = opts.get('batch_gpu', 0) or None
c.network_kwargs.use_fp16 = opts.get('fp16', True)
c.loss_scaling = opts.get('ls', 1)
c.cudnn_benchmark = opts.get('bench', True)
# I/O-related options.
c.status_nimg = opts.get('status', 0) or None
c.snapshot_nimg = opts.get('snapshot', 0) or None
c.checkpoint_nimg = opts.get('checkpoint', 0) or None
c.seed = opts.get('seed', 0)
return c
#----------------------------------------------------------------------------
# Print training configuration.
def print_training_config(run_dir, c):
dist.print0()
dist.print0('Training config:')
dist.print0(json.dumps(c, indent=2))
dist.print0()
dist.print0(f'Output directory: {run_dir}')
dist.print0(f'Dataset path: {c.dataset_kwargs.path}')
dist.print0(f'Class-conditional: {c.dataset_kwargs.use_labels}')
dist.print0(f'Number of GPUs: {dist.get_world_size()}')
dist.print0(f'Batch size: {c.batch_size}')
dist.print0(f'Mixed-precision: {c.network_kwargs.use_fp16}')
dist.print0()
#----------------------------------------------------------------------------
# Launch training.
def launch_training(run_dir, c):
if dist.get_rank() == 0 and not os.path.isdir(run_dir):
dist.print0('Creating output directory...')
os.makedirs(run_dir)
with open(os.path.join(run_dir, 'training_options.json'), 'wt') as f:
json.dump(c, f, indent=2)
torch.distributed.barrier()
dnnlib.util.Logger(file_name=os.path.join(run_dir, 'log.txt'), file_mode='a', should_flush=True)
training.training_loop.training_loop(run_dir=run_dir, **c)
#----------------------------------------------------------------------------
# Parse an integer with optional power-of-two suffix:
# 'Ki' = kibi = 2^10
# 'Mi' = mebi = 2^20
# 'Gi' = gibi = 2^30
def parse_nimg(s):
if isinstance(s, int):
return s
if s.endswith('Ki'):
return int(s[:-2]) << 10
if s.endswith('Mi'):
return int(s[:-2]) << 20
if s.endswith('Gi'):
return int(s[:-2]) << 30
return int(s)
#----------------------------------------------------------------------------
# Command line interface.
@click.command()
# Main options.
@click.option('--outdir', help='Where to save the results', metavar='DIR', type=str, required=True)
@click.option('--data', help='Path to the dataset', metavar='ZIP|DIR', type=str, required=True)
@click.option('--cond', help='Train class-conditional model', metavar='BOOL', type=bool, default=True, show_default=True)
@click.option('--preset', help='Configuration preset', metavar='STR', type=str, default='edm2-img512-s', show_default=True)
# Hyperparameters.
@click.option('--duration', help='Training duration', metavar='NIMG', type=parse_nimg, default=None)
@click.option('--batch', help='Total batch size', metavar='NIMG', type=parse_nimg, default=None)
@click.option('--channels', help='Channel multiplier', metavar='INT', type=click.IntRange(min=64), default=None)
@click.option('--dropout', help='Dropout probability', metavar='FLOAT', type=click.FloatRange(min=0, max=1), default=None)
@click.option('--P_mean', 'P_mean', help='Noise level mean', metavar='FLOAT', type=float, default=None)
@click.option('--P_std', 'P_std', help='Noise level standard deviation', metavar='FLOAT', type=click.FloatRange(min=0, min_open=True), default=None)
@click.option('--lr', help='Learning rate max. (alpha_ref)', metavar='FLOAT', type=click.FloatRange(min=0, min_open=True), default=None)
@click.option('--decay', help='Learning rate decay (t_ref)', metavar='BATCHES', type=click.FloatRange(min=0), default=None)
# Performance-related options.
@click.option('--batch-gpu', help='Limit batch size per GPU', metavar='NIMG', type=parse_nimg, default=0, show_default=True)
@click.option('--fp16', help='Enable mixed-precision training', metavar='BOOL', type=bool, default=True, show_default=True)
@click.option('--ls', help='Loss scaling', metavar='FLOAT', type=click.FloatRange(min=0, min_open=True), default=1, show_default=True)
@click.option('--bench', help='Enable cuDNN benchmarking', metavar='BOOL', type=bool, default=True, show_default=True)
# I/O-related options.
@click.option('--status', help='Interval of status prints', metavar='NIMG', type=parse_nimg, default='128Ki', show_default=True)
@click.option('--snapshot', help='Interval of network snapshots', metavar='NIMG', type=parse_nimg, default='8Mi', show_default=True)
@click.option('--checkpoint', help='Interval of training checkpoints', metavar='NIMG', type=parse_nimg, default='128Mi', show_default=True)
@click.option('--seed', help='Random seed', metavar='INT', type=int, default=0, show_default=True)
@click.option('-n', '--dry-run', help='Print training options and exit', is_flag=True)
def cmdline(outdir, dry_run, **opts):
"""Train diffusion models according to the EDM2 recipe from the paper
"Analyzing and Improving the Training Dynamics of Diffusion Models".
Examples:
\b
# Train XS-sized model for ImageNet-512 using 8 GPUs
torchrun --standalone --nproc_per_node=8 train_edm2.py \\
--outdir=training-runs/00000-edm2-img512-xs \\
--data=datasets/img512-sd.zip \\
--preset=edm2-img512-xs \\
--batch-gpu=32
\b
# To resume training, run the same command again.
"""
torch.multiprocessing.set_start_method('spawn')
dist.init()
dist.print0('Setting up training config...')
c = setup_training_config(**opts)
print_training_config(run_dir=outdir, c=c)
if dry_run:
dist.print0('Dry run; exiting.')
else:
launch_training(run_dir=outdir, c=c)
#----------------------------------------------------------------------------
if __name__ == "__main__":
cmdline()
#----------------------------------------------------------------------------