-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
320 lines (273 loc) · 14.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import argparse
import datetime
import os
import traceback
import numpy as np
import torch
from tensorboardX import SummaryWriter
from torch import nn
from torchvision import transforms
from tqdm.autonotebook import tqdm
from val import val
from backbone import HybridNetsBackbone
from utils.utils import get_last_weights, init_weights, boolean_string, \
save_checkpoint, DataLoaderX, Params
from hybridnets.dataset import BddDataset
from hybridnets.custom_dataset import CustomDataset
from hybridnets.autoanchor import run_anchor
from hybridnets.model import ModelWithLoss
from utils.constants import *
from collections import OrderedDict
from torchinfo import summary
def get_args():
parser = argparse.ArgumentParser('HybridNets: End-to-End Perception Network - DatVu')
parser.add_argument('-p', '--project', type=str, default='bdd100k', help='Project file that contains parameters')
parser.add_argument('-bb', '--backbone', type=str, help='Use timm to create another backbone replacing efficientnet. '
'https://github.com/rwightman/pytorch-image-models')
parser.add_argument('-c', '--compound_coef', type=int, default=3, help='Coefficient of efficientnet backbone')
parser.add_argument('-n', '--num_workers', type=int, default=8, help='Num_workers of dataloader')
parser.add_argument('-b', '--batch_size', type=int, default=12, help='Number of images per batch among all devices')
parser.add_argument('--freeze_backbone', type=boolean_string, default=False,
help='Freeze encoder and neck (effnet and bifpn)')
parser.add_argument('--freeze_det', type=boolean_string, default=False,
help='Freeze detection head')
parser.add_argument('--freeze_seg', type=boolean_string, default=False,
help='Freeze segmentation head')
parser.add_argument('--lr', type=float, default=1e-4)
parser.add_argument('--optim', type=str, default='adamw', help='Select optimizer for training, '
'suggest using \'adamw\' until the'
' very final stage then switch to \'sgd\'')
parser.add_argument('--num_epochs', type=int, default=500)
parser.add_argument('--val_interval', type=int, default=1, help='Number of epoches between valing phases')
parser.add_argument('--save_interval', type=int, default=5000, help='Number of steps between saving')
parser.add_argument('--es_min_delta', type=float, default=0.0,
help='Early stopping\'s parameter: minimum change loss to qualify as an improvement')
parser.add_argument('--es_patience', type=int, default=0,
help='Early stopping\'s parameter: number of epochs with no improvement after which '
'training will be stopped. Set to 0 to disable this technique')
parser.add_argument('--data_path', type=str, default='datasets/', help='The root folder of dataset')
parser.add_argument('--log_path', type=str, default='checkpoints/')
parser.add_argument('-w', '--load_weights', type=str, default=None,
help='Whether to load weights from a checkpoint, set None to initialize,'
'set \'last\' to load last checkpoint')
parser.add_argument('--saved_path', type=str, default='checkpoints/')
parser.add_argument('--debug', type=boolean_string, default=False,
help='Whether visualize the predicted boxes of training, '
'the output images will be in test/, '
'and also only use first 500 images.')
parser.add_argument('--cal_map', type=boolean_string, default=False,
help='Calculate mAP in validation')
parser.add_argument('-v', '--verbose', type=boolean_string, default=True,
help='Whether to print results per class when valing')
parser.add_argument('--plots', type=boolean_string, default=True,
help='Whether to plot confusion matrix when valing')
parser.add_argument('--num_gpus', type=int, default=1,
help='Number of GPUs to be used (0 to use CPU)')
parser.add_argument('--conf_thres', type=float, default=0.001,
help='Confidence threshold in NMS')
parser.add_argument('--iou_thres', type=float, default=0.6,
help='IoU threshold in NMS')
parser.add_argument('--amp', type=boolean_string, default=False,
help='Automatic Mixed Precision training')
args = parser.parse_args()
return args
def train(opt):
torch.backends.cudnn.benchmark = True
print("\nCUDNN VERSION: {}\n".format(torch.backends.cudnn.version()))
params = Params(f'projects/{opt.project}.yml')
if opt.num_gpus == 0:
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
if torch.cuda.is_available():
torch.cuda.manual_seed(42)
else:
torch.manual_seed(42)
opt.saved_path = opt.saved_path + f'/{opt.project}/'
opt.log_path = opt.log_path + f'/{opt.project}/tensorboard/'
os.makedirs(opt.log_path, exist_ok=True)
os.makedirs(opt.saved_path, exist_ok=True)
seg_mode = MULTILABEL_MODE if params.seg_multilabel else MULTICLASS_MODE if len(params.seg_list) > 1 else BINARY_MODE
train_dataset = BddDataset(
params=params,
is_train=True,
inputsize=params.model['image_size'],
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(
mean=params.mean, std=params.std
)
]),
seg_mode=seg_mode,
debug=opt.debug
)
training_generator = DataLoaderX(
train_dataset,
batch_size=opt.batch_size,
shuffle=False,
num_workers=opt.num_workers,
pin_memory=params.pin_memory,
collate_fn=BddDataset.collate_fn
)
valid_dataset = BddDataset(
params=params,
is_train=False,
inputsize=params.model['image_size'],
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(
mean=params.mean, std=params.std
)
]),
seg_mode=seg_mode,
debug=opt.debug
)
val_generator = DataLoaderX(
valid_dataset,
batch_size=opt.batch_size,
shuffle=False,
num_workers=opt.num_workers,
pin_memory=params.pin_memory,
collate_fn=BddDataset.collate_fn
)
if params.need_autoanchor:
params.anchors_scales, params.anchors_ratios = run_anchor(None, train_dataset)
model = HybridNetsBackbone(num_classes=len(params.obj_list), compound_coef=opt.compound_coef,
ratios=eval(params.anchors_ratios), scales=eval(params.anchors_scales),
seg_classes=len(params.seg_list), backbone_name=opt.backbone,
seg_mode=seg_mode)
# load last weights
ckpt = {}
# last_step = None
if opt.load_weights:
if opt.load_weights.endswith('.pth'):
weights_path = opt.load_weights
print("Weight loaded : ", weights_path)
else:
weights_path = get_last_weights(opt.saved_path)
print("Get last weights : ", weights_path)
# try:
# last_step = int(os.path.basename(weights_path).split('_')[-1].split('.')[0])
# except:
# last_step = 0
try:
ckpt = torch.load(weights_path)
# new_weight = OrderedDict((k[6:], v) for k, v in ckpt['model'].items())
model.load_state_dict(ckpt.get('model', ckpt), strict=False)
except RuntimeError as e:
print(f'[Warning] Ignoring {e}')
print(
'[Warning] Don\'t panic if you see this, this might be because you load a pretrained weights with different number of classes. The rest of the weights should be loaded already.')
else:
print('[Info] initializing weights...')
init_weights(model)
print('[Info] Successfully!!!')
if opt.freeze_backbone:
model.encoder.requires_grad_(False)
model.bifpn.requires_grad_(False)
print('[Info] freezed backbone')
if opt.freeze_det:
model.regressor.requires_grad_(False)
model.classifier.requires_grad_(False)
model.anchors.requires_grad_(False)
print('[Info] freezed detection head')
if opt.freeze_seg:
model.bifpndecoder.requires_grad_(False)
model.segmentation_head.requires_grad_(False)
print('[Info] freezed segmentation head')
#summary(model, (1, 3, 384, 640), device='cpu')
writer = SummaryWriter(opt.log_path + f'/{datetime.datetime.now().strftime("%Y%m%d-%H%M%S")}/')
# wrap the model with loss function, to reduce the memory usage on gpu0 and speedup
model = ModelWithLoss(model, debug=opt.debug)
model = model.to(memory_format=torch.channels_last)
if opt.num_gpus > 0:
model = model.cuda()
if opt.optim == 'adamw':
optimizer = torch.optim.AdamW(model.parameters(), opt.lr)
else:
optimizer = torch.optim.SGD(model.parameters(), opt.lr, momentum=0.9, nesterov=True)
# print(ckpt)
scaler = torch.cuda.amp.GradScaler(enabled=opt.amp)
# if opt.load_weights is not None and ckpt.get('optimizer', None):
# scaler.load_state_dict(ckpt['scaler'])
# optimizer.load_state_dict(ckpt['optimizer'])
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=3, verbose=True)
epoch = 0
best_loss = 1e5
best_epoch = 0
last_step = ckpt['step'] if opt.load_weights is not None and ckpt.get('step', None) else 0
best_fitness = ckpt['best_fitness'] if opt.load_weights is not None and ckpt.get('best_fitness', None) else 0
step = max(0, last_step)
model.train()
num_iter_per_epoch = len(training_generator)
try:
for epoch in range(opt.num_epochs):
# last_epoch = step // num_iter_per_epoch
# if epoch < last_epoch:
# continue
epoch_loss = []
progress_bar = tqdm(training_generator, ascii=True)
for iter, data in enumerate(progress_bar):
# if iter < step - last_epoch * num_iter_per_epoch:
# progress_bar.update()
# continue
try:
imgs = data['img']
annot = data['annot']
seg_annot = data['segmentation']
if opt.num_gpus == 1:
# if only one gpu, just send it to cuda:0
imgs = imgs.to(device="cuda", memory_format=torch.channels_last)
annot = annot.cuda()
seg_annot = seg_annot.cuda()
optimizer.zero_grad(set_to_none=True)
with torch.cuda.amp.autocast(enabled=opt.amp):
cls_loss, reg_loss, seg_loss, regression, classification, anchors, segmentation = model(imgs, annot,
seg_annot,
obj_list=params.obj_list)
cls_loss = cls_loss.mean() if not opt.freeze_det else torch.tensor(0, device="cuda")
reg_loss = reg_loss.mean() if not opt.freeze_det else torch.tensor(0, device="cuda")
seg_loss = seg_loss.mean() if not opt.freeze_seg else torch.tensor(0, device="cuda")
loss = cls_loss * 2 + reg_loss * 1.5 + seg_loss
# with we privilege the classification loss in when training as a whole (backbone+obj+seg),
# because there are less instances for training within the balanced dataset
# the segmentation branch will later be trained on the huge dataset while freezing the others.
if loss == 0 or not torch.isfinite(loss):
continue
scaler.scale(loss).backward()
# Don't have to clip grad norm, since our gradients didn't explode anywhere in the training phases
# This worsens the metrics
# scaler.unscale_(optimizer)
# torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1)
scaler.step(optimizer)
scaler.update()
epoch_loss.append(float(loss))
progress_bar.set_description(
'Step: {}. Epoch: {}/{}. Iteration: {}/{}. Cls loss: {:.5f}. Reg loss: {:.5f}. Seg loss: {:.5f}. Total loss: {:.5f}'.format(
step, epoch, opt.num_epochs, iter + 1, num_iter_per_epoch, cls_loss.item(),
reg_loss.item(), seg_loss.item(), loss.item()))
writer.add_scalars('Loss', {'train': loss}, step)
writer.add_scalars('Regression_loss', {'train': reg_loss}, step)
writer.add_scalars('Classfication_loss', {'train': cls_loss}, step)
writer.add_scalars('Segmentation_loss', {'train': seg_loss}, step)
# log learning_rate
current_lr = optimizer.param_groups[0]['lr']
writer.add_scalar('learning_rate', current_lr, step)
step += 1
if step % opt.save_interval == 0 and step > 0:
save_checkpoint(model, opt.saved_path, f'hybridnets-d{opt.compound_coef}_{epoch}_{step}.pth')
print('checkpoint...')
except Exception as e:
print('[Error]', traceback.format_exc())
print(e)
continue
scheduler.step(np.mean(epoch_loss))
if epoch % opt.val_interval == 0:
best_fitness, best_loss, best_epoch = val(model, val_generator, params, opt, seg_mode, is_training=True,
optimizer=optimizer, scaler=scaler, writer=writer, epoch=epoch, step=step,
best_fitness=best_fitness, best_loss=best_loss, best_epoch=best_epoch)
except KeyboardInterrupt:
save_checkpoint(model, opt.saved_path, f'hybridnets-d{opt.compound_coef}_{epoch}_{step}.pth')
finally:
writer.close()
if __name__ == '__main__':
opt = get_args()
train(opt)