-
-
Notifications
You must be signed in to change notification settings - Fork 164
/
xgboost.py
49 lines (38 loc) · 1.51 KB
/
xgboost.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
""" XGBoost
Install xgboost following the instructions on this link: http://xgboost.readthedocs.io/en/latest/build.html#
"""
# Importing the libraries
import pandas as pd
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import cross_val_score
import xgboost as xgb
def main():
# Importing the dataset
dataset = pd.read_csv('Churn_Modelling.csv')
X = dataset.iloc[:, 3:13].values
y = dataset.iloc[:, 13].values
# Encoding categorical data
labelencoder_X_1 = LabelEncoder()
X[:, 1] = labelencoder_X_1.fit_transform(X[:, 1])
labelencoder_X_2 = LabelEncoder()
X[:, 2] = labelencoder_X_2.fit_transform(X[:, 2])
onehotencoder = OneHotEncoder(categorical_features=[1])
X = onehotencoder.fit_transform(X).toarray()
X = X[:, 1:]
# Splitting the dataset into the Training set and Test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# Fitting XGBoost to the Training set
classifier = xgb.XGBClassifier()
classifier.fit(X_train, y_train)
# Predicting the Test set results
y_pred = classifier.predict(X_test)
# Making the Confusion Matrix
cm = confusion_matrix(y_test, y_pred)
# Applying k-Fold Cross Validation
accuracies = cross_val_score(estimator=classifier, X=X_train, y=y_train, cv=10)
accuracies.mean()
accuracies.std()
if __name__ == '__main__':
main()