-
Notifications
You must be signed in to change notification settings - Fork 0
/
Optimization.py
51 lines (28 loc) · 1.35 KB
/
Optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import tensorflow.keras as keras
import tensorflow as tf
import matplotlib.pyplot as plt
mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_data()
plt.imshow(x_train[0],cmap=plt.cm.binary)
x_train = tf.keras.utils.normalize(x_train, axis=1)
x_test = tf.keras.utils.normalize(x_test, axis=1)
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(128, activation=tf.nn.relu))
model.add(tf.keras.layers.Dense(128, activation=tf.nn.relu))
model.add(tf.keras.layers.Dense(128, activation=tf.nn.relu))
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(x_train, y_train, epochs=3)
val_loss, val_acc = model.evaluate(x_test, y_test)
print(val_loss)
print(val_acc)
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = tf.keras.utils.normalize(x_train, axis=1).reshape(x_train.shape[0], -1)
x_test = tf.keras.utils.normalize(x_test, axis=1).reshape(x_test.shape[0], -1)
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(128, activation=tf.nn.relu, input_shape= x_train.shape[1:]))
model.add(tf.keras.layers.Dense(128, activation=tf.nn.relu))
model.add(tf.keras.layers.Dense(10, activation=tf.nn.softmax))
model.x_train()