
Efficient Computation of Jacobian

Jared Crean

January 23, 2018

1 Face Integral Overview

This section describes the high-level overview of how to differentiate the face integrals. This
document assumes the interpolation from the volume nodes to the face nodes requires data
from all volume nodes.

1.1 Notation and Definitions

This section describes notation that will be used throughout the document.
Julia-like notation will be used for array indexing, ie, A[:, j] returns the jth column of

A. This document describes the operations applied to a single face. The term “face nodes”
implicitly refers to the nodes of the face under consideration.

• numNodesPerElement: the number of volume nodes in each element

• numNodesPerFace: the number of face cubature nodes

• numDofPerNode: the number of degrees of freedom on each node, for example, 4
for the 2D Euler equations.

• qL: a numDofPerNode x numNodesPerElement array containing the solution at
the volume nodes of the left element of the interface

• qR: array of same size as qL, but holds the solution at the volume nodes of the right
element of the interface

• qface,L: array of size numDofPerNode x numNodesPerFace, holds qL interpolated
to the face

• qface,R: array of same size as qface,L, but holds qR interpolated to the face

• f : array of size numDofPerNode x numNodesPerFace, holds the flux at each face
node

1



• RL: array, same size as qL, holds the residual at the volume nodes of the left element

• RR: array, same size as qR, holds the residual at the volume nodes of the right element.

• ḟL: array of size numDofPerNode x numDofPerNode x numNodesPerFace,
where ḟL[:, :, j] holds the derivative of the flux with respect to the solution at the face

at node j, ie. ∂f [:,j]
∂qface,L[:,j]

.

• ḟR: similar to ḟL, but holds the derivative with respect to qface,R.

• ḟvolume,L: array of size numDofPerNode x numDofPerNode x numNodesPer-
Face x numNodesPerElement, holds the Jacobian of the flux at each face node
with respect to the solution at each volume node of the left element, ie. ḟvolume,L[:, :

, j, i] = ∂f [:,j]
∂qL[:,i]

• ḟvolume,R: like ḟvolume,L, but stores Jacobian with respect to qR.

• ṘA,B:array of size numDofPerNode x numDofPerNode x numNodesPerEle-
ment x numNodesPerElement, where A and B take values of either L or R. This
array holds the derivative of the residual on element A with respect to the solution on
the volume nodes of element B. For example, ṘL,R[i, j, p, q] = ∂RL[i,p]

∂qR[j,q]

• IL: is an array of size numNodesPerFace x numNodesPerElement that inter-
polates from the volume nodes to the face nodes of the left element. This matrix is
usually called R in the SBP package.

• IR: similar array to IL, but interpolates from the volume nodes of the right element
to the face nodes.

1.2 Integral Computation

A pseudo-code representation of the boundary integral procedure is

Input: qL, qR
Data: qface,L, qface,R, f
Output: RL, RR

1 # Interpolate to face:
2 qface,L, qface,R = faceInterpolate(qL, qR)

3 # Compute flux at each face node:
4 for j = 1:numNodesPerFace do
5 f [:, j] = RoeSolver(qL[:, j], qR[:, j])
6 end

7 # Integrate and apply test function
8 RL, RR = faceIntegrate(f)

2



1.3 Integral Differentiation

Data: qL, qR, ḟL, ḟR
1 # Interpolate to face:
2 qface,L, qface,R = faceInterpolate(qL, qR)

3 # Compute flux Jacobians at each face node
4 for j = 1:numNodesPerFace do

5 ḟL[:, :, j], ḟR[:, :, j] = RoeSolver diff(qface,L[:, j], qface,R[:, j])
6 end

7 # See Section 2

8 ḟvolume,L = FluxExpansion(ḟL)

9 ḟvolume,R = FluxExpansion(ḟR)

10 # See Section 3

11 ṘL,L, ṘR,L = ReverseInterpolation(ḟvolume,L)

12 ṘR,L, ṘR,R = ReverseInterpolation(ḟvolume,R)

The function RoeSolver diff() computes the derivative of the flux with respect to qface,L
and qface,R. For reasons that will become clearer in Section 3, the ReverseInterpolation()
function computes the Jacobian of the residual of both the left and right elements with
respect to both its inputs at the same time.

2 Flux Expansion

The purpose of the function FluxExpansion() is to compute

∂f

∂qL
=

∂f

∂qface,L

∂qface,L
∂qL

. (1)

for qL and the corresponding quantity for qR. However, because of the ordering of the data
in the arrays, the operation is not a simple matrix-matrix multiplication.

2.1 Scalar Case

Considering the special case when numDofPerNode = 1, qL and qR become vectors, and
the action of the IL can be written

qface,L = ILqL (2)

and therefore

∂qface,L
∂qL

= IL. (3)

3



Eq. (1) can be evaluated as

∂f

∂qL
=

∂f

∂qface,L
IL (4)

where RoeSolver diff() computes ∂f
∂qface,L

.

2.2 Vector Case

In the case numDofPerNode > 1, the IL operator should be applied to the last dimension
of f .

qface,L[j, :] = ILqL[j, :] for j = 1 : numDofPerNode. (5)

Correspondingly,

∂f [i, :]

∂qL[j, :]
=

∂f [i, :]

∂qface,L[j, :]
IL for i, j = 1 : numDofPerNode. (6)

In cases where the flux function is applied pointwise to the face nodes, ∂f [i,p]
∂qface,L[j,q]

= 0 when

p 6= q, thus the matrix is diagonal. The signature of the RoeSolver() in Algorithm 1 indicates
this is the case, and we will use this simplification for the remainder of the document.

Using the notation defined in Section 1.1, this can be written in code as

for k=1:numNodesPerElement
for p=1:numNodesPerFace

for i=1:numDofPerNode
for j=1:numDofPerNode

ḟvolume,L[i, j, p, k] = ḟL[i, j, p] ∗ IL[p, k]
end

end
end

end

Notice that the i and j loops are scaling ḟL[i, j, p] by the same entry of IL, which is a very
efficient code pattern.

3 Reverse Interpolation

3.1 Scalar Case

Examining the case when numDofPerNode = 1, the operation that needs to be done now
is to relate the derivative of the flux with respect to qL and qR to the derivative of the

4



residual. Examining the residual of the left element with respect to qR

∂RL

∂qR
=
∂RL

∂f

∂f

∂qR
, (7)

which becomes

ṘL,R = ITLBḟvolume,R (8)

where B is the diagonal matrix of integration weights at the face nodes.

3.2 Vector Case

When numDofPerNode > 1, the operation becomes

ṘL,R[i, j, :, :] = ITLBḟvolume,R[i, j, :, :] for i, j = 1 : numDofPerNode (9)

Taking advantage of the fact that B is diagonal, this can be rewritten as

ṘL,R[i, j, p, q] =
numNodesPerFace∑

k=1

ITL [p, k]B[k, k]ḟvolume,R[i, j, k, q] for i, j = 1 : numDofPerNode,

for p, q = 1 : numNodesPerElement

(10)

This can be rewritten as

for q=1:numNodesPerElement
for p=1:numNodesPerElement

for k=1:numNodesPerFace
for i=1:numDofPerNode

for j=1:numDofPerNode
ṘL,R[i, j, p, q] += IL[k, p] ∗B[k, k] ∗ ḟvolume,R[i, j, k, q]
end

end
end

end
end

Similar operations can be defined for ṘR,R, ṘL,L, and ṘR,L. The calculation of ṘL,R and

ṘR,R use the same ḟvolume,R array and should probably be combined.

5



4 Combined Operations

Substituting the definition of ḟvolume,R based on (6) into (10), it is possible to combine the
two operations into one:

for q=1:numNodesPerElement
for p=1:numNodesPerElement

for k=1:numNodesPerFace
for i=1:numDofPerNode

for j=1:numDofPerNode
ṘL,R[i, j, p, q] += IL[k, p] ∗B[k, k] ∗ ḟR[i, j, k] ∗ IR[p, q]
end

end
end

end
end

5 Volume Terms

Compared to the face terms, the volume terms are much simpler. Some additional notation
is required

5.1 Notation and Definitions

• dim: the number of dimensions (usually 2 or 3).

• q: array of size numDofPerNode x numNodesPerElement, holds the solution at
the volume nodes of the element.

• R: array of size numDofPerNode x numNodesPerElement, holds the residual at
each volume node.

• Ṙ: array of size numDofPerNode x numDofPerNode x numNodesPerElement
x numNodesPerElement, holds the derivative of the residual with respect to the
solution at the volume nodes, ie. Ṙ[i, j, p, q] = ∂R[i,p]

∂q[j,q]

• Qi: the SBP weak differentiation operator in direction i, array of size numNodes-
PerElement x numNodesPerElement

• g: an array of size numDofPerNode x numNodesPerElement x dim, holds the
flux at each volume node.

• ġ: an array of size numDofPerNode x numDofPerNode x numNodesPerEle-
ment x dim, holds the derivative of the flux with respect to the solution at the
volume nodes, ie. ġ[i, j, p, q] = ∂g[i,p,d]

∂q[j,q]

6



5.2 Scalar Case

When numDofPerNode = 1, the first dimension of g disappears and the volume term
becomes

R =
dim∑
d

QT
d g[:, d] (11)

The derivative can be written

∂R[p]

∂q[q]
=

dim∑
d

numNodesPerElement∑
k

QT
d [p, k]

∂g[k, d]

∂q[q]
(12)

Because the flux function is applied pointwise, ∂g[k,d]
∂q[q]

= 0 when k 6= q, this can be rewritten
as

∂R[p]

∂q[q]
=

dim∑
d

QT
d [p, q]

∂g[q, d]

∂q[q]
. (13)

5.3 Vector Case

In the case when numDofPerNode > 1, the volume term becomes

R[i, :] =
dim∑
d

QT
d g[i, :, d] for i = 1 : numDofPerNode (14)

and the derivative can be written

∂R[i, p]

∂q[j, q]
=

dim∑
d

QT
d [p, q]

∂g[i, q, d]

∂q[j, q]
. (15)

This can be written in code as

for d=1:dim
for p=1:numNodesPerElement

for q=1:numNodesPerElement
for j=1:numDofPerNode

for i=1:numDofPerNode
Ṙ[i, j, p, q] += Qd[q, p] ∗ ġ[i, j, q, d]

end
end

end
end

end

7



6 Euler Homotopy Volume Terms

The volume terms for the homotopy are more involved than the volume terms in the previous
section. Differentiating them will require some additional notation and a somewhat different
set of intermediate arrays.

6.1 Notation and Definitions

This section will use the same notation as the previous section, with a few additions:

• Di: the SBP differentiation matrix in the i-th parametric direction, numNodes-
PerElement x numNodesPerElement

• λdp: the maximum eigenvalue of the Euler flux Jacobian at node k of the element in
direction d

• δij: the Dirac delta function, with a value of 1 if i and j are equal and zero otherwise

• t1: a numDofPerNode x numNodesPerElement array. Values defined by Algo-
rithm 3.

• ṫ1: a numDofPerNode x numDofPerNode x numNodesPerElement x numNodes-
PerElement array holding the derivative of t1 with respect to q, ie. ṫ1[i, j, p, q] =
∂t1[i,p]
∂q[j,q]

• t2: array, same size as t1. Values defined by Algorithm 3.

• ṫ2: derivative of t2 with respect to q. Same size and layout as ṫ1.

6.2 Vector Case

The volume terms are calculated as:

Data: q, R
1 for d1 = 1:dim do
2 t1[i, :] = Dd1q[i, :] for i=1:numDofPerNode
3 t2[:, p] = t1[:, p] λd1p
4 R[i, :] += QT

d1
t2[i, :] for i=1:numDofPerNode

5 end

8



Using explicit indices for all arrays, this can be rewritten as:

Data: q, R
1 for d1 = 1:dim do

2 t1[i, p] =
∑numDofPerNode

c Di[p, c]q[i, c] for i=1:numDofPerNode
3 t2[i, p] = t1[i, p] λd1p for i=1:numDofPerNode

4 R[i, p] +=
∑numNodesPerElement

c QT
d2

[p, c] t2[i, c] for i=1:numDofPerNode

5 end

Differentiating line-by-line gives:

Data: q, Ṙ
1 for d1 = 1:dim do

2 ṫ1[i, j, p, q] = Di[p, c]
∂q[i,c]
∂q[j,q]

=Dd1δijδcq

3 ṫ2[i, j, p, q] = t1[i, p]
∂λ

d1
p

∂q[j,q]
+ λd1p ṫ1[i, j, p, q]

4 Ṙ[i, j, p, q] =
∑numNodesPerElement

c QT
d1

[p, c]ṫ2[i, j, c, q]

5 end

Line 2 can be further simplified as ṫ1[:, :, p, q] = Dd1 [p, q], however, its only use is in line
3. Instead, Dd1 [p, q] can be used directly, and ṫ1 becomes unnecessary. Additionally, line 3

can be simplified by noting
∂λ

d1
p

∂q[j,q]
= 0 when p 6= q.

9


	Face Integral Overview
	Notation and Definitions
	Integral Computation
	Integral Differentiation

	Flux Expansion
	Scalar Case
	Vector Case

	Reverse Interpolation
	Scalar Case
	Vector Case

	Combined Operations
	Volume Terms
	Notation and Definitions
	Scalar Case
	Vector Case

	Euler Homotopy Volume Terms
	Notation and Definitions
	Vector Case


